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White Matter Anisotropy in the Ventral Language Pathway
Predicts Sound-to-Word Learning Success

Francis C. K. Wong,' Bharath Chandrasekaran,' Kyla Garibaldi,' and Patrick C. M. Wong'>
'The Roxelyn and Richard Pepper Department of Communication Sciences and Disorders and 2Hugh Knowles Center for Clinical and Basic Science in
Hearing and Its Disorders, Northwestern University, Evanston, Illinois 60208

According to the dual stream model of auditory language processing, the dorsal stream is responsible for mapping sound to articulation
and the ventral stream plays the role of mapping sound to meaning. Most researchers agree that the arcuate fasciculus (AF) is the
neuroanatomical correlate of the dorsal steam; however, less is known about what constitutes the ventral one. Nevertheless, two hypoth-
eses exist: one suggests that the segment of the AF that terminates in middle temporal gyrus corresponds to the ventral stream, and the
other suggests that it is the extreme capsule that underlies this sound-to-meaning pathway. The goal of this study was to evaluate these
two competing hypotheses. We trained participants with a sound-to-word learning paradigm in which they learned to use a foreign
phonetic contrast for signaling word meaning. Using diffusion tensor imaging, a brain-imaging tool to investigate white matter connec-
tivity in humans, we found that fractional anisotropy in the left parietal-temporal region positively correlated with the performance in
sound-to-word learning. In addition, fiber tracking revealed a ventral pathway, composed of the extreme capsule and the inferior
longitudinal fasciculus, that mediated auditory comprehension. Our findings provide converging evidence supporting the importance of
the ventral steam, an extreme capsule system, in the frontal-temporal language network. Implications for current models of speech

processing are also discussed.

Introduction

Brain-imaging studies have shown that both the frontal and
parietal-temporal areas are engaged in speech processing (Vi-
gneau et al., 2006). Among different neurocognitive models
(Price, 2000; Friederici, 2002; Hagoort, 2005; Hickok and Poep-
pel, 2007), the dual stream model (Hickok and Poeppel, 2007)
made explicit predictions about the anatomical bases of the tem-
poral-frontal pathways in the language network, a dorsal stream
that maps sound to articulatory representation and a ventral
stream that maps sound to meaning. Although it is one of the
more dominant models, recent research has called into question
the role of the ventral pathway (Saur et al., 2008), which we
examined in the current study.

Using diffusion tensor imaging (DTI), Glasser and Rilling
(2008) reconstructed the arcuate fasciculus (AF) and demon-
strated that it contains two segments, the middle temporal gyrus
(MTG) segment and the superior temporal gyrus (STG) segment,
that both connect to the frontal lobe. Based on a meta-analysis,
they reported that the MTG termination overlapped with lexical—
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semantic activations, and the STG termination overlapped with
phonological activations, suggesting that the MTG segment of
the AF corresponded to the ventral pathway in Hickok and Poep-
pel’s (2007) model. Saur et al. (2008), on the other hand, pro-
vided an alternative localization of the ventral pathway. They
defined nodes of a comprehension network as fMRI contrasts of
activations to speech versus pseudospeech. They reported a com-
prehension pathway as fibers connecting the middle temporal
lobe and the ventrolateral prefrontal cortex via the extreme cap-
sule (EmC).

Saur et al. (2008) provided important insights toward the un-
derstanding of the ventral pathway by highlighting its role in
comprehension, but they did not provide direct evidence that the
pathway indeed interfaces semantics with phonology. The sub-
traction of activations to pseudospeech from activations to
speech was intended to reveal activations related to comprehen-
sion and comprehension only because basic sound structure was
present in both conditions, whereas meaning was distorted in
pseudospeech (Wise et al., 1991; Binder et al., 2000; Roder et al.,
2002).

In this study, we provided a critical examination of the inter-
play between phonology and semantics within the framework as
laid out in Hickok and Poeppel (2007). We did so by training
participants to use a foreign phonetic contrast for signaling word
meaning. We trained native English speakers to use pitch pat-
terns, changes in fundamental frequency, to contrast meanings.
For example, participants learned to associate “pesh” presented
with a falling pitch with a picture of a table and “pesh” presented
with a rising pitch with a picture of a pencil. Using DTT, we first
identified brain regions where white matter fractional anisotropy
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(FA) predicts learning success. Following Saur et al. (2008), we
performed probabilistic fiber tracking to localize the pathways
that mediated learning success. Our results would help resolve
the competing hypotheses regarding the anatomical correlates of
the ventral pathway: the MTG segment of the AF as proposed by
Glasser and Rilling (2008) or the EmC as proposed by Saur et al.
(2008).

Materials and Methods

Participants

Twenty right-handed (Oldfield, 1971) native speakers of American Eng-
lish (8 males and 12 females; mean age = 25.9 years, SD = 4.79) partic-
ipated in the study. All participants passed a pure-tone audiometric
screening at 25 dB hearing level across octaves from 500 to 4000 Hz,
bilaterally, and provided their written consent before participation.
The procedures were approved by the Institutional Review Board at
Northwestern University. None of the participants had prior expo-
sure to tonal languages. They were evaluated with a nonverbal IQ test
(Test of Nonverbal Intelligence) (Brown et al., 1997). Their mean stan-
dard score was 119.35 (SD = 11.17). They were also evaluated with two
subtests, Sound Blending (SB), a measurement of phonological aware-
ness, and Auditory Working Memory (AWM), from the Woodcock—
Johnson Test of Cognitive Abilities (Woodcock et al., 2001). Their mean
percentile rank scores were 80.10 (SD = 16.71) and 85.80 (SD = 10.43),
respectively.

Sound-to-word learning program

The sound-to-word learning program used in this study has been de-
scribed in detail by Chandrasekaran et al. (2010) and was similar to the
ones used by Wong and Perrachione (2007) and Wong et al. (2007).
Participants underwent a 9 d training in which they learned to associate
speech stimuli with pictures of objects presented on a computer screen.
To successtully learn the sound—picture pairings, participants had to be
sensitive not just to the segmental features that came naturally to them
based on their native language, but also to the novel suprasegmental
features, namely, changes in pitch pattern within syllables, that were not
used in their native language.

Stimuli. As detailed in our previous study (Chandrasekaran et al.,
2010), the stimuli consisted of words that were constructed based on six
English monosyllabic pseudowords (“pesh,” “dree,” “nuck,” “vece,”
“fute,” and “ner”), each superimposed, using the Pitch Synchronous
Overlap and Add (PSOLA) method implemented in the software Praat
(http://www.praat.org), with four pitch patterns that resembled the
Mandarin Chinese level, rising, dipping, and falling tones (Fig. 1 in
Chandrasekaran et al., 2010). Hence, 24 words were constructed, and
each was paired with a picture designating the meaning of the word.

In total, 192 tokens were created (24 words, 8 talkers). Stimuli from
four talkers (2 men and 2 women) were used as training set materials,
whereas the stimuli from the remaining talkers were used in the general-
ization set. We used such a multitalker approach to discourage rote
memorization of the acoustic inputs and promote word learning (Lively
et al., 1993), the latter of which was explicitly evaluated with the Gener-
alization Test (explained below).

Training and testing procedures. Each session of training lasted ~30
min; there were no more than a 2 d gap between sessions and no more
than one training session per day. Each session was divided into a training
phase and a Word Identification Test. In the training phase, words of the
same base syllable were presented in the same block so that words in a
block were minimally contrasted by pitch. In each block, each sound—
picture pairing was presented with an intertrial interval of 3 s. At the end
of each block, participants were tested on the words they had just learned:
each sound was played and then participants had to select the correct
picture from four choices. If the participant selected a wrong picture, the
correct picture would be displayed briefly before the presentation of the
next test item.

In the Word Identification Test, participants were presented with all
the speech tokens one at a time in a pseudorandom order; they were
asked to identify, untimed, each token by selecting a picture from 24
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Figure1.  Thelearning curves, thin lines with circle marks, of all of the participants. The thick
line with error bars, denoting the SE, shows the mean word ID scores achieved by the end of each
session.

possible choices. This procedure was repeated once for each of the four
talkers. No feedback was given during the test. After the Word Identifi-
cation Test in the ninth session, the Generalization Test was conducted
with the same procedure as in the Word Identification Test but with test
items from the generalization set, that is, tokens from different talkers,
instead.

MRI data

Image acquisition. Diffusion-weighted images were acquired on a 3 tesla
Siemens Verio with an eight-channel head coil. The diffusion-weighted
volumes were achieved with 64 diffusion encoding directions with an
isotropic voxel size of 2 mm? (b value = 1000 s/mm?; 55 slices; slice
thickness = 2 mm; TR = 9.8 s; TE = 96 ms; FOV = 256 mm X 256 mm)
plus one reference volume without diffusion weighting (b value = 0
s/mm?), which was acquired at the beginning of the sequence. The ac-
quisition took ~11 min for each participant. T1-weighted images were
acquired using an MPRAGE sequence with an isotropic voxel size of 1
mm? (160 slices; slice thickness = 1 mm; TR = 2.3 s; TE = 3.39 ms; flip
angle = 9% FOV = 256 mm X 256 mm).

Fractional anisotropy. The preprocessing of the diffusion data was per-
formed using the diffusion toolbox (FDT) in FSL (Smith et al., 2004). The
DTI data were first corrected for eddy currents and head motion, fol-
lowed by removal of nonbrain tissues. After that, a diffusion tensor
model was fitted at each voxel to compute, among other measures, FA.
The FA maps created were then processed using the track-based spatial
statistics routine (Smith et al., 2006), in which each individual FA map
was aligned to the standard 1 X 1 X 1 mm?® MNI152 space via the
FMRIB58_FA template using the nonlinear registration tool FNIRT in
FSL. All coordinates reported hereafter are in MNI space. These aligned
FA maps were averaged to create a mean FA map, and a thinning algo-
rithm was applied to create a mean FA skeleton that represents the cen-
ters of all fiber bundles common to all participants. After that, each
participant’s aligned FA map was projected onto the skeleton such that
an alignment-invariant track representation of FA values was achieved
for each participant.

Note that subsequent voxelwise statistical analyses of the FA data were
restricted to voxels on the skeleton, which contained 122,278 voxels
(mm?) per brain.

Statistical analysis on FA data. To examine the unique contribution of
white matter anisotropy to sound-to-word learning success, we con-
ducted multiple regression with word identification score on the Gener-
alization Test as the independent variable using FA and IQ as the two
predictors. This regression was done using the program 3dttest+ + in
AFNT (http://afni.nimh.nih.gov). Clusters of potential significance were
identified with a statistical threshold of t > 3.950 (uncorrected p < 0.001)
and a cluster size larger than 20 mm 3 which were then subjected to
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correction for multiple comparisons based on
a Monte Carlo simulation implemented in
AFNI (3dClustSim).

Probabilistic ~ tractography. To  provide
further information with regard to which lan-
guage pathway mediates learning perfor-
mance, we used the cluster of white matter
showing significant correlation with learning
success as the seed voxels in probabilistic trac-
tography. The algorithm implemented in FSL
(Behrens et al., 2003) was used in which diffu-
sion parameters for each voxel were first esti-
mated using a multifiber model (Behrens et al.,
2007). After that, tracking was done by drawing
20,000 random samples from each seed voxel.
These streamline samples started at the seed b
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ticipant were then normalized by rescaling
them to a range of zero to one and thresholded
to include only voxels with a normalized con-
nectivity larger than 0.0036, the 95th percentile
of the observed distribution.

The use of tractography would also provide
complementary information regarding white
matter connectivity. Correlation analysis using
FA as a predictor is a more direct approach to look at the relationship
between white matter structure and behavior. However, at voxels where
fibers cross, the interpretation of FA is often hindered, whereas probabi-
listic fiber tracking is less prone to this problem because current tracking
algorithms incorporate a multifiber model (Behrens et al., 2007).

Figure 2.

Results

Sound-to-word learning performance

The learning curves of the 20 participants are shown in Figure 1,
where the proportion of correct word identification (word ID
score) achieved in the Word Identification Test and in the Gen-
eralization Test are plotted. By the end of the training, a mean
word ID score of 0.696 (SD = 0.249) on training set items was
achieved and a word ID score of 0.642 (SD = 0.235) on general-
ization set items was achieved, hereafter referred to as the gener-
alization score. Both the final session word ID score and
generalization score correlated positively with IQ, Pearson’s r =
0.484 (p < 0.05) and 0.550 (p < 0.05), respectively. AWM and SB
did not correlate with final session word ID score (r = 0.051, p =
0.83,and r = 0.28, p = 0.232, respectively) or with generalization
score (r = 0.196, p = 0.408, and r = 0.267, p = 0.254,
respectively).

White matter anisotropy predicts learning success

Because IQ was a reliable predictor of learning success, it was
included in the voxelwise multiple regression analysis to estimate
the unique contribution of white matter anisotropy to learning
success. Specifically, both FA and IQ were used as the predictors
in the regression model, with generalization score as the criterion
variable. Only one cluster, in the left parietal-temporal region
(Fig. 2a), survived thresholding (corrected p < 0.05) where FA
positively correlated with generalization score. The same analysis
was repeated with the final session word ID score as the criterion
variable; although not reaching statistical significance after cor-

* single voxel p < 0.001; 'Adjusted R square = 0.757; *Adjusted R square = 0.794

a, White matter anisotropy in the left parietal-temporal region showed significant positive correlation with gener-
alization score (X = —34, Y = —51,Z = 24; corrected p < 0.05). The cluster was “thickened" to aid visualization. b, A summary
of the multiple regression analysis; the first two rows: FA and 1Q were predictors of generalization score; the last two rows: FA and
1Q were predictors of final session word ID score.

rection for multiple comparisons (corrected p < 0.075), a similar
trend was observed.

As a post hoc analysis, the FA values averaged across the cluster
for each participant were computed and the cognitive scores were
included in the regression model as predictors also. Consistent with
the behavioral data, both FA and IQ predicted generalization score
(B =0.84, p < 0.001, and B = 0.74, p < 0.001, respectively), but
neither AWM nor SB (8 = —0.006, p = 0.963,and 3 = —0.169,p =
0.263, respectively) was a reliable predictor of participants’
performance.

Identification of pathways and tracking results

The mean FA maps of the 20 participants are given in Figure 3,
where several long-distance tracks can be readily identified.
These tracks included the superior longitudinal fasciculus I
(SLFI) (Fig. 3a,d), the superior longitudinal fasciculus II/arcuate
fasciculus (SLFII/AF) (Makris et al., 2005) (Fig. 3e,h), the middle
inferior longitudinal fasciculus (MdLF) (Fig. 3¢,h), the inferior
longitudinal fasciculus (ILF) (Fig. 3e,h), and the EmC (Fig. 3a,f).

The results of the probabilistic tractography are summarized
in Figure 4, where the mean normalized connectivity, thresh-
olded at 0.0036, is plotted. From an operational standpoint, the
pathway identified started from the seed cluster and branched out
dorsally via SLFI, reaching the postcentral gyrus (Fig. 4b). Ven-
trally, it was mainly composed of the EmC, but it also made
branches to the STG via the MdLF and to the MTG via the ILF
(Fig. 4¢,d). The EmC component continued in the anterior—infe-
rior direction, running medial to the insular cortex (IC) (Fig. 4e),
and it reached the anterior end of the insular cortex.

Note that even though the SLFII/AF was clearly visible in the FA
maps (Fig. 3), it did not contribute to the frontal-temporal pathway
as revealed in the tracking data. The internal capsule (Fig. 4f) that
contains ascending fibers from the thalamus (Catani and Thiebaut
de Schotten, 2008), however, was present, suggesting a putative
starting point of the neural signal of the EmC system.
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SLFII/AF

Mean color-coded FA maps. The principal diffusion direction was coded in RGB, where red, green, and blue code for the left—right, anterior—posterior, and superior—inferior directions,

respectively. The FA was coded by the intensity of the color. Note: According to Makris et al. (2005), the AF arches around the caudal end of the Sylvian fissure (the blue segment in h) and extends
to the lateral prefrontal cortex along with SLFII. For simplicity, we labeled such a pathway as SLFII/AF. SLFII/AF is distinguishable both by location and by endpoints from SLFI. SLFII/AF is lateral and
inferior to SLFI. SLFI extends to dorsal premotor regions, but SLFII/AF does not. a, b, d, e, g, and h, Sagittal views at X = —30, —36, —32, —38, —34, and —40, respectively; ¢, f, and i, axial views

atZ=1, —5,and —7, respectively.

Discussion

In this study, we report that white matter anisotropy in the left
parietal-temporal region predicts sound-to-word learning suc-
cess. Anisotropy of water diffusion in white matter has been ar-
gued to be due to the dense packing of intact axons that restrict
water diffusion perpendicular to the axons (Beaulieu, 2002). The
positive correlation between FA and generalization score there-
fore suggests that the denser the packing of the white matter in
that region, the more successful one will be. Voxels in the left
parietal-temporal were used as the seed for probabilistic tractog-
raphy to infer the white matter pathways that mediate sound-to-
word learning success, and hence the putative pathways
interfacing acoustic processing with semantic processing. The
tractography results reveal an extreme capsule system that sub-
serves the function of mapping sound to meaning. This ventral
sound-to-meaning pathway is composed of an MdLF branch
running along the STG, an ILF branch running along the MTG, a
short segment of the SLFI and the EmC, and a long-distance fiber
connecting the parietal-temporal region with the inferior frontal
region. Thus, our results converge with those of Saur et al. (2008,
2010) and collectively provide evidence for the importance the
ventral pathway (Weiller et al., 2009), but not the dorsal pathway
(Friederici, 2009; Brauer et al., 2011), in comprehension. Never-
theless, the importance of the ventral stream, an extreme capsule
system, in the frontal-temporal language network had been pro-

posed by Wernicke more than 130 years ago (see Catani and
Mesulam, 2008, for review).

It is worth noting that although we followed Saur et al. (2008,
2010) in our implementation of the DTI methodology in inves-
tigating the functional role of white matter pathways, our data
complement their findings in a critical way. Specifically, we argue
that they did not demonstrate the interaction between phonolog-
ical and semantic processing. The nodes that they defined for
tractography analysis reflected either phonological or semantic
processing in isolation. In Saur et al. (2008), for instance, nodes
for a comprehension network were defined as the subtraction of
activations to pseudospeech from activations to speech with the
assumption that such a contrast would reveal activations related
to comprehension but not activations related to phonological
processing. A similar approach was used in Saur et al. (2010) to
reveal a phonological network using seeds defined as fMRI con-
trast between pseudospeech and reversed speech. One important
function of a pathway in a brain network is to provide an interface
between two or more processes to function hand-in-hand for a
unified goal, that is, to comprehend speech. In this study, we
attempted to directly investigate the relationship between pho-
nological and semantic processing by using a sound-to-word
learning paradigm.

In light of Hickok and Poeppel’s (2007) model as well as find-
ings from our previous studies that have used similar sound-to-
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Figure4.
respectively; d, e, f, axial views at Z = 1, —5, and —7, respectively.

word learning paradigms, we interpret our findings as follows.
We previously reported that sound-to-word learning perfor-
mance was positively correlated with pitch perception ability
(Wong and Perrachione, 2007) as well as with the size of the left
Heschl’s gyrus (Wong et al., 2008). White matter density in the
left Heschl’s gyrus was also found to be higher in fast learners,
compared with slow learners, in an auditory nonword learning
paradigm (Golestani et al., 2007). Together, these findings high-
lighted the importance of primary acoustic analysis in learning a
new phonemic contrast.

With the Heschl’s gyrus as the first station of the cortical au-
ditory language processing network, it has been suggested that
neural signals propagate along the superior temporal sulcus
(STS) for higher level processing, as evidenced by an increase in
acoustic invariance in the anterior (aSTS) and posterior STS
(pSTS) (Okada et al., 2010; Peelle et al., 2010). The pSTS, in
particular, was proposed to be the phonological network accord-
ing to Hickok and Poeppel (2007). The MdLF branch in our
tracking data (Fig. 4¢) seems to play a role in propagating signal
from the Heschl’s gyrus downstream to aSTS and pSTS.

The white matter in the parietal-temporal region (Fig. 2a)
appears to be a hub in the EmC system because connections from
the MdLF make branches there via the SLFI to postcentral gyrus,
via the ILF to the MTG and via the EmC to the inferior frontal
region. Both the ILF branch and the EmC branch contribute to
the ventral sound-to-meaning pathway. The ILF branch is the
anatomical basis of Hickok and Poeppel’s (2007) prediction
about the ventral stream. They suggested that it is a pathway
running ventral to the Sylvian fissure connecting the phonologi-
cal network in the middle to posterior portion of STS with the
inferior temporal region such as the posterior MTG. The ILF
branch revealed in our tractography data is also in partial agree-
ment with the findings of Glasser and Rilling (2008), in which
they argued that the MTG segment of the AF constitutes the

-~ .

X =-34

Connectivity
= -

0.06 0.08 0.1

Probabilistic tractography results showing connections to EmC, MdLF, IC, and ILF from the left parietal—temporal region (the seed). a, b, ¢, Sagittal views at X = —30, —32,and —43,

ventral steam subserving comprehension. However, our data
suggest that this ventral branch is subserved by the ILF rather
than by the AF.

The EmC branch, however, is not included explicitly in
Hickok and Poeppel’s (2007) model. Although there is no infor-
mation from our data to locate the frontal terminations of the
EmC, Frey et al. (2008) suggested that this long-association fiber
system connects the STG with BA 45, an area that has been im-
plicated in semantic processing (Friederici, 2002; Hagoort, 2005).
The semantic function of the EmC is in agreement with work by
Saur et al. (2008, 2010), in which a comprehension network was
found to be composed of the EmC, MdLF, and ILF.

Our data are also consistent with the dual auditory processing
model proposed by Rauschecker and Scott (2009). They sug-
gested that speech production and perception share a common
computational framework, operate together, and support each
other. In their model, this production—perception interdepen-
dence is achieved by a “forward mapping” projection and an
“inverse mapping” projection. They suggested that the forward
mapping projection from motor preparatory networks (inferior
frontal and premotor cortex) interfaces with the inverse mapping
projection from auditory cortex via the inferior parietal lobule
(IPL). It is interesting that this is the same region that we refer to
as a “hub” in the EmC system, as per our FA and tractography
results. The SLFI segment (Fig. 4b) that was identified seems to be
the putative anatomical correlate of the proposed connection
between premotor cortex and the IPL in the model of Raus-
checker and Scott (2009). It is important to note that their model
was based on neuroanatomical data from nonhuman primates,
and our study potentially provides support for the Rauschecker
and Scott model with human data.

Our previous studies suggested that primary acoustic process-
ing is important to successful learning of a new phonemic con-
trast. The correlation analysis conducted here was driven by word
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identification performance. Although representing the state of
the art in DTT analysis, we do acknowledge the limitation of the
current study that although DTT allows us to investigate the con-
nectivity in a living brain, it can provide only anatomical infor-
mation (Duffau, 2008). The functional interpretation of white
matter connectivity still relies on indirect evidence (Friederici,
2009). Nevertheless, our findings, together with those of Saur et
al. (2008, 2010), provide critical comprehensive evidence that
there exists a dual ventral pathway for speech comprehension,
one subserved by the inferior longitudinal fasciculus and the
other subserved by the extreme capsule. The differential roles
played by these two streams, however, remain a subject for fur-
ther research.
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