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Acquisition of Neural Learning in Cerebellum and Cerebral
Cortex for Smooth Pursuit Eye Movements

Jennifer X. Li,>* Javier F. Medina,* Loren M. Frank,>* and Stephen G. Lisberger'-
"Howard Hughes Medical Institute, 2W. M. Keck Foundation Center for Integrative Neuroscience, and *Department of Physiology, University of California,
San Francisco, San Francisco, California 94143, and “Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

We evaluated the emergence of neural learning in the frontal eye fields (FEFgy,,) and the floccular complex of the cerebellum while
monkeys learned a precisely timed change in the direction of pursuit eye movement. For each neuron, we measured the time course of
changes in neural response across a learning session that comprised at least 100 repetitions of an instructive change in target direction.
In both areas, the average population learning curves tracked the behavioral changes with high fidelity, consistent with possible roles in
drivinglearning. However, the learning curves of individual neurons sometimes bore little relation to the smooth, monotonic progression
of behavioral learning. In the FEFg,, neural learning was episodic. For individual neurons, learning appeared at different times during
the learning session and sometimes disappeared by the end of the session. Different FEFg,, neurons expressed maximal learning at
different times relative to the acquisition of behavioral learning. In the floccular complex, many Purkinje cells acquired learned simple-
spike responses according to the same time course as behavioral learning and retained their learned responses throughout the learning
session. A minority of Purkinje cells acquired learned responses late in the learning session, after behavioral learning had reached an
asymptote. We conclude thatlearning in single neurons can follow a very different time course from behavioral learning. Both the FEF),
and the floccular complex contain representations of multiple temporal components of learning, with different neurons contributing to

learning at different times during the acquisition of a learned movement.

Introduction

The nervous system can use sensory reports of the errors that
occur during one movement to improve the accuracy of subse-
quent movements, a process commonly referred to as motor
learning. Motor learning is inherently dynamic; behavioral im-
provements occur in increments that become smaller with addi-
tional practice. Behavioral learning proceeds continuously and
smoothly toward a final asymptote and comprises several smoothly
changing components with different rates of learning (Smith et al.,
2006; Lee and Schweighofer, 2009; Yang and Lisberger, 2010).
Most studies of the neural basis for motor learning have recog-
nized that learning is a circuit-wide process that engages numer-
ous neural components across multiple brain areas (Lisberger,
1994; Boyden et al., 2004; Doyon and Benali, 2005). However,
prior work mostly has compared neural responses before versus
after learning and has not evaluated the course of acquisition of
neural learning. In this study, we recorded the time course of
neural learning in multiple brain areas and tested the interesting
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possibility that neural learning is episodic in individual neurons
and is acquired dynamically across a population of neurons in
each area.

Smooth pursuit eye movements offer a number of advantages
for analysis of the neural basis of motor learning. If a visual target
repeatedly undergoes the same change in direction at a predict-
able time, then pursuit undergoes reliable learning (Medina et al.,
2005). The learned changes in the behavior accrue rapidly and
plateau within a few dozen movements. Behavioral experiments
have shown that pursuit learning comprises multiple compo-
nents that emerge over different time courses (Yang and Lisberger,
2010). Pursuit, like most movements, requires contributions from
several motor areas, including both the cortex (Keating, 1991;
MacAvoy et al., 1991) and the cerebellum (Westheimer and Blair,
1973; Rambold et al., 2002). The portions of the motor cortex and
the cerebellum dedicated to pursuit include, respectively, the
smooth pursuit region of the frontal eye fields (FEFgg,,) and the
floccular complex. The FEFggy is involved in modulating
the strength, or gain, of visual-motor transmission (Tanaka and
Lisberger, 2001, 2002), and the floccular complex, situated closer
to the motor end of the pursuit circuit, explicitly encodes (and
determines) the velocity and acceleration of the eye movement.
Both of these areas express learned changes in neural responses in
association with motor learning in pursuit (Kahlon and Lis-
berger, 2000; Medina and Lisberger, 2008; Li and Lisberger,
2011).

In this study, we compared the emergence of learned neural
activity in the FEFg,, and the floccular complex during the ac-
quisition of the learned behavior. Our findings reveal a mismatch
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between the emergence of learning in individual neurons and in
pursuit behavior. In the FEFg,,, learning was episodic, emerging
at different times in different neurons and sometimes vanishing
by the end of a learning session. Even in the floccular complex,
some Purkinje cells did not express learning until after the learned be-
havioral response had reached an asymptote. We conclude that the
FEFgg,, and the floccular complex contain multiple learning pro-
cesses with diverse time courses, with learning distributed tem-
porally in both structures.

Materials and Methods

General methods. We report further analyses of two sets of data that have
been published previously to investigate neural correlations of motor
learning in pursuit eye movements (Medina and Lisberger, 2008, 2009; Li
and Lisberger, 2011). Data were recorded from four adult male rhesus
monkeys during a paradigm that induced directional learning in smooth
pursuit eye movements. Two monkeys participated in recordings from
the FEFgg,, and two in recordings from Purkinje cells in the floccular
complex of the cerebellum. The experimental protocol for the two brain
areas used the same general procedures and learning paradigm, with
minor differences in technique that are mentioned at the relevant places
in the following sections.

Throughout each daily experiment, the monkey sat comfortably in a
primate chair with his head held stationary using implanted hardware.
We monitored eye position using a magnetic scleral search coil system.
The hardware for fixing the head, the eye coil, and the recording chamber
was attached in sterile surgery with the monkey under isoflurane anes-
thesia (details described previously by Ramachandran and Lisberger,
2005). Postsurgical discomfort was mitigated by several days of treatment
with opiates and nonsteroidal analgesics. The experimental procedures
and protocols were approved in advance by the Institutional Animal Care
and Use Committee of the University of California, San Francisco, and
were in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals.

Experimental design. Experiments took place in a dimly lit room. Tar-
get presentation was different for the two brain areas, but the resulting
learning was very similar. For recordings from the FEFgp,,, visual targets
were presented on a Barco monitor (model number: CCID 7651 MKII)
that was placed 40 cm in front of the eye and subtended 61 X 42° of visual
field. For recordings from the floccular complex, visual targets were cre-
ated by using an optical bench to image the light from a projector. The
beam was deflected and moved using a mirror-galvanometer system, and
was projected onto the back of a projection screen that was located 114
cm in front of the monkey and subtended 53 X 53° of visual field.

Visual stimuli were presented in a series of discrete trials. Each trial
started when the monkey fixated a 0.5° white spot at the center of the
screen for a randomized duration lasting between 500 and 1000 ms.
Subsequently, the target underwent a step displacement followed by a
ramp motion that lasted 750 ms. Finally, the target stopped at its final
position for an additional 500 ms. Throughout each trial, monkeys were
required to keep their gaze within a small window centered on the target.
The size of the fixation window varied slightly between the recordings
from the two structures (see Medina and Lisberger, 2008; Li and Lis-
berger, 2011). Failure to fulfill the eye position requirements resulted in
immediate termination of the trial. At the end of each successfully com-
pleted trial, the animal received a small drop of water or juice.

Each learning experiment consisted of (1) characterization of the di-
rection tuning of the neuron under study (~100-150 trials), (2) a base-
line block to establish the detailed responses of the neuron before
learning (~100 trials), and (3) a learning block (~250-300 trials). We
describe the experimental design for recordings from the FEFgp,, first,
and then list the minor differences for recordings from the floccular
complex. The prelearning characterization block delivered 10 to 20 rep-
etitions of step-ramp target motion at 20°/s in each of the eight cardinal
and oblique directions (Fig. 1 A). During the subsequent baseline block,
the target moved at 20°/s along the cardinal axis closest to orthogonal
to the preferred direction of the neuron under study. The example neu-
ron that provided the data illustrated in Figure 1A preferred upward
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pursuit, so the axis for the baseline block was horizontal. One direction
along the baseline axis was designated as the probe direction (Fig. 1B,
black arrow) and the other as the control direction (Fig. 1B, green ar-
row). In the baseline block, 55% of the baseline trials were “probe” trials
and 45% were “control” trials. In the learning block, we introduced
“learning” trials that provided an instructive stimulus for a learned
change in the direction of pursuit (after Medina et al., 2005). In each
learning trial, the target initially moved in the probe direction at 20°/s for
250 ms. Then, the target underwent a change in direction caused by the
addition of motion in the learning direction at 30°/s. The learning direc-
tion was chosen as the cardinal direction closest to the neuron’s preferred
direction and was, by definition, orthogonal to the probe direction (Fig.
1B, bottom). Learning, probe, and control trials comprised 45%, 10%,
and 45% of the total number of trials in the learning block for recordings
from the FEFgp),. In all blocks, the different types of trials were inter-
leaved in random order.

There were a few minor differences in the experimental design for
recordings from the floccular complex. First, the prelearning character-
ization block also served as the baseline block; as a result, only 12.5% of
the trials in the baseline block featured target motion in the probe direc-
tion. Second, the learning block did not include target motion in the
control direction, so that learning and probe trials comprised 90%
and 10% of the trials. The schematic diagrams in Figure 1 B summa-
rize the differences in experimental design for the recordings from the
two brain areas.

Data acquisition. Horizontal and vertical eye positions were sampled at
1 kHz and passed through analog differentiators with a cutoff of 25 Hz to
yield the eye velocity traces. The eye velocity traces from each trial were
examined on a computer screen to identify and excise any saccades, which
were replaced by a linear segment of eye velocity from the values at the onset
to the offset of the saccade.

Single-unit recordings from the FEF,, and the floccular complex
were made, respectively, using quartz shielded tungsten electrodes from
Thomas Scientific and glass shielded platinum-iridium microelectrodes
manufactured in our laboratory. FEFgp,,; neurons were characterized by
robust, directionally tuned activity during smooth pursuit, and weak or
nonexistent responses to saccades, eye position, or visual motion during
fixation. Purkinje cells in the floccular complex were identified based on
the modulation of their simple-spike firing during pursuit of sinusoidal
target motion at 0.5 Hz and by the presence of complex spikes. The
recorded voltage signals were amplified, filtered, and sorted offline into
discrete units using methods described previously in detail (Medina and
Lisberger, 2008; Li and Lisberger, 2011). For the analyses reported here,
sorted waveforms were converted into spike trains with a temporal pre-
cision of 1 ms.

Calculation of neural and behavioral learning curves. Although all learn-
ing experiments produced statistically significant changes in mean eye
velocity (significance level p < 0.001, Mann—Whitney U test), expression
of neural learning was highly variable across the FEFgy,,, and to a lesser
extent, the floccular complex. Thus, the preliminary step was to identify
neurons with significant expressions of learning.

We used three different methods to identify neurons with significant
expressions of learning. The three methods produced largely overlapping
sets of neurons, and we included neurons that satisfied any of the three
methods to make sure that we did not exclude neurons that expressed
learning. All three methods compared neural responses from the com-
plete set of probe trials in the baseline block with the first 100 learning
trials from the learning block. First, we included neurons with a signifi-
cant (p < 0.01, Mann—Whitney U test) change in mean spike count
between the baseline block probe trials and the learning trials, measured
in the interval from 100 to 320 ms after the onset of target motion. The
first method identified 37/86 FEF g, neurons and 22/31 Purkinje cells.
Second, we screened for neurons in which a significant change in activity
was present only transiently during the block of learning trials. For each
neuron, we determined whether learning caused an increase or decrease
in the mean spike count (integrated across 100-320 ms), counted the
number of learning trials whose spike count lay above the 95 ™ percentile
(for an increase in mean spike count) or below the fifth percentile (for a
decrease) of the spike count distribution from the baseline block probe
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Examples of trial-over-trial changes in neural and behavioral responses during pursuit learning for a representative neuron in the FEFg,. A, The direction tuning of an example FEF g,

neuron. Target motion began at the start of each histogram. sp/s, Spikes per second. B, Trial configurations for the baseline block and the learning block, shown separately for the FEF,, and floccular
complex learning experiments. In this example experiment, the learning direction is upward, and the probe (black arrow) and control (green arrow) directions are, respectively, rightward and
leftward. Cb, Cerebellum. €, Black and blue traces show eye velocity traces from the last 10 probe trials in the baseline block and the first 30 learning trials from the learning block. D, Black and red
rasters show spike trains from the last 10 probe trials in the baseline block and the first 30 learning trials from the learning block. The order of trial occurrence runs from top to bottom. E, F, Blue and
red traces show the smoothed eye velocity traces () and firing rate estimates (F) from the first, 15th, and 30th learning trials. The black traces plot the smoothed neural and behavioral data averaged
across the last 10 probe trials from the baseline block. The diagonal arrows in E and Findicate the learned responses. The light shading in Cand D and the vertical dashed lines in Eand Findicate the

analysis intervals.

trials, and included neurons with at least 11 such learning trials (1%
chance occurrence). The second method added 9/86 FEFgg,, neurons
and 2/31 Purkinje cells neurons for further study. Finally, to screen for
neurons with learned responses that were brief in time during each indi-
vidual trial, we smoothed the 0-320 ms portion of the spike train of each
trial with a 50 ms rectangular filter, performed a millisecond-by-millisecond
statistical comparison of the smoothed responses from the learning trials with
those from the baseline block probe trials, and included all neurons with at
least 50 time points where the two populations were significantly differ-
ent (significance level p < 0.01, Mann—-Whitney U test). The third
method added 2/86 FEFg,, neurons and no Purkinje cells. In total, 48/86
FEF\, neurons and 24/31 Purkinje cells satisfied at least one of the three
criteria.

We used an adaptive algorithm that has been described previously in
detail to generate a smoothed estimate of the underlying firing rate of
each neuron during each pursuit trial as well as a smoothed estimate of
how the activity changes across a learning session (Frank et al., 2002;
Wirth et al., 2003). The adaptive algorithm estimates the firing rate iter-
atively based on a combination of the previous estimate and the presence
or absence of a spike at each time point. Each update increases the like-
lihood that the estimated firing rate function would produce the ob-
served spike train (Brown et al., 2001). The algorithm’s virtues have been
outlined by Frank et al. (2002), who demonstrated that it captures
changes in neural responses over time accurately. By comparison with
traditional smoothing methods such as convolution of the spike train
with an exponential or Gaussian filter, the adaptive algorithm responds
more quickly to trends in the data, is less sensitive to rapid fluctuations,

and seamlessly filters the data both within time in an individual trial and
across consecutive trials.

In brief, the algorithm models the underlying firing rate of the neuron,
)\(t| 0), on each trial as a cardinal spline with 39 control points, {0]-}]-32],
located at 20 ms intervals, {tj fﬁl, from 100 ms before to 660 ms after the
onset of target motion:

A(t[0) = [v(1)® v(0)* v(r) 1]

-05 15 —15 05 0,
o 1 -25 2 —-0.5 0, "
-05 0 0.5 0 01 |
0 1 0 0 02

The control points of the spline (6, , through 6, ,) used in Equation 1
place each time ¢ within the interval between the times of 6;and 6, ,. We
forced A(#]0) to be nonnegative to ensure a positive firing rate and we
defined v(t) = 7 .
b
The algorithm smoothes across time during a single trial by stepping
through time and using the difference between the instantaneous ob-
served number of spikes dN(#) and the current state of the firing rate
estimate to iteratively choose the spline that provides the best description
of the data:

A
6,= 0., + & 1 [AN(H) — A(t] 6,)Ar]. )
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Here, 6, is the vector of control points for the analysis at time ¢, dN(¢) is
1 or 0 depending on the presence or absence of a spike, and A(#6,_,) has
units of spikes per second. After stepping through all time points in one
trial, the final vector of control points specifies the estimate of underlying
firing rate for that trial. The learning rate of the algorithm, &, controls the
extent to which the novel spiking information modifies the firing rate
estimate. We chose € to be 0.005, thereby allowing the firing rate estimate
to be changed by at most 0.005 spikes per millisecond for each step of the
algorithm. Our conclusions did not depend on the exact parameters
chosen for the algorithm. Comparable results were produced using
learning rates of 0.01 or 0.0025 and a 10 or 50 ms spacing between
successive control points.

The algorithm smoothes across trials during a learning block by using
the control points after analyzing the nth trial as a starting point for
estimating the firing rate in the nth trial. For each set of data, we ran the
algorithm forward by starting with the first trial in a block, filtering
forward in time within that trial. The state of the control points after
filtering a trial estimates the underlying firing rate for that trial and also
serves as a starting point for filtering forward in time for the next trial,
and so on. We then ran the algorithm backward by starting with the last
time in the last trial of the block and filtering backward in time within
that trial. We again estimated the underlying firing rate for a given trial as
the state of the control points after filtering that trial, and used the control
points from one trial as a starting point for filtering backward in time in
the previous trial, and so on. The data block included all probe trials in
the baseline block and all learning trials in the learning block. When the
algorithm was run forward, we initialized the control points with the first
20 probe trials. When it was run backward in time, we initialized the
control points from the mean firing rate across the last 20 learning trials.
Running the algorithm forward and backward produced two separate
firing rate estimates for each trial. These were averaged to yield the final
firing rate estimate for that trial. Combining the forward and backward
estimates prevented the smoothing algorithm from introducing any sys-
tematic time shifts into the final estimate of firing rate within individual
trials or into the learning curves. Nonetheless, because the algorithm
filters across trials, the estimate for Trial 1 includes information from
future trials, and thus can reflect the subsequent learning.

To smooth the behavioral responses across a learning block, we con-
volved each millisecond of data across trials with an exponential filter.
The decay constant of the filter was chosen to be —0.077 to match the
parameters used for the adaptive algorithm. As with the neural data, the
behavioral data were smoothed forward and backward across the learn-
ing block, and the results were averaged. We chose the exponential filter
for the eye velocity data because it is more appropriate for continuous-
valued data, and because the nature of the noise in eye velocity did not
require the adaptive algorithm. We chose the adaptive algorithm for the
neural data because it was derived for, and performed well, on the highly
variable spike trains that arise from a point process. We also confirmed
that our general conclusions were unchanged when the spike trains were
smoothed with an exponential filter.

The learning curves quantified the magnitude of the neural or behav-
ioral response as a function of the trial number. Each learning curve
included data from the last nine probe trials in the baseline block, fol-
lowed by data from the first 100 learning trials. To ensure that learning
curves exclusively featured responses associated with learning, we fo-
cused the interval spanning 100—320 ms after the onset of target motion,
because inherent delays within the pursuit circuit prevented the instruc-
tive change in target direction at 250 ms from directly affecting neural
and behavioral responses until at least 70 ms later, at 320 ms. We mea-
sured the behavioral response on each trial as the distance traveled by the
eye in the interval from 100 to 320 ms after the onset of target motion by
calculating the integral of the eye velocity trace. For the neural responses,
we estimated the smoothed number of spikes by integrating the firing
rate from 100 to 300 ms after the onset of target motion. The shorter
interval accounts for the ~20 ms resolution of the adaptive algorithm.
Finally, we subtracted the average of the nine baseline values from each
point along the learning curve and normalized the resulting curve so that
all learning curves had a maximum value of 1.
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Results

In recordings from both the FEFgg,, and the floccular complex,
we searched for neurons that responded selectively to smooth
pursuit and characterized responsive neurons according to their
preferred direction during step-ramp target motion (Rashbass,
1961). We defined the preferred direction as the direction of
target motion that elicited the largest mean firing rate, which was
upward, or 90°, for the example neuron in Figure 1 A.

We induced smooth pursuit learning by repeatedly presenting
a target trajectory consisting of an initial 250 ms of motion at
20°/s in the probe direction, followed by the addition of a 30°/s
velocity component in the learning direction for 500 ms. As de-
scribed in the Materials and Methods section, we chose the learn-
ing direction to be the cardinal direction closest to the neuron’s
preferred direction and the probe direction to be orthogonal to
thelearning direction. For the neuron used to create Figure 1, target
motion in the learning trials started in the rightward (probe) direc-
tion and then added a component of motion in the upward (learn-
ing) direction.

Our goal in the present paper differs from that in our prior
reports, which documented the differences between mean eye
velocity and neural firing after versus before directional pursuit
learning (Medina and Lisberger, 2008, 2009; Li and Lisberger,
2011). Here, we treated learning as a dynamic process and evalu-
ated how eye velocity and firing rate evolved across learning trials.
Thus, most of our results are presented as a function of the num-
ber of the learning trials during the learning block. Because the
monkey paced the experiment, absolute time was not under our
control. We return to a conventional analysis of the mean learned
firing rate and eye velocity as functions of time during single
pursuit responses only in the final two figures of the paper.

Learned changes in eye velocity emerged gradually over the
course of a learning session. In the example learning experiment
in Figure 1, the vertical eye velocity traces from the last 10 probe
trials in the baseline block were near zero (Fig. 1C, black traces)
because target motion was exclusively to the right. During the
first learning trial (Fig. 1C, top blue trace), the vertical eye veloc-
ity remained near zero until ~70 ms after the upward change in
target direction. At that time, the vertical eye velocity exhibited a
sharp upward deflection that we refer to as the visually guided eye
movement because it was directly driven by the change in target
direction. As we proceeded from first to the 30 ™ learning trial, the
general size and shape of the large visually guided eye movement
were unaffected, but the eye velocity acquired an earlier upward
deflection that peaked around the time of the change in target
direction, 250 ms after the onset of target motion. This deflection
in vertical eye velocity appeared too early in the trial to be part of
the visually guided response; it also became progressively larger
in learning trials that occurred later in the learning block. There-
fore, the early upward eye velocity response is understood best as
a learned response, rather than as the beginning of the visually
guided response or as random eye velocity fluctuations.

Learned changes in firing rate also emerged gradually over the
course of a learning session. Before learning, neurons showed
little or no firing during baseline block probe trials that took the
pursuit target and the eyes exclusively in a direction that was
approximately orthogonal to the neuron’s preferred direction
(Fig. 1D, black raster). In the first learning trial (top row, red
raster), the neuron retained a low level of activity up to 320 ms, 70
ms after the change in target direction. Starting 320 ms after the
onset of target motion, the neuron fired vigorously because the
change in target direction evoked a large visually guided eye
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movement in a direction close to its preferred direction. Across
learning trials, the neural response during the visually guided eye
movement did not change in size, but a small learned response
developed in the interval between the onset of rightward target
motion and the change in target direction (Fig. 1C, between the
vertical black lines).

The datain Figure 1, Cand D, are raw and unsmoothed. Figure 1,
E and F, shows that the salient properties of the learned responses
described above were evident after the data were smoothed across
trials (see Materials and Methods). As the session proceeded from
the first to the 30" learning trial, both the smoothed eye velocity and
firing rate traces showed a gradual acquisition of learned responses
(diagonal arrows) that preceded the onset of the instructive change
in target direction. As a result of the forward and backward smooth-
ing procedure across trials, a small learned response was already
present in our smoothed representation of the neural and behavioral
responses for the first learning trial.

Neural and behavioral learning curves

We portray the learning dynamics of individual neurons and pursuit
behavior with learning curves, which measure the size of the normal-
ized learned change in spike count or eye position as a function of the
number of elapsed learning trials (see Materials and Methods). Fig-
ure 2 A superimposes the neural (gray traces) and behavioral (black
traces) learning curves for six different recording experiments, three
each from the FEF,, and the floccular complex. For some neurons
in both areas, the neural and behavioral learning curves followed
almost identical time courses. But for many other neurons, the neu-
ral and behavioral learning curves diverged considerably. Across ex-
periments, the shapes of the behavioral learning curves were fairly
homogeneous and consisted of a rapid increase in the size of the
learned component of the pursuit eye movement that occurred over
approximately 20 learning trials and was maintained over the subse-
quent 80 trials. In contrast, the shapes of the neural learning curves

were much more heterogeneous. The divergence of neural and be-
havioral learning curves suggests that the learning dynamics of indi-
vidual neurons in the FEFgg,, and the floccular complex reflect the
dynamics of local learning processes, rather than merely changes in
the animal’s motor performance throughout the learning session.

Comparison of selected learning curves with the raw spike
counts (Fig. 2C) and the original spike trains for the analysis
interval (Fig. 2 D) shows that the smoothed curves are a fair rep-
resentation of the slower dynamics present in the unsmoothed
data. For the top graphs in Figure 2, Cand D, the early increase in
the learning curve in Figure 2C is caused by the higher density of
spikes in the part of the raster that surrounds Trial 25 in Figure
2 D. The steady increase in the learning curve in the bottom panel
of Figure 2C comes from the steady increase in the density of
spikes moving from Trial 25 to Trial 100 in the bottom panel of
Figure 2 D. In addition to revealing the trends in the data in the
face of considerable variation, we think that the smoothed curves
provide two important indices of brain function. First, the adap-
tive filtering method estimates the underlying firing rate of a
neuron with a highly variable spike train and provides a means to
analyze changes in that underlying firing rate in association with
learning. Second, the smoothed firing rate estimates the pooled
output of a group of neurons with similar response properties
and learning dynamics, thereby reflecting the signal seen by
downstream areas.

Although the learning curves of individual neurons some-
times bore little resemblance to the behavioral learning curve, it
was possible to recover the behavioral learning dynamics by av-
eraging across neurons. Figure 2 B reveals a high degree of simi-
larity between the mean behavioral learning curve (black traces)
and the average of the full set of learning curves from either the
FEFgp,, or the floccular complex (gray traces). The average pop-
ulation learning curve from the floccular complex appears to fit
the behavioral learning curve slightly less well than the average
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FEFgg\ learning curve, probably because there were half as many
Purkinje cells as FEFgp,, neurons in our dataset. In support of this
possibility, population learning curves generated from randomly
bootstrapped samples of 24 FEF,, neurons accounted for, on
average, 93.3% of the variance in the mean behavioral learning
curve, similar to the 92.8% accounted for by the average learning
curve from the Purkinje cells.

Comparison of learning dynamics in the FEF,, and the
floccular complex

To visualize the dynamics of the full set of neural learning curves
from the FEFgp, and the floccular complex, we created the repre-
sentation shown in Figure 3A. After ordering all of the learning
curves from each brain area according to the trial when the learning
curve first reached 95% of its maximal value, we plotted each neu-
ron’slearning curve as a horizontal line and represented the values of
the learning curve using a color scale. For both the floccular complex
and the FEFgp,,, the colored summary of the learning curves con-
tains a diagonal red swath from top left to bottom right of the
image. The learning curves in Figure 3A were obtained using
the adaptive filter algorithm for the spike trains. The same
features appear in the learning curves obtained after filtering
the spike trains with an exponential filter (Fig. 3C).

The red swaths in Figure 3A indicate that (1) different neurons
reach their peak learned responses after a different number of
learning trials, (2) each neuron shows a learned response that
peaks during a specific stretch of learning trials within the learn-
ing session, and (3) neurons with a peak early in the learning session
frequently showed a decline in the expression of learning late in the
learning session. The red swath of peaks is continuous for the
FEFggp- The even tiling of the learning session by FEFggy, neu-
rons explains why the learned population response can grow
smoothly across the learning session even though the expression
of learning in individual neurons could be quite transient. The
image for the floccular complex has a diagonal red swath that is
slightly broken, giving the impression of two groups of Purkinje

Neural:
exponential filter

Neural and behavioral learning curves for all recordings from FEFg,, and floccular complex. Each image uses color to
show the value of the normalized learning curve and plots each learning curve as a horizontal line in the image. 4, Neural learning
curves based on the adaptive filtering algorithm. B, Behavioral learning curves. C, Neural learning curves obtained after smoothing
the spike trains with a traditional exponential filter. Neural learning curves are ordered according to the trial when they first
reached 95% of their peak value, and the behavioral learning curves are ranked according to the order of the neural learning curves.
The top images show data from the floccular complex, and the bottom images show data from the FEF,.
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cells that reach their peak learned re-
sponses early versus late in the learning
block. In contrast to the diversity in the
trajectories of the neural learning curves
in both the floccular complex and the
FEFgp,, the behavioral learning curves
(Fig. 3B) had fairly stereotyped trajecto-
ries and maintained near-peak values
throughout much of the learning block.
For some experiments, the neural ex-
pression of learning was weak at times
during the learning experiment when
the learned behavior was maximal. The
opposite situation also occurred, al-
though less frequently.

Two factors underlie the progressive
shift in the peak responses across the
population throughout the learning ses-
sion, as documented in Figure 3A. First,
neurons did not acquire their learned
responses concurrently: some neurons
reached their peak learned response af-
ter just a few learning trials, whereas
others did not become highly active un-
til near the end of the learning session.
Second, after reaching a peak, the mag-
nitude of the learned neural response
tended to decrease with additional training to an extent that
varied across individual neurons.

To compare and contrast the rates at which the two brain areas
acquired learning, we defined the “trial of learning acquisition”
for neural and behavioral learning curves as the trial on which the
learning curve first reached 75% of maximum. We then plotted
the trial of acquisition for neural learning as a function of that for
behavioral learning (Fig. 4 A). The distance of each point from the
oblique dashed line indicates the size of the discrepancy between
the time courses of acquisition for neural and behavioral learning
in units of number of trials. The location of each point below or
above the unity line indicates whether that neuron reached 75%
of its maximum learned response more or less quickly than did
the behavior.

The FEFgg,, and the floccular complex differed in the extent to
which the trial of neural learning acquisition matched that of the
behavior. Neurons from the FEFggy, (Fig. 4A, open symbols)
were distributed fairly evenly throughout the plot, at all distances
from the dashed unity line. They plotted approximately equally
above or below the line, indicating that learning in FEFgg,, neu-
rons could appear before or after behavioral learning. Most of the
Purkinje cells from the floccular complex (filled symbols) plotted
near the unity line, with a minority displaced quite far above the
line, indicating that they started to express learning well after the
acquisition of behavioral learning. We quantified the distribu-
tions from the FEFgg,, and floccular complex in Figure 4A by
computing the “learning acquisition difference” as the difference
between the trials on which the neural and behavioral learning
curves first reached 75% of their maxima. In a histogram of the
learning acquisition difference (Fig. 4A, diagonal marginal histo-
gram), the data from the floccular complex were bimodal: 58% of
the neurons acquired learning within 10 trials of the behavior,
whereas another 21% lagged the behavior by >50 trials. The
distribution for the FEFgp,, was flatter and broader, with approx-
imately equal proportions of neurons that led or lagged the be-
havior. There were groups of FEFggy, neurons with learning

Normalized response amplitude



12722 - ). Neurosci., September 7, 2011 - 31(36):12716 12726

Li etal. ® Acquisition of Cortical and Cerebellar Learning

R FEF Cerebellum
3 -
A oo v, B ,g_ Peakfiring rate o4
° ] [
120 3 0 0
5 .
S48 Mean firing rate 24
2] o =] M|
Z ° § 0 0
g 804 o goo P 8 4g _, Preference 250 ms o4
€0l o & v
£ 604 & =
3 60 oo o S 0 0
c o.o ol E . . -
Ie) & o S 48 Fixation firing rate o4
80 Wk - o At
© .~ >
= b'.’%). 2 o 2 0 0
20 g o 0 ® o e Cerebellum § 48 Offset preferred time o4
0- © 0 0

T T T T 1

0 20 40 60 80
Trials to behavioral learning

Figure 4.

1 1
0 48 0 24
Rank by learning acquisition difference

Quantitative comparison of the time course of acquisition of neural and behavioral learning. A, Each symbol shows data from an individual neuron and plots the trial of learning

acquisition for the neural versus behavioral responses. Filled and open symbols show data from the floccular complex and FEF,, respectively. The dashed line has a slope of 1. The oblique marginal
histogram shows the distribution of the difference, in number of trials, between the acquisition of neural and behavioral learning. Note that these histograms summarize the distance of each
neuron’s position in the graph from the line of slope 1. B, Rank-order plots showing the relationship between each neuron’s rank in the population in terms of various neural response properties
measured before learning and the difference, in number of trials, between the acquisition of neural and behavioral learning. Peak firing rate: the peak mean firing rate of the neuron during pursuit
trials in the prelearning block where the target moved in the learning direction. Mean firing rate: the difference in mean firing rate between prelearning pursuit in the probe direction versus in the
learning direction, measured in the interval from 100 to 320 ms after the onset of target motion. Preference 250 ms: the mean firing rate of the neuron 250 ms after the onset of target motion during
prelearning pursuitin the learning direction, normalized for the peak mean firing rate. Fixation firing rate: the mean firing rate measured during the last 200 ms of the fixation period before the onset
of target motion. Offset preferred time: the absolute difference between the time after the onset of target motion at which the peak mean firing rate was reached and 250 ms.

acquisition differences that ranged from <10 (25% of the popu-
lation) to >50 trials (12%), but no group was clearly predomi-
nant. Therefore, neurons in the floccular complex either acquired
learning at approximately the same time as the behavior or at a
considerably later time. The learning acquisition difference in
FEFgg,, neurons was distributed more widely, with neurons lead-
ing or lagging the behavior by anywhere between a small to a large
number of trials.

We obtained similar results when we repeated the analysis
using thresholds of 65% or 85% of the maximum responses to
determine the trial of neural and behavioral learning acquisition. We
also obtained similar results when we estimated the learning acqui-
sition difference by determining the number of trials one curve
needed to be shifted to maximize the correlation between each pair
of neural and behavioral learning curves. Finally, to control for the
earlier acquisition of behavioral learning for the learning experi-
ments in the floccular complex, we confirmed that our conclusions
did not change when we performed the same analysis exclusively on
experiments where the behavioral learning curve reached 75% of
maximum within the first 40 learning trials.

We found very little evidence of a relationship between the
learning acquisition difference of individual neurons and their
other response properties. To create the presentation in Figure
4B, we ordered the members of each population of neurons ac-
cording to their learning acquisition difference and five other
response properties, used the orders to assign ranks for each
property, and then plotted the rank according to each response
property versus the rank for the learning acquisition difference.
Smaller ranks for the learning acquisition difference were as-
signed to neurons that acquired learning faster. For the FEFqgy
(Fig. 4B, left column), we did not find any response properties
that were related to the rank order for the learning acquisition
difference. For the floccular complex (Fig. 4B, right column),

there was a positive relationship (r = 0.40, p = 0.05, Spearman’s
rank-order correlation) between the learning acquisition differ-
ence and the peak mean firing rate of the neuron during pursuit
trials in the prelearning block where the target moved in the
learning direction. There was no significant relationship with any
of the other response properties we examined.

Inspection of Figure 3A suggests that neurons from the floc-
cular complex whose responses peaked early in the learning ses-
sion exhibited only a small decrease in activity as learning
progressed, whereas many neurons in the FEFg,, tended to un-
dergo a larger and more rapid decrease in activity during later
learning trials. To quantify the differences in the maintenance of
learned responses between the FEFgg,, and the floccular complex,
we plotted each neuron’s activity across the first 30 learning trials
against its activity across the last 30 learning trials (Fig. 5). In both
brain areas, neurons with smaller learned responses early in the
learning session tended to have larger learned responses by the
end of the learning session. In the FEFg,, (Fig. 5A), neurons
showed decrements in their learned responses across the learning
session if they had large learned response in the first 30 learning
trials. As a result, there was a significant negative correlation of
—0.44 (p = 0.002) between the sizes of the early and late learned
responses across the FEFp,, population. In contrast, neurons in
the floccular complex maintained large learned responses until
the end of the learning session, even if the learned response also
was quite large early in the learning session (Fig. 5B). The corre-
lation for the floccular complex was not significantly different
from zero (r = 0.27, p = 0.21), and decreased to 0.02 if we
removed one outlier data point located at (—0.05, —0.42). The
findings in Figure 5 did not depend on the exact interval chosen
for early and late learning; using the first/last 20 or 40 learning
trials led to similar conclusions.
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Time course of mean learned neural responses from the
learning block

We now shift to a comparison of how the mean learned responses
in the FEFgp,, and the floccular complex change on a millisecond
time scale within an individual trial. Neurons within the two
structures differ in their sensitivity to elapsed time relative to the
onset of a pursuit movement evoked by standard step-ramp stim-
uli. Neurons in the FEFg;,, are most active at particular moments
during pursuit, with different neurons encoding different times
(Schoppik et al., 2008; Li and Lisberger, 2011). Purkinje cells in
the floccular complex provide a time invariant representation of
the velocity and acceleration of the eye movement (Shidara et al.,
1993; Krauzlis and Lisberger, 1994).

In agreement with the earlier reports, we find a stronger time
dependence in the learned responses of FEFgg,,; neurons than in
floccular Purkinje cells. The learned firing rate of the example
neuron from the FEFgp,, (Fig. 6 A, bottom) reached a peak before
the time of the instructive change in target direction and then
decreased, even though the learned eye velocity continued to
increase until the time of the instructive change in target direc-
tion (Fig. 6 B, bottom). In contrast, the learned response of the
representative Purkinje cell from the floccular complex (Fig. 6 A,
top) increased steadily over almost 200 ms up to the time of the
instructive change in target direction, in parallel with the learned
change in eye velocity (Fig. 6 B, top).

Across the population of neurons we recorded in the FEFgy,
the learned responses of different neurons peaked at different
times throughout the learned eye movement, whereas the peak
times of the learned responses in the floccular complex were
more uniform. In Figure 6C, we use color to indicate the normal-
ized, smoothed learned firing rate responses of all members of the
two populations of neurons. Each neuron’s response is plotted as
a horizontal line and the lines are ordered from top to bottom
according to the millisecond during the learned neural response
when their responses reached 95% of maximum. In the floccular
complex, the red swath indicating the peaks of the learned neural
responses lies between 250 and 296 ms after the onset of target
motion, near the time of the instructive change in target direc-
tion. In the FEFg, the red swath is narrower and more strongly
diagonal, extending from 100 to 296 ms across the population of
neurons. Thus, even during the brief learned eye movement, dif-
ferent FEFgg,, neurons were most active at distinct, transient
moments. Collectively, the time of the peak responses in the
FEFgpm population spanned the duration of the learned eye
movement. In contrast to the learned neural responses, ordering
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the learned eye velocity traces according to the same ranking as
the learned firing rates (Fig. 6 D) failed to reveal a diagonal red
swath. Therefore, the data provide no evidence that the temporal
diversity in the peaks of the learned responses of FEFgp,, neurons
resulted from heterogeneity in the peak times of the learned be-
havioral responses.

We suspect that intersubject variation accounts for the dispar-
ities in the behavioral responses in the data for the floccular com-
plex versus the FEFggy,. The experiments in the two structures
were performed on different monkeys. Medina et al. (2005)
showed that the time course of the mean learned eye velocity can
differ across subjects. We do not think that differences in the
behavior invalidate our neural findings because we found similar
trends in the timing of the mean learned neural responses after we
restricted our analysis to experiments where the mean learned eye
velocity reached 95% of maximum after 280 ms.

Finally, we looked for a relationship between the peak time of
the learned response in each FEFgp,, neuron and the time when
the neuron was most active during the first 320 ms of prelearning
pursuit in the direction that would become the learning direc-
tion. Plotting the time to 95% of the maximal response during
prelearning pursuit as a function of that for the learned response
revealed that almost all neurons plotted on or below the unityline
(Fig. 7A). Thus, the learned responses of FEFg,, neurons peak at
the same time or later than their responses during prelearning
pursuit. This intermediate result may represent a compromise
between the intrinsic preferred timing of each individual neuron
and the timing of the learned behavior caused by an instructive
change in target direction at 250 ms.

Purkinje cells in the floccular complex tended to plot farther
to the right than did neurons in the FEFg,, (Fig. 7A, B), indicat-
ing that the temporal contingencies of the learned behavior had a
stronger influence on the peak time of the learned responses in
the floccular complex than in the FEFgg,,. To verify that the later
peaks of the learned responses in the floccular complex were not
related to the tendency toward a longer latency to peak for the
mean learned eye velocity responses measured for the floccular
complex experiments than for the FEFg,, experiments (Fig. 6 D),
we focused on a subset of neurons with comparable latencies for
behavioral learning. For experiments in which the learned eye
velocity reached 95% of its maximum after 280 ms (Fig. 7, filled
symbols), there still was a closer link between the timing of the
learned behavior and the timing of learned responses in the floc-
cular complex than in the FEFg),.

Discussion

Traditionally, behavioral learning has been thought of as a rela-
tively simple process that is driven by smooth, continuous, and
monotonic changes at a particular neural locus. Recent findings,
however, are beginning to paint a more complex picture. Behav-
ioral experiments in a number of movement systems have led to
the conclusion that the smooth, continuous progression of be-
havioral learning arises from the cooperation of multiple compo-
nents that operate on different time scales (Boyden et al., 2004;
Smith et al., 2006; Lee and Schweighofer, 2009; Yang and Lis-
berger, 2010). In addition, cellular and molecular studies have
uncovered an ever-increasing number of sites within different
brain areas that are sensitive to various forms of physiological and
structural plasticity with a wide range of temporal properties (Ai-
zenman and Linden, 2000; Hansel and Linden, 2000; Zhang and
Linden, 2006; Weeks et al., 2007; Pugh and Raman, 2008; Connor
etal., 2009; Feldman, 2009). The neural correlates of the different
learning components proposed by the behavioral studies have
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remained controversial, with some studies in favor of separate
components being supported by different brain areas (Squire,
1992; Kassardjian et al., 2005; Paz et al., 2005), and others pro-
viding evidence that different neurons within a single anatomical
structure could support separate components of learning (Chen
and Wise, 1995; Wirth et al., 2003). Support for the latter possi-
bility comes from our comparison of the time courses of neural
learning in the FEFgg,, and the cerebellar flocculus in relation to
learning in smooth pursuit eye movements.

We found that the learning expressed in individual neurons
emerges over a time course that is heterogeneous in both the
FEFgp\m and the floccular complex, and can be quite different
from the smooth, continuous, and relatively quick time course of
behavioral learning in pursuit eye movements. In both the
FEFy and the floccular complex, the progression of learned
changes in neural responses over a learning session can be char-
acterized best as “episodic.” As behavioral learning progresses
continuously, expressions of learning appear (and sometimes
disappear) in different neurons at different times. Some neurons

reach the peak of their learned response after just a few learning
trials, whereas others do not acquire large learned responses until
near the end of the learning session. In the FEFgp,,, the expres-
sions of learning are especially transient. In the floccular com-
plex, they are maintained more reliably through the learning
session, but they still defy the standard expectation that learning
in Purkinje cell firing will be acquired in lock step with the
learned eye movement. One important implication of the epi-
sodic nature of neural learning is that the traditional comparison
of neural responses before versus after learning has limited ex-
planatory power and in some cases may be misleading.

The lack of a temporal correlation between behavioral and
neural learning curves of individual neurons provides strong ev-
idence for the prior suggestions that neural correlates of learning
in the floccular complex and the FEFgg,, are not simply corollar-
ies of the learned change in smooth eye movement (Medina and
Lisberger, 2009; Li and Lisberger, 2011). Because the representa-
tions of learning in individual neurons do not simply track the
eye movement response across trials, changes in neural firing
must reflect the specific learning mechanisms and/or the signals
present at the inputs to each neuron. Nevertheless, the popula-
tion activity in both the FEFgp,,; and the floccular complex follows
the behavioral learning curve well, indicating that it still is rea-
sonable to think that both of these areas play roles in creating the
learned behavior.

Roles of the FEFgp,, and the floccular complex in pursuit
learning

For both the FEFgg,, and the floccular complex, the temporal
distribution of neural learning across a learning session provides
insight into possible roles of these structures in pursuit learning.
In the FEFg;),, learning is expressed in a pattern that marches
systematically across the relevant population of neurons as the
learning session progresses. Because of its continuous tiling of
the learning session, the FEFg,, may be well suited for encoding
the progression of behavioral learning. Prior work has suggested
that the FEFgg,, plays a role in controlling the gain of visual—
motor transmission during learning (Tanaka and Lisberger,
2001), and that learned changes in pursuit eye movement are
closely related to the modulation of visual-motor gain (Chou and
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Lisberger, 2004). One interpretation of our data could be that
select groups of FEFg,, neurons are involved in driving learning
through changes in the gain of visual-motor transmission during
different stages of the learning process.

The distribution of maximum learned responses in the
FEFgp,, across the many minutes of a learning block fits with our
earlier finding, on the much shorter time scale of hundreds of
milliseconds, that different neurons show peak responses at dif-
ferent times during a single pursuit response (Schoppik et al.,
2008; Li and Lisberger, 2011). Even in the first 320 ms of the
learned response, we see the same tiling of time in the firing rates
of neurons in the FEFgg),. Different neurons reach peak learned
responses at specific times that seem to be a compromise between
the intrinsic timing properties of the individual neuron and the
learned timing in the eye movement imposed by the change in
target direction at 250 ms. We conclude that the population of
neurons in the FEFg,, represents time on multiple scales, both
within the few hundred milliseconds of a learned pursuit re-
sponse and across the many minutes of a pursuit learning session.
Although we cannot be certain that changes in the firing patterns
of neurons in the FEFg,, drive learned changes in the behavior,
we suspect that the FEF g, does play a causal role, mainly because
of the short-latency effects of stimulation in the FEFg,, on
smooth eye movement (Gottlieb et al., 1993; Tanaka and Lis-
berger, 2001).

The discharge of Purkinje cells during pursuit is tightly linked
with the velocity and acceleration of the eye movement (Shidara
et al., 1993; Krauzlis and Lisberger, 1994), and the disynaptic
connection from Purkinje cells to extraocular motoneurons
(Highstein, 1973) implies that learned changes in floccular out-
put will cause learned changes in eye velocity. Therefore, we had
expected floccular learning curves to be quite different from
those in the FEFgg,, and to follow the behavioral learning curves
closely. In line with our expectations, many Purkinje cells ac-
quired learned responses early in the learning block and retained
large learned responses through the learning session. We also
found a tight link between the trajectories of Purkinje cell firing
rates and the learned eye velocity during the first 320 ms of learn-
ing trials. Nevertheless, the floccular complex also showed the
episodic pattern of learning seen in the FEFggy, to some degree,
because a small group of Purkinje cells acquired learned re-
sponses after behavioral learning had reached an asymptote. Per-
haps neural learning dynamics become less episodic and more
like the behavior as signals move closer to the output of the motor
circuit. For example, neurons in the deep cerebellar nuclei ex-
press learning that progresses in step with the oculomotor behav-
ior during saccade adaptation (Inaba et al., 2003; Scudder and
McGee, 2003), as do neurons in the nucleus reticularis tegmenti
pontis (Takeichi et al., 2005). However, differences in the repre-
sentations of learning in the FEFg,, and the floccular complex
could also be attributed to their involvement in anatomically
distinct pathways within the pursuit circuit (Lynch and Tian,
2006; Ono and Mustari, 2009; for review, see Thier and Mock,
2006).

Learning as a multirate process

We have demonstrated the existence of multiple components of
neural learning that operate on different time scales and have
shown how different times throughout the learning process are
represented across neural populations in pursuit-related areas of
the motor cortex and the cerebellum. However, our data go be-
yond simply supporting the existence of multiple components.
From a behavioral perspective, our identification of neural pro-
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cesses with diverse learning dynamics may have important impli-
cations for the formation, organization, and storage of motor
memories. Memories are acquired and maintained over a re-
markably broad range of timescales. Part or all of the memory can
be forgotten within seconds or can persist for days or even years.
Recordings of the time course of neural learning provide an op-
portunity to test the idea that different components of memory
are acquired and stored in different neural structures.

In motor learning, the cerebellar cortex and deep cerebellar
nuclei are thought to support learning on short and longer time
scales, respectively (Miles and Lisberger, 1981; Krupa et al., 1993;
Raymond et al., 1996; Medina et al., 2001; Nagao and Kitazawa,
2003; Kassardjian et al., 2005). The motor cortex is believed to
maintain long-term motor memories (Wise et al., 1998; Mu-
ellbacher et al., 2002; Paz et al., 2005; Richardson et al., 2006;
Hadipour-Niktarash et al., 2007; Xu et al., 2009). Our data con-
tradict the idea that each brain area is involved exclusively in a
particular stage of memory formation. For example, the late ac-
quisition of learned changes in some floccular Purkinje cells
raises the possibility that long-term memories are stored not only
in the deep cerebellar nuclei, but also in the cerebellar cortex. The
early acquisition of learned changes in some FEFg,y, neurons
suggests that the motor cortex may be involved in the formation
of short-term memories, in addition to its established role in
long-term memory storage.

Of course, the dense interconnectivity of the pursuit circuit
allows expressions of learning in any given brain area to reflect
inputs from other areas, rather than local plasticity. However,
dense interconnectivity would be expected to cause homogeneity
in the time of acquisition of learned neural responses, rather than
the heterogeneity reported here. Therefore, we suggest that the
diversity in the time course of learning across the neural popula-
tions arises from differences in the temporal properties of the
synaptic plasticity mechanisms and the neural inputs to each
individual cell.
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