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Adaptive Coding of Task-Relevant Information in Human

Frontoparietal Cortex

Alexandra Woolgar, Adam Hampshire, Russell Thompson, and John Duncan
Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, United Kingdom

Frontoparietal cortex is thought to be essential for flexible behavior, but the mechanism for control remains elusive. Here, we demon-
strate a potentially critical property of this cortex: its dynamic configuration for coding of task-critical information. Using multivoxel
pattern analysis of human functional imaging data, we demonstrate an adaptive change in the patterns of activation coding task-relevant
stimulus distinctions. When task demands made perceptual information more difficult to discriminate, frontoparietal regions showed
increased coding of this information. Visual cortices showed the opposite result: a weaker representation of perceptual information in
line with the physical change in the stimulus. On alonger timescale, a rebalancing of coding was also seen after practice, with a diminished
representation of task rules as they became familiar. The results suggest a flexible neural system, exerting cognitive control in a wide
range of tasks by adaptively representing the task features most challenging for successful goal-directed behavior.

Introduction

Frontoparietal cortex is important in cognitive control, but the
mechanism for control remains elusive. A critical component
may be selective attention to task-relevant information. On this
view, cells in many frontal and parietal regions show highly dy-
namic response properties, selectively coding the information
required for current behavior (Duncan, 2001). This adaptive
frontoparietal representation may serve as a source of bias to
other brain systems, driving widespread focus on task-relevant
processing (Desimone and Duncan, 1995; Dehaene et al., 1998;
Miller and Cohen, 2001).

Support comes from single-unit data in the behaving monkey.
Activity of frontal and parietal cells represents many different
task features, including stimuli, responses, rules, and rewards
(Sakagami and Niki, 1994; Asaad et al., 1998; White and Wise,
1999; Wallis et al., 2001; Stoet and Snyder, 2004). Changes in task
relevance bring corresponding changes in cell activity (Freedman
et al., 2001; Freedman and Assad, 2006).

In human functional imaging, selected regions of frontopari-
etal cortex show similar response to many different kinds of cog-
nitive demand, including perceptual discrimination, response
conflict, working memory, and more (Duncan and Owen, 2000;
Nyberg et al., 2003; Dosenbach et al., 2006; Duncan, 2006). In-
cluded among these “multiple-demand” or MD regions (Dun-
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can, 2006) are inferior frontal sulcus (IFS), anterior insula/frontal
operculum (AI/FO), dorsal anterior cingulate/presupplementary
motor area (ACC/pre-SMA), and intraparietal sulcus (IPS). Such
regions are strong candidates for adaptive involvement in cogni-
tive control (Miller and Cohen, 2001; Dosenbach et al., 2006).
Recent work using multivoxel pattern analysis (MVPA) suggests
that MD regions code many different task features. In MVPA,
coding is revealed by regularities in fine-grained activity pat-
terns evoked by different stimulus events (Haynes and Rees,
2006). The voxelwise pattern of activity in frontoparietal re-
gions can discriminate task-relevant visual features (Li et al.,
2007), task sets (Bode and Haynes, 2009) and rules (Haynes et
al., 2007). Using a simple stimulus—response task, Woolgar et
al. (2011) demonstrated MD coding of all task features neces-
sary for behavior: stimulus position, stimulus—response map-
ping rule, and response.

The adaptive coding hypothesis predicts that frontoparietal
representations will dynamically adjust to task demands. Much
previous work shows increased MD activity with increasing de-
mand (Duncan and Owen, 2000; Duncan 2006). Here we use
MVPA to explore whether these regions also show improved dis-
crimination of demanding task features. We predicted that, as the
processing demand of some task feature increases, MD represen-
tations should adjust to give improved attention to, or coding of,
that feature. To address this, we varied the perceptual demands of
a stimulus-response task. Strikingly, we found improved MD
discrimination of different stimulus positions when they were
more similar, i.e., when behaviorally they were more difficult to
distinguish. Second, we analyzed MD representations after
participants became familiar with the task through practice.
The result was a rebalancing of MD resources: when task rules
were unfamiliar they were strongly coded in MD activity, but
rule coding diminished with experience. Our results confirm
an extensive pattern of dynamic representation in frontopari-
etal cortex, with selective focus on demanding aspects of cur-
rent behavior.
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Figure 1.  Stimulus—response task. There were two incompatible stimulus—response map-
pings between the four stimulus positions and the four response keys. The background color of
the screen indicated which rule to use on the current trial: green indicated rule 1, and pink
indicated rule 2. Participants responded with the index and middle finger of each hand. On low
perceptual difficulty blocks, the four stimulus positions were separated by 3°; on high difficulty
blocks, this was reduced to 1°.

Materials and Methods

Participants. Eighteen participants (10 female; mean = SD age, 22.9 *
3.84 years) were recruited from the Medical Research Council Cognition
and Brain Sciences Unit volunteer panel. Participants were right handed
and had normal or corrected-to-normal vision. All participants gave
written informed consent to take part and were reimbursed for their
time. The study was approved by the Hertfordshire Local Research Ethics
Committee.

Task design. Participants were scanned while performing a simple vi-
sual stimulus—response task that we used previously to separate coding of
visual stimulus features, task rules, and button-press responses (Woolgar
et al., 2011). On each trial, the stimulus was a blue square measuring
~2 X 2° presented on a projector and viewed through a head-coil-
mounted mirror in the scanner. It could appear in one of four positions,
which were indicated at the start of each block by four white squares with
a black outline. The four positions were arranged in a horizontal row in
the center of the screen. Participants responded by pressing one of four
response keys using index and middle fingers from each hand. There
were two incompatible stimulus-response mappings between the four
stimulus positions and the four response keys (Fig. 1). The current rule to
use was indicated by the background color of the screen: green indicated
rule 1, and pink indicated rule 2.

To manipulate perceptual difficulty, we varied the distance between
the four stimulus positions (Fig. 1). In blocks of low perceptual difficulty,
adjacent stimulus positions were separated by 3° (center to center); in
blocks of high perceptual difficulty, this was reduced to 1°.

Participants learned the rules outside the scanner and practiced the
task for 20 min before each scanning session. Practice blocks alternated
between high and low perceptual difficulty (five blocks of each), each
lasting 2 min. Within each block, the eight stimuli (four positions X two
background colors) were presented in random order. Participants were
instructed to respond as quickly as possible without making any mistakes
and were shown feedback (number of trials completed and percentage
correct) after each block of trials.

Acquisition. fMRI data were acquired using a Siemens 3 T TimTrio
scanner with a 12-channel head coil. We used a sequential descending
T2*-weighted echo planar imaging (EPI) acquisition sequence with the
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following parameters: acquisition time, 2000 ms; echo time, 30 ms; 32
oblique axial slices with a slice thickness of 3.0 mm and a 0.75 mm
interslice gap; in-plane resolution, 3.0 X 3.0 mm; matrix, 64 X 64; field of
view, 192 mm; flip angle, 78°. T1-weighted MPRAGE structural images
were also acquired for all participants (slice thickness, 1.0 mm; resolu-
tion, 1.0 X 1.0 X 1.5 mm; field of view, 256 mm; 160 slices).

Participants performed alternating blocks of high and low perceptual
difficulty; block order was counterbalanced across subjects. The block
type (high or low difficulty) and the corresponding stimulus positions
were cued at the start of each block. Within each block, the eight stimuli
(four positions X two background colors) were presented in random
order. Stimuli remained visible until the participant responded. There
was an interval of 1000 ms between response and display of the subse-
quent stimulus, during which time the screen was white. Participants
performed four runs of 10 blocks over two scanning sessions. Block
length was fixed at 2 min, in which time participants completed a varying
number of trials (mean * SD number of trials per session, 975 * 166).
There was a 20 s gap between blocks. The EPI time was 46 min 36 s per
session.

The two scanning sessions were 1 week apart, and participants prac-
ticed the task for 20 min per day over the Internet for the 6 intervening
days. Practice sessions consisted of 10 blocks of trials, identical to a single
scanning run except that, during practice, auditory feedback (single high
tone for correct, double low tone for incorrect) was given on each trial.

Analysis. A combination of univariate and multivariate analyses
techniques were used to explore complementary aspects of the data.
Conventional univariate analyses examined overall differences in
BOLD response in high and low perceptual difficulty conditions and
in the two scanning sessions. MVPA was used to discriminate fine-
grained activation patterns pertaining to different task features. Three
task features were investigated: stimulus position, rule, and response.
Because position and response were partially confounded, we compared
inner with outer positions (which have equal contributions from each of
the four responses and each of the two rules) and inner with outer re-
sponses (which have equal contributions from each of the four stimulus
positions, each of the two hands, and each of the two rules). Multivoxel
coding of each task feature was compared between high and low percep-
tual difficulty conditions and between the two scanning sessions using
ANOVA. Because the central aim of the study was to investigate the
representational content of MD cortex, the main analyses focused on
prefrontal and parietal regions of interest (see below). Whole-brain anal-
yses were also performed using a searchlight method (Kriegeskorte et al.,
2006) to identify any additional regions showing task-relevant feature
coding.

Preprocessing. Image realignment, slice timing correction, and coreg-
istration to structural images was performed using Automatic Analysis
version 2.0 for SPM5 (http://imaging.mrc-cbu.cam.ac.uk/imaging/Au-
tomaticAnalysisIntroduction). For univariate analyses, data were addi-
tionally normalized (simultaneous gray/white matter segment and
normalize) and smoothed (10 mm FWHM Gaussian kernel) using the
same software. In all cases, data were high-pass filtered (128 s).

Regions of interest. MID regions of interest (ROIs) were defined using
data from a previous review of activity associated with a diverse set of
cognitive demands (Duncan and Owen, 2000). We used the kernel
method described by Cusack et al. (2010). To ensure symmetrical ROIs,
all peaks from the original review were first projected onto a single hemi-
sphere. A point was placed at the location of each peak, and the resulting
image was smoothed (15 mm FWHM Gaussian kernel) and thresholded
at 3.5 times the height of a single smoothed point. The resulting regions
were then duplicated in the opposite hemisphere by reflection across the
midline. A plane at the local minimum was used to divide lateral prefron-
tal regions into a more dorsal part, in and around the IFS, and a more
ventral part, focused around the AI/FO. The two left and right medial
ROIs abutting each other at the midline were unified into a single ACC/
pre-SMA region. The procedure yielded a total of seven ROIs (see Fig. 3):
left and right IFS (center of mass, =38, 26, 24; volume, 17,000 mm?>); left
and right AI/FO (%35, 19, 3; 3000 mm ?); left and right IPS (*35, —58,
41;7000 mm*),and ACC/pre-SMA (0, 23, 39; 21,000 mm ). In addition,
left and right visual cortex ROIs were derived from the Brodmann tem-
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plate provided with MRIcro (Rorden and Brett, 2000): Brodmann area
(BA) 17/18 (center of mass, —13, —81, 3; 16, —79, 3; volume, 54,000
mm?). All coordinates are given in MNI152 space (McConnell Brain
Imaging Centre, Montreal Neurological Institute).

Univariate analyses. Univariate analyses compared task-related activ-
ity in the two perceptual difficulty conditions and two sessions using a
factorial ANOVA. The standard multiple regression approach of SPM5
(Wellcome Department of Imaging Neuroscience, London, UK; www.
fil.ion.ucl.ac.uk) was used to estimate 3 values pertaining to the high and
low perceptual difficulty conditions in each of the four runs separately.
Trials were modeled as epochs lasting from stimulus onset until re-
sponse. Movement parameters and run means were included as covari-
ates of no interest. Whole-brain analyses compared voxelwise BOLD
response in the two difficulty conditions and the two sessions using a
two-way ANOVA with factors difficulty (high, low) and session (session
1, session 2). For ROI analyses, B estimates were averaged across each
region. An additional factor, region (ACC/pre-SMA, IFS, AI/FO, and
IPS; data collapsed across hemisphere when appropriate), was included
in ROI-based ANOVAs. Additionally, to check for any univariate
changes that might contribute to differences in multivoxel coding be-
tween perceptual difficulty conditions or between sessions, three four-
way ANOVAs were also performed, one for each task feature. These had
the following factors: task feature level (e.g., rule 1, rule 2), region (ACC/
pre-SMA, IFS, AI/FO, and IPS), difficulty (high, low), and session (ses-
sion 1, session 2). For this analysis, 3 estimates were derived as described
below for multivariate analyses, using normalized and smoothed data.

Multivoxel pattern analyses. Multivoxel pattern analyses were performed
using MultiVariate Pattern Analysis in Python (PyMVPA) software (Hanke
etal., 2009), in which support vector machine classification is implemented
by wrapping the LIBSVM library (Chang and Lin, 2011). We used a linear
support vector machine, LinearCSVMC (http://www.pymvpa.org/api/
mvpa.clfs.svm.LinearCSVMC-class.html; cost parameter C = 1). 8 estima-
tion and second-level random-effects analyses were performed using SPM5
(Wellcome Department of Imaging Neuroscience; www.fil.ion.ucl.ac.uk).

The standard multiple regression approach of SPM5 (Wellcome De-
partment of Imaging Neuroscience; www.fil.ion.ucl.ac.uk) was used to
estimate B values pertaining to inner and outer positions, inner and outer
responses, rule 1 and rule 2, in each of the 40 blocks. Trials were again
modeled as epochs lasting from stimulus onset until response, and each
trial contributed to the estimation of three B values (inner or outer
stimulus position, inner or outer response, and rule 1 or rule 2). Error
trials were excluded from analyses.

ROI analyses proceeded as follows. For each participant, the nine ROIs
were deformed by applying the inverse of the participant’s normalization
parameters. This allowed us to perform pattern classification analysis
directly on the native space data for each participant. For each partici-
pant, classification of position was performed in each of the high and low
perceptual difficulty conditions and each of the two sessions separately.
For a given ROI, the pattern of 3 values across the relevant voxels was
extracted from each of the 20 relevant 8 images (e.g., 10 blocks of low
perceptual difficulty in session 1 X two positions), yielding 20 multivoxel
vectors. One hundred percent of the voxels in each ROI contributed to
each vector, without feature selection. The linear support vector machine
was trained to discriminate between the vectors pertaining to inner po-
sitions and those pertaining to outer positions. We used a leave-one-out
10-fold splitter: the classifier was trained using the data from 9 of the 10
blocks and was subsequently tested on its accuracy at classifying the
unseen data from the remaining block. This process was performed in 10
iterations, using all 10 possible combinations of train and test blocks. The
classification accuracies from the 10 iterations were then averaged to give
a mean accuracy score for that participant. This procedure was repeated
for each feature (position, rule, response), for each level of difficulty
(high, low), and each session (session 1, session 2).

For each task feature, classification accuracies from each participant
were then entered into three-way ANOVAs with factors perceptual dif-
ficulty (high, low), session (session 1, session 2), and region (ACC/pre-
SMA, IFS, AI/FO, and IPS; data collapsed across hemisphere as
appropriate). When appropriate, the relevant ANOVA was also run in
each region individually. To explore any hemisphere effects, we ran an
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Table 1. RT and percentage correct scores for low and high perceptual difficulty
conditions in session 1 and session 2

Low, session 1 High, session1  Low, session 2 High, session 2

RT(ms) % RT(ms) % RT(ms) % RT(ms) %
Mean 1094 96.3 1564 880 798 9.4 1078 90.3
Rule 1 1206 95.1 1728 848 853 9.0 1169 89.1
Rule 2 982 97.5 1401 912 742 9%.7 986 91.5

Positioninner 1126 9.1 1553 91.1 808 96.9 1092 91.6
Position outer 1061 9.6 1575 85.0 787 95.8 1063 89.0
Response inner 1098 96.3 1565 83.0 804 96.3 1057 90.0
Response outer 1089 9.4 1563 88.1 791 9.4 1098 90.6

additional ANOVA with factors region (IFS, AI/FO, IPS), difficulty
(high, low), session (session 1, session 2), and hemisphere (left, right).
Finally, to compare coding of the different task features and whether this
changed with perceptual difficulty or practice, we ran a single four-way
ANOVA with factors perceptual difficulty (high, low), session (session 1,
session 2), region (IFS, AI/FO, ACC/pre-SMA, IPS), and task feature
(position, rule, response).

To identify any additional regions showing flexible coding of task-
relevant information and to be sensitive to more restricted regions of
information coding, pattern classification was also performed across the
whole brain using a roaming spotlight (Kriegeskorte et al., 2006). For
each participant, data were extracted from a spherical ROI (radius, 5 mm;
volume, 19 voxels) centered in turn on each voxel in the brain. A linear
support vector machine was trained and tested as before, using data from
each sphere, and the classification accuracy value for that sphere was
assigned to the central voxel. This yielded whole-brain classification ac-
curacy maps for each individual for each task feature in each condition
and session separately. To combine data across individuals, classification
accuracy maps were normalized by applying the normalization parame-
ters extracted at the preprocessing stage of the univariate analyses and
were subsequently smoothed using a 10 mm FWHM Gaussian kernel.
For each feature, these data were entered into a two-way ANOVA equiv-
alent to that described for the ROI analyses. All whole-brain results were
thresholded at p < 0.01, with false discovery rate correction, with an
extent threshold of 100 voxels.

Results

Behavioral results

Behavioral data are shown in Table 1. As expected, reaction times
(RTs) were substantially longer, and accuracy lower, in the high
perceptual difficulty condition. RTs also decreased with practice.
Rule 2 was appreciably easier than rule 1, whereas there were only
minor differences between inner and outer stimulus positions or
between inner and outer responses.

Data were analyzed using a series of three-way ANOVAs. In
the first analyses, the factors were perceptual difficulty (low,
high), session (session 1, session 2), and rule (rule 1, rule 2).
Participants were significantly slower (main effect of difficulty,
F1,17) = 84.3, p < 0.001) and less accurate (F, ;7y = 30.8, p <
0.001) in the high perceptual difficulty condition. There was also
a significant main effect of session on reaction time (F, ;) =
29.3, p < 0.001), indicating that participants were significantly
faster after practice. There was no main effect of session on per-
centage correct (F(, ;) = 1.77, p = 0.20). The difference in reac-
tion time attributable to the perceptual difficulty manipulation
was significantly reduced in the second session (session X diffi-
culty interaction, F(, ,,, = 27.5, p < 0.001), although it was still
highly significant (two-way ANOVA on RT data from second
session, main effect of difficulty, F, ,,) = 36.0, p < 0.001). For
percentage correct, the session X difficulty interaction was mar-
ginally significant (F(, ,,, = 3.93, p = 0.06), with the trend in the
same direction. Finally, participants were faster and more accu-
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rate in rule 2 compared with rule 1 (RT, F(, ,,) = 31.4, p < 0.001;
accuracy, F(; 7y = 21.9, p < 0.001).

A second set of analyses was identical but replacing the rule
factor with stimulus position (inner vs outer). Results for diffi-
culty and session factors were necessarily identical to those de-
scribed above. Participants tended to be more accurate in
responding to inner positions (F,,, = 8.06, p = 0.011), al-
though there was no difference in reaction times (F, ;, = 1.08,
p = 0.31). In a final set of analyses, the third factor was response
rather than stimulus position. There was no significant effect of
this factor in either speed or accuracy (RT, F(, ;,, = 0.10, p =
0.76; accuracy, F(, ,;, = 0.13, p = 0.73).

Univariate results

Univariate analyses compared MD BOLD responses in the high
and low difficulty conditions and the two sessions (see Materials
and Methods). Given our a priori hypothesis, analyses were per-
formed first on an ROI basis. This was also supplemented by a
more exploratory whole-brain analysis.

To compare MD activation in the high and low difficulty con-
ditions, we performed an ANOVA with factors difficulty (high,
low), session (sessionl, session 2), and region (IFS, AI/FO, ACC/
pre-SMA, and IPS; averaged across hemisphere when appropri-
ate). The ROI analysis revealed significantly greater MD activity
overall in the high compared with low difficulty condition (main
effect of difficulty, F, ,,) = 14.0, p = 0.002). This difference was
also significant in the IFS (F, ;) = 22.4, p < 0.001), AI/FO
(Fi17) = 5.66, p = 0.029), and IPS (F, ,, = 29.3, p < 0.001)
individually. The whole-brain analysis similarly showed regions
of increased activation for the high perceptual difficulty condi-
tion in a large area of the left and right lateral frontal surfaces
(peaks: 44, 30, 34, BA 45; 46, 20, 38, BA 44; —46, 28, 34, BA 45;
—40, 6,34, BA 44), the ACC/pre-SMA (peak: 6, 30,44, BA 8), and
left and right IPS (peaks: 40, —52, 46, BA 40; —30, —52, 42, BA
40), as well as left and right higher visual cortex (peaks: 30, —90,
2, BA 18; —32, —90, —6, BA 19) (Fig. 2A).

A significant main effect of session in the same ANOVA
indicated that task-related MD activity was reduced overall in
the second session (F, ;,) = 6.31, p = 0.022), as expected. This
difference was also significant in the IPS ROI individually
(F(1,17) = 14.8, p = 0.001) and approached significance in the
IES (F,, ;) = 4.23, p = 0.055) and AI/FO (F,,,, = 3.82, p =
0.067). The whole-brain analyses mimicked these results, show-
ing greater task-related BOLD signal in the first session in the left
and right lateral frontal surface (peaks: 44, 32, 36, BA 45; 40, 42,
28, BA 46; —42, 54, —2, BA 46) and right IPS (peak: 12, —64, 44,
BA 7) (Fig. 2B). There was no session X difficulty interaction
(F(117) < 0.01, p = 0.995).

To check for any univariate activation that might contribute
to differences in multivoxel coding between perceptual difficulty
conditions or sessions, three additional ANOVAs were per-
formed, one for each task feature [factors: difficulty (high, low),
session (session 1, session 2), region (IFS, AI/FO, ACC/pre-SMA,
IPS), and feature level (rule 1, rule 2); see Materials and Meth-
ods]. There were no significant interactions with difficulty or
session for any task feature (position, p values > 0.74; rule, p
values > 0.29; response, p values > 0.17).

Multivariate results

Of central interest was the flexibility of MD coding in response to
changing task demands. MVPA was used to quantify the discrim-
inability of multivoxel patterns pertaining to different task events

J. Neurosci., October 12,2011 - 31(41):14592-14599 « 14595

Figure 2.  Whole-brain univariate analyses for high minus low perceptual difficulty (4) and
session 1 minus session 2 (B). Data are thresholded at p << 0.01, with false discovery rate
correction for multiple comparisons and an extent threshold of 100 voxels. Coordinates of peak
activations are given in the Results (see Univariate results).

(e.g., stimulus positions), in the two perceptual difficulty conditions:
classification accuracy indicated the relative strength of coding.

We predicted that, in the high perceptual difficulty condition,
the MD system would show increased representation of stimulus
position relative to the low perceptual difficulty condition. The
results, shown in Figure 3, were in line with this hypothesis. In the
MD system as a whole, there was significantly more coding of
position information in the high relative to the low perceptual
difficulty condition (mean classification accuracy for low diffi-
culty, 49.9%; high, 58.3%; F, ,,, = 11.6, p = 0.003). This trend
was consistent across the MD ROIs (difficulty X region interac-
tion F; 5,y = 0.20, p = 0.90). Moreover, the difference was sig-
nificant in the IFS, IPS, and ACC/pre-SMA ROIs individually
(main effect of difficulty for each region separately: IFS, F, ;) =
9.99, p = 0.006; IPS, F, ,,, = 6.87, p = 0.018; ACC/pre-SMA,
F17) = 5.93, p = 0.026) and approached significance in the
AI/FO (F(y.,7) = 3.37, p = 0.084).

Greater coding of physically less discriminable stimuli is strik-
ing. To emphasize this, we examined position coding in the visual
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cortex using an anatomically defined ROI
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position coding overall in this ROL In
contrast to the MD result, in the visual
RO, there was significantly less coding
of position in the high perceptual diffi-
culty condition (low, 86.2%; high,
68.9%; F(; 1,y = 61.1,p < 0.001), in line
with the change in physical discrim-
inability of the stimulus.

Because we excluded error trials and
because (depending on RT) a variable
proportion of time in each block was de-
voted to task performance versus inter-
trial interval, a potential concern was
differential reliability of B estimates be-
tween conditions. In turn, differential re-
liability of B estimates could affect
differences in classification accuracy in
MVPA. To address this, we ran a second
model in which we equated the total scan-
ning time (summed RT) contributing to
the estimation of task performance 3 val-
ues in the high and low perceptual diffi-
culty conditions. To achieve this, for each
subject and block, trials from the condi-
tion with greater summed RT were
dropped until conditions were matched.
This did not change the pattern of results
(main effect of perceptual difficulty on
coding of position in MD regions: low,
50.4%; high, 56.7%, F,,, = 6.57, p = 0.02; difficulty X MD
region interaction, F(5 5,) = 0.29, p = 0.83; BA 17/18: low, 86.5%;
high, 66.25%, F, ) = 61.7, p > 0.001).

To check for hemispheric differences, we ran an additional
ANOVA with factors difficulty (high, low), session (session 1,
session 2), region (IFS, AI/FO, IPS), and hemisphere (left, right).
There was a main effect of hemisphere (F(, ;,, = 10.7, p = 0.004),
indicating more coding of position information overall in the
right relative to left hemisphere. The hemisphere X difficulty
interaction was not significant (F, ,,, = 0.11, p = 0.74), suggest-
ing that there was no difference in the extent to which responses
from each hemisphere adapted to the perceptual difficulty
manipulation.

Our second question concerned whether the other task fea-
tures, rule and response, continued to be represented in the high
perceptual difficulty condition. The pattern of representation of
rule and response information is shown in Figure 4. Because they
were still relevant for behavior, we predicted that these task fea-
tures would continue to be represented in the system. Accord-
ingly, there was no significant effect of perceptual difficulty on
coding of rule (F, ,;) = 0.42, p = 0.53) or response (F(, ;,y =
0.001, p = 0.98; difficulty X session X region ANOVA for rule
and response separately).

Finally, we turned to the effect of practice on multivoxel cod-
ing. For position, there was no difference (numerical increase) in
position coding across the two session (52.5 to 55.7%, F(; ;) =
1.36, p = 0.26). There was also no change in the coding of response
(53.7 to 52.1%, F, 7y = 1.10, p = 0.31). However, there was a
significant reduction in rule coding in the second session (65.2 to
58.0%, three-way ANOVA for rule, main effect of session: F, ,,,
= 5.35, p = 0.033). This trend was consistent across the MD
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cation accuracy between high and low perceptual difficulty conditions, tested with ANOVA (factors: difficulty, session) in each
region separately or ANOVA (factors: difficulty, region, session) for average MD. Significance markings for individual bars indicate
where position coding was significantly greater that chance in that region and condition (one-sample t test against chance,
50%).%p << 0.05, **p < 0.01.

regions (Fig. 5) and significant in the IFS (F(, ,,) = 4.55, p =
0.048) and IPS (F(, ;,, = 10.1,p = 0.006) individually. The results
indicate that, with practice, MD coding of task rules decreased,
whereas coding of specific stimuli and responses was relatively
unaffected.

In these ANOVAS, there were no session X difficulty inter-
actions (all p values > 0.17), suggesting that the perceptual
difficulty manipulation had a similar effect on coding in each
session. A four-way ANOVA with factors difficulty (high,
low), session (session 1, session 2), region (IFS, AI/FO, ACC/
pre-SMA, IPS), and task feature (rule, position, response)
confirmed that the interaction between session and task feature
was significant (F(, 54, = 3.61, p < 0.038), suggesting a rebalanc-
ing of MD resources after practice. There was no main effect of
session (F(; ;) = 2.87, p = 0.11) in this ANOVA; overall task-
relevant information continued to be represented to a similar
extent in the second session. The four-way ANOVA also revealed
a highly significant effect of feature (F, ;,, = 13.2, p < 0.001),
which indicated that coding of rule was significantly greater than
coding of position or response.

Whole-brain MVPA analyses, performed to check for addi-
tional regions behaving adaptively, did not reveal any additional
areas of interest. The high minus low perceptual difficulty con-
trast revealed increased position coding in bilateral IPS (peaks:
52, —50, 34, BA 40; —50, —48, 38, BA 40) and no differences in
rule or response coding. For low minus high, there was increased
position coding in the visual cortices (peak: 10, —82, 10, BA 17),
as seen in the ROI analysis, and no differences in rule or response
coding. For the effect of practice (session 2 minus session 1), no
voxels survived correction for position, rule, or response. In the
converse contrast (session 1 minus session 2), there was a small
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accuracy between high and low perceptual difficulty conditions. *p << 0.05, **p < 0.01.

cluster of voxels showing increased position coding in first ses-
sion in the right visual cortex (peak: 22, —78, —8, BA 18). As in
the ROI analysis, there was increased rule coding in the first
session compared with the second session in regions of the
lateral frontal surface (peaks: —46, 14, 16, BA 44; 46, 20, 34,
BA 44; —40, 50, 0, BA 46; 38, 04, 46, BA 47), ACC/pre-SMA (6,
8,60, BA 6), and a large cluster of voxels around the temporo-
parietal junction (—50, —64, 18, BA 39; 48, —66, 40, BA 39).
No voxels survived correction for this contrast for response
coding.

Rule (4) and response (B) coding in the MD system, under conditions of high and low perceptual difficulty. Bars
indicate classification accuracy for rule 1 versus rule 2 (4) or inner versus outer responses in high and low perceptual difficulty
conditions (B) in each of the MD ROIs. Data are collapsed across session and hemisphere when appropriate. Error bars indicate SE.
The significance markings for individual bars indicate whether coding of that task features was significantly greater that chance
(one-sample ¢ test against chance, 50%) in that region in that condition. There were no significant changes in classification

that the coding of information in the MD
system is sensitive to task demands (Dun-
can, 2001). In line with this hypothesis,
the representation of stimulus position
information in the MD system increased
adaptively when the perceptual difficulty
of the task was increased. In contrast, in
the visual cortex, position coding signifi-
cantly decreased when perceptual diffi-
culty was increased, in line with the
physical attributes of the stimuli. These
changes occurred dynamically, between
alternating blocks of high and low percep-
tual difficulty each lasting 2 min.

Many previous studies have shown se-
lective coding of task-relevant informa-
tion in single neurons of the monkey
prefrontal cortex (Rao et al., 1997; Dun-
can, 2001; Freedman et al., 2001). In hu-
. mans, MVPA of frontal activity recorded
~ B with fMRI has also shown that different
2T types of task-relevant information can be
represented (Haynes et al., 2007; Li et al.,
2007; Bode and Haynes, 2009; Woolgar et
al., 2011). Here, we show the effect of de-
mand on these representations. When
perceptual stimuli were more difficult to
distinguish we saw a greater representa-
tion of perceptual information, despite
weaker representation of this information
in earlier processing areas. Moreover, we
show that this effect is not restricted to
lateral frontal brain regions but occurs
across the MD network.

It is worth noting that the change in in-
formation coding was not a general in-
crease, as might be expected in the case of a
general increase in effort or attention to the
task. Instead, the results suggest a highly spe-
cific adaptation to increased demand for
stimulus identification, with stronger cod-
ing of stimulus position but unchanged
coding of other task features. One possibility
is that, when additional attention must be
allocated specifically to stimulus position,
the MD regions adjust to give a greater
representation of this information. Addi-
tional work is needed to disentangle
whether this representation itself reflects
amplified sensory information (for exam-
ple, compensating for the lack of percep-
tual information coded in the visual cortex) or some form of
more considered perceptual decision regarding the stimulus
position.

In traditional univariate fMRI studies, increased MD activity

*%
*%¥

Average
MD

Average
MD

is associated with many kinds of task difficulty (Duncan and
Owen, 2000). In the present data, the MD system indeed showed
the expected increase in overall activity under conditions of in-
creased task demand. The MVPA results provide a possible ex-
planation of what this increased activity reflects, namely an
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increased representation of the task fea-
ture to which additional processing ca-
pacity must be applied.

Previous investigation of adaptive cod-
ing has focused primarily on the proper-
ties of the non-human primate prefrontal
cortex, leaving the flexibility of coding in
the parietal lobe less thoroughly explored.
Our data suggest that, in the human brain,
the IPS adaptively increases its represen-
tation of task-relevant information in line
with task demands. That the IPS region
should respond much as the rest of the
MD system does is in line with the com-
mon coactivation of IPS with IFS regions
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60 -

55 4
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(Duncan, 2006), as well as demonstra-
tions of similar patterns of responses in
frontal and parietal cortex at the level of
the single neuron (Quintana and Fuster,
1992; Chafee and Goldman-Rakic, 1998).
Because the parietal lobe has been sug-
gested to be somewhat specialized for spa-
tial information (Mishkin et al., 1983;
Milner and Goodale, 1995; Corbetta and
Shulman, 2002; Rizzolatti and Matelli,
2003), it remains an open question as to
whether this region would flexibly adapt
to code other types of information as they
became relevant for the task, or demand
additional attention. Certainly, however,
there is also considerable evidence for
nonspatial parietal functions (Duncan,
2006; Nachev and Husain, 2006; Husain and Nachev, 2007).

The current study also casts light on adaptive MD coding
occurring over increased practice. After 1 week, participants were
substantially faster on the visual stimulus—response task. Concur-
rently, the MD system showed reduced univariate task-related
activity, in line with previous literature. Meanwhile, the MVPA
results suggest a rebalancing of MD resources. Although MD
representation of stimuli and responses was relatively unaffected
by practice, the MD system exhibited strong coding of rule infor-
mation before practice when the task rules were unfamiliar, but,
with experience, rule coding was much diminished. Familiarity
with stimulus-response mapping rules is a strong determinant of
performance. For unfamiliar mappings, reaction times are high
and strongly influenced by the number of alternative responses
but diminish and become independent of the number of alterna-
tives when familiar (Mowbray, 1960; Brainard et al., 1962). Our
task also required an unfamiliar choice between rules based on a
novel cue (background color). Time to make such a choice also
decreases rapidly with practice (Duncan, 1977). Our results sug-
gest that, as mapping operations are speeded, MD coding of rules
decreases.

Even within one task, our data show flexible coding of multi-
ple task features across the MD system. It follows that general
conclusions are unlikely to be drawn from specific consideration
of how information is distributed across MD regions in any one
task. However, it was striking that, in this study, as in our previ-
ous work (Woolgar et al., 2011), stimulus—response mapping rule
was the most strongly represented task feature. Rule was significantly
coded in all MD regions in both high and low perceptual difficulty
conditions and, especially in the first session, was represented sig-
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Effect of practice on rule coding in the MD system. Bars indicate classification accuracy for rule 1 versus rule 2 in the
first and second scanning session. Data are collapsed across perceptual difficulty and hemisphere when appropriate. Error bars
indicate SE. Significance markings between bars indicate change in classification accuracy between sessions, tested with ANOVA
(factors: difficulty, session) in each region separately or ANOVA (factors: difficulty, region, session) for average MD. Significance
markings for individual bars indicate rule coding significantly greater that chance (one-sample ¢ test against chance, 50%). *p <

nificantly more strongly than position or response across the MD
system. In the current design, rule coding was confounded with
background color, but our previous work suggests that color cod-
ing tends to be weak compared with rule coding and indeed that
rule coding generalizes across different background colors
(Woolgar et al., 2011). In the present experiment, the two rules
were also of appreciably different difficulty, raising the possi-
bility that a generalized processing increase (e.g., effort) in the
harder rule could have contributed to the separation of mul-
tivoxel codes. However, the same result was seen in our previ-
ous work, in which the rules were more closely matched for
difficulty (Woolgar et al., 2011), and, in the present case, the
corresponding univariate analysis did not show significant
differences that could account for the multivariate results.
One possibility is that, despite adapting to represent different
types of information as relevant for the current task context,
the MD system may maintain a hierarchy of coding, with a
stronger representation of task rules or general cognitive context
and a weaker representation of particular stimulus-response in-
stances (Miller and Cohen, 2001; Sigala et al., 2008). Another
possibility—especially in the first session, before practice—is
that rule choice and use may have been especially demanding in
the current task.

The current data demonstrate a surprising effect of demand
on MD representation of task-relevant information. In line with
the adaptive coding hypothesis (Duncan, 2001), representation
of stimulus position increased when stimulus position was more
difficult to discern, despite decreased representation of this infor-
mation in early visual cortex. This dynamic change occurred
within a single task and was consistent across both frontal and
parietal MD regions. After practice on the task, the result was a
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rebalancing of MD resources, with a diminished representation
of task rules. The results are consistent with the proposal that the
MD regions constitute a flexible neural system, exerting cognitive
control in a wide range of tasks by adaptively representing the
task features relevant for successful goal-directed behavior.
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