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Technological advances in electrode construction and digital signal processing now allow recording simultaneous extracellular action
potential discharges from many single neurons, with the potential to revolutionize understanding of the neural codes for sensory, motor,
and cognitive variables. Such studies have revealed the importance of ensemble neural codes, encoding information in the dynamic
relationships among the action potential spike trains of multiple single neurons. Although the success of this research depends on the
accurate classification of extracellular action potentials to individual neurons, there are no widely used quantitative methods for assess-
ing the quality of the classifications. Here we describe information theoretic measures of action potential waveform isolation applicable
to any dataset that have an intuitive, universal interpretation, that are not dependent on the methods or choice of parameters for
single-unit isolation, and that have been validated using a dataset of simultaneous intracellular and extracellular neuronal recordings
from Sprague Dawley rats.

Introduction
As we begin decoding spikes to understand brain function, it is
critical to reliably identify distinct action potential trains from
many neurons simultaneously (Wilson and McNaughton, 1993;
Hampson et al., 2001; Csicsvari et al., 2003; Harris et al., 2003;
Buzsáki, 2004; Hill et al., 2011). “Spike sorting” uses features of
multiple simultaneously recorded action potential waveforms to
divide signals into isolated categories, each corresponding to the
discharge of an individual neuron.

Spike sorting remains difficult, perhaps more art than science.
Currently, the quality of waveform isolation in most studies is
unknown, a matter of trusting a particular laboratory or user.
Identification uncertainty is problematic because conclusions
about information processing mechanisms in the brain depend
on the quality of action potential isolation (Quirk and Wilson,
1999; Schmitzer-Torbert et al., 2005; Fenton et al., 2008). Lack of
a consistent method to determine single-unit isolation quality
impedes progress in understanding how coordination of neuro-
nal discharge produces behaviors and cognition or how failure of

coordination produces pathology. A quantitative method could
validate experiments in different laboratories and would be use-
ful for developing waveform-isolation algorithms.

During spike sorting, features of extracellular waveforms,
such as peak amplitude and energy, are extracted and placed in
feature vectors. An expert user then uses subjective notions of
spike-waveform isolation to create boundaries around clusters in
two-dimensional (2-D) or three-dimensional scatter plots of
these high-dimensional feature vectors. Cluster separation qual-
ity varies with operator expertise, choice of features, and visual
assessment of cluster boundaries (Harris et al., 2000; Wood et al.,
2004).

Although several measures of isolation quality were devel-
oped, they have not gained widespread use, generally only work-
ing on particular types of datasets, or favoring particular isolation
methods and parameters used by one research group. For exam-
ple, Isolation Distance (IsoD) and LRatio are two related mea-
sures of isolation quality (Schmitzer-Torbert et al., 2005).
Although definable using any waveform parameter set, to make
comparisons across datasets, it was necessary to use identical pa-
rameters for waveform isolation in each dataset. Therefore, that
study proposed a standardization using only two waveform fea-
tures: energy and the first principal component coefficient of the
energy normalized waveform. In our experience, those two fea-
tures alone rarely provide good waveform isolation, a process
that generally requires a large number of features.

We sought a measure that can be interpreted consistently
across datasets using feature spaces that differ in both the identi-
ties and number of features. We present an information theoretic
approach to quantify the quality of extracellular waveform isola-
tion. We provide a quality measure that can be compared across
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Correspondence should be addressed to André A. Fenton, Center for Neural Science, 4 Washington Place, New

York, NY 10012. E-mail: afenton@nyu.edu.
DOI:10.1523/JNEUROSCI.4053-11.2011

Copyright © 2011 the authors 0270-6474/11/3116398-12$15.00/0

16398 • The Journal of Neuroscience, November 9, 2011 • 31(45):16398 –16409



recordings and laboratories, without constraint as to the type of
electrode, the data acquisition method, or the particular set of
parameters used for waveform isolation. By providing a method
allowing each study to use whatever set of parameters provides
optimal isolation, we expect that these measures can begin to
provide a standard for ensemble recording studies. These quality
measures will also provide the quantitative basis needed to eval-
uate and compare the effectiveness of automated waveform-
isolation methods extant or in development.

Materials and Methods
Electrophysiology
The data described here, which we used for this study, was recorded
previously from male, Long–Evans rats (Taconic Farms). The methods
have been described in detail previously (Fenton et al., 2008; Park et al.,
2011). All procedures received Institutional Animal Care and Use Com-
mittee approval and were in accordance with institutional and National
Institutes of Health guidelines. Briefly, tetrodes (O’Keefe and Recce,
1993; Gray et al., 1995) made by twisting four strands of 25 �m nichrome
were used to aid unitary waveform discrimination. For the recordings
from freely moving rats (male; Taconic Farms), eight tetrodes were
loaded into a custom machined microdrive assembly (Bio-Signal Group).
The assembly was surgically implanted under pentobarbital anesthesia
(50 mg/kg) to position the tetrodes above the pyramidal cell layer in the
dorsal hippocampus (centered at anteroposterior, 3.8 mm; lateral, 2.5
mm; dorsoventral, 2 mm relative to bregma; Paxinos and Watson, 2007).
The rats were allowed to recover for at least 1 week before the tetrodes
were individually advanced in �50 �m steps during the course of 1–2
weeks. The goal was to position as many of the eight tetrodes in the CA1,
CA3, or dentate gyrus principal cell layer at the same time. A dataset of
tetrode recordings from the hippocampus and medial prefrontal cortex
(mPFC) of urethane-anesthetized Long–Evans rats (male; Taconic
Farms) was also studied. These recordings were made using the methods
described by Olypher et al. (2006).

Extracellular potentials were buffered by unitary gain amplifiers
plugged into the microdrive connector on the rat’s head. The buffered
signals were transmitted to main amplifiers along wires. Action potential
(300 –10,000 Hz) bandpass-filtered signals were amplified (5000 –10,000
times), digitized (32 or 48 kHz), and time stamped (100 �s resolution),
and 2 ms tetrode waveforms were recorded using custom software (AcX;
A.A.F.) or a commercial system (dacqUSB; Axona). Whenever an action
potential voltage exceeded a threshold voltage, the voltages on all four
wires of the tetrode were collected. The recorded action potential
waveforms were aligned with the voltage at the threshold crossing set
to the sample at 250 �s. This alignment produced a time-axis origin
for measuring time-dependent waveform features, such as the wave-
form voltage at a particular time point relative to the threshold cross-
ing at t � 250 �s.

Single-unit waveform isolation was done manually using custom soft-
ware (WClust; A.A.F., S.A.N.) that allows the user to define unitary wave-
form parameter clusters by drawing convex polygon boundaries in 2-D
slices of waveform parameter space, as described in Results. The wave-
form parameters included the positive and negative peak amplitudes on
each tetrode wire, determined from a cubic spline (Press et al., 1992) of
the digitized waveform; the principal components computed either from
the waveform on each tetrode wire separately or computed from the
concatenation of the four tetrode waveforms; the waveform energy be-
tween a user-selected pair of time points (defined in units of voltage as

��
i�n1

n2

xi
2��n2 � n1 � 1�, where xi is the waveform value of sample

i, and n1 and n2 are the starting and ending sample indices, respectively);
the waveform voltage or slope at a user-selected time point; and the
waveform voltage on each tetrode wire at the time of the peak voltage on
the largest waveform in the tetrode event.

Nearest-neighbor estimates of probability with
k-dimensional trees
The nearest-neighbor Kullback–Leibler divergence (KLD) (Kullback and
Leibler, 1951) estimator (Wang et al., 2006) requires finding the nearest
neighbors of arbitrary feature vectors in a high-dimensional space. To
reduce the search time to find nearest neighbors, we stored the feature
vectors in k-dimensional (KD) trees (Bentley, 1975; Cormen et al., 2001),
which are a data structure allowing for O(logN ) time lookup of nearest
neighbors, where N is the size of a distribution. Before storing the feature
vectors in the KD trees, we normalized the values of each dimension into

the range of [0 –1] by the following formula: v �
vi � mini

maxi � mini
. Here,

vi is element i of vector v, and mini and maxi are the minimum and
maximum values of dimension i. This normalization allows each dimen-
sion to play an equal role in calculating nearest-neighbor distances, re-
gardless of magnitudes of values in the dimensions. One KD tree was
created for the feature distribution of each cluster.

Simultaneous intracellular and extracellular neuronal
recordings
The waveform isolation quality measures we developed were validated
using publicly available simultaneous recordings of intracellular and ex-
tracellular voltages from hippocampal area CA1 of Sprague Dawley rats
(Harris et al., 2000; Henze et al., 2000). Each recording had a single
intracellular channel and four extracellular channels. This allowed the
identity of spikes on the extracellular channels to be correctly classified as
belonging to the intracellularly recorded neuron.

To extract action potential waveforms from the intracellular record-
ings, we calculated the discrete derivative and then set a threshold for
spike crossing at a value above the average discrete derivative value. To
extract putative spikes from the extracellular recordings, we first per-
formed a zero-phase distortion bandpass filter between 500 Hz and 3
kHz. Any voltage level from the filtered signal that crossed a threshold
indicated a spike. The portion of the signal surrounding the threshold
crossing (including 0.3 ms before and 1.8 ms after) was extracted from
each channel and stored. Next, commonly used features, including peak,
energy, and principal components, were extracted from the extracellular
waveforms on the four channels and used to form feature vectors. The
extracellular waveforms were considered to originate from the intracel-
lular neuron if the intracellular and extracellular peaks occurred within
0.4 ms (similar to Harris et al., 2000).

To assess correlation of our quality measures with false positives and
negatives, we performed 28 increasing levels of corruption to the original
intracellularly identified (IC) clusters. For each recording, to simulate
false positives, we calculated the center of the IC cluster and added the
waveform feature vectors from the background distribution that en-
croached on its borders. We defined an IC cluster border as 2 SDs above
the mean from the center. To simulate false negatives, we excluded fea-
ture vectors that were known to belong to the IC cluster from its outer-
most borders, as measured by distance to center.

IsoD and LRatio
IsoD and LRatio are measures developed to assess the quality of spike
feature clusters (Schmitzer-Torbert et al., 2005). Although these mea-
sures can operate on arbitrary features, we used an eight-dimensional
(8-D) space in our standard implementation. This space consisted of
energy and the first principal component of the energy-normalized
waveforms, two dimensions for each of the four microwires of a tetrode.
Both measures use a noise distribution for each cluster consisting of all
feature vectors not in the cluster. To compute IsoD, we compute mean
and covariance matrix for each cluster feature distribution and then
calculate the squared Mahalanobis distance (Mahalanobis, 1936) for each
feature vector in the noise distribution from the mean of the cluster. These
distances are sorted in increasing order. IsoD is the nth largest squared dis-
tance, where n is the number of spikes in the cluster. IsoD tends to be larger
for clusters that are well separated from the background.

For each cluster C, L is defined as L�C� � �i�C 1 � CDF�df
2 �Di,C

2 �,
where i� C is the set of noise spikes not in cluster C, CDF�df

2 is the cumula-
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tive distribution function of the �2 distribution with eight degrees of free-
dom (Bulmer, 1979), and Di,C

2 is the squared Mahalanobis distance of i to
cluster C. Noise spikes close to the center of C contribute more to this sum
than noise spikes far from the center. A low value of L indicates that C is well

separated from the surrounding noise. LRatio is then defined as
L�C�

n
, where

n is the number of spikes in cluster C. As shown, IsoD and LRatio are highly
correlated (r � 0.91, p � 0.001) and thus redundant. The redundancy is a
result of both being functions of the squared Mahalanobis distances of the
noise spikes from the cluster center.

Software
The software for calculating the different measures of single-unit isola-
tion quality and for extraction of waveform features was written in stan-
dard C�� and is available for download as a package at the International
Neuroinformatics Coordinating Facility software center (http://software.
incf.org/software/isoitools) and at ModelDB strategies that included sur-
gery. (http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model�
141061). The software was tested and compiled independently on Linux
OS and also as part of custom single-unit isolation software for the Win-
dows platform WClust.

Results
Isolation information
Intuitively, the quality of a cluster is greatest when the cluster is
well separated from the background, separated from all neighboring
clusters, and compact. To capture this intuition, we propose isola-
tion information (IsoI), which computes a symmetrized KLD (Kull-
back and Leibler, 1951) between two multidimensional probability
distributions of action potential waveform features. In what follows,
we primarily refer to this as a “cluster” or “feature cluster.” We refer
to it as “probability distribution” or “distribution” when discussing
KLD as a general measure. KLD measures the separation between
two probability distributions, P and Q, with probability densities p
and q:

KLD�P,Q� � �p�x� log
p�x�

q�x�
dx, (1)

where the integral is taken over the space of waveform features.
Keeping with the information theory standard, logarithms in this
paper are base 2, unless otherwise stated.

We sought a measure that increased monotonically as the
uncertainty of waveform parameters decreased. KLD had the dis-
advantage of not being symmetrical: distance from P to Q is not
the same as distance from Q to P. We therefore defined our new
measure, isolation information (IsoI), to be the resistor average
(Johnson and Sinanovic, 2001) of KLD(P, Q) and KLD(Q, P) to
provide symmetry:

IsoI�P,Q� �
KLD�P,Q� � KLD�Q,P�

KLD�P,Q� � KLD�Q,P�
. (2)

Graphing IsoI against the individual entropies of P, Q divided by
the entropy of the joint distribution of P, Q demonstrated an
additional advantage of this measure: it provided an approxi-
mately linear association with entropy reduction during classifi-
cation of waveforms to their respective clusters (data not shown).

Given a dataset of classified action potential waveforms, we
calculated two different IsoI values: IsoI(C, BG) (IsoIBG, cluster
vs background) and IsoI(C, NN) (IsoINN, cluster vs nearest
neighbor). IsoI(C, BG) computes a distance measure between the
waveform feature probability distribution of the isolated action
potentials of a cluster of interest (C) and the waveform feature
probability distribution of all the other recorded events in the

background (BG). This quantifies how well isolated the feature
vectors of the cluster are from all of the other feature vectors as
well as measuring the compactness of the cluster, because high
probabilities in the distribution result from tight clustering in
feature space.

IsoI(C, NN) computes the distinction between a waveform
feature probability distribution of a cluster and the nearest-
neighbor distribution (NN):

IsoI(C, NN) � min(IsoI(C, B)�B � C, B � BG). (3)

IsoI(C, NN) is useful because a cluster may be far from a large
proportion of the other feature vectors and hence have a large
IsoI(C, BG) but be close to another cluster. In such situations, the
IsoI(C, NN) value will be reduced and may thereby be used to
more sensitively quantify the uniqueness of the cluster.

These two measures quantify the isolation quality in bits
(units of information) across arbitrarily chosen waveform fea-
tures and quantify judgments of cluster isolation quality in terms
of separation and uniqueness.

Calculating KLD
With high-dimensional feature spaces, accurately determining
probabilities becomes difficult when the size of the dataset is
limited because of data points being sparse in the space. In par-
ticular, 0-probability events are often terms when calculating
Equation 1, causing the KLD to be undefined. We therefore com-
puted the KLD between probability distributions P and Q using a
nearest-neighbor divergence estimator that has been shown to
converge to the exact value of KLD with the increase of the sample
size (Wang et al., 2006). To calculate the value using this estima-
tor, we iterate over all of the elements in P. We then find the
distance to their nearest neighbor in P and the distance to their
nearest neighbor in Q. The log of the ratio of these distances is
then summed:

KLD�P,Q� �
d

�P��pi�P log
minj�dist�Qj�Q,Pi��

minj�dist�Pj�P � i � j,Pi��

� log
�Q�

�P� � 1
, (4)

where d is the number of dimensions, �P� signifies the number of
elements in distribution P, minj(dist(Qj � Q, Pi)) is the distance
from element Pi to the nearest element in Q, and minj(dist(Pj �
P |i � j, Pi)) is the distance of element Pi to its nearest neighbor in
distribution P. Euclidean distance was used:

dist�x,y� � ��
i�1

n

�xi � yi�
2

with n the dimensionality of the vectors. Equation 4 indicates
that when the elements of distribution P are well clustered,
their nearest neighbors within P will be closer than their near-
est neighbors in Q. In this case, the ratio of logs will contribute
a positive value. If the nearest-neighbor distance to distribu-
tion P is larger than that of Q, the ratio will contribute a
negative value. This occurs for poorly defined clusters that are
not well isolated and for points near the boundary in the case
of two adjoining distributions. In summary, KLD is a summa-
tion over all elements of the ratio of likelihoods that an ele-
ment from the distribution is from that distribution and not
from outside of it.
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Dimensionality reduction
To compare IsoI values across different feature spaces of arbitrary
dimensionality, we performed a dimensional reduction. For each
cluster C, we found the eight features of 20 – 40 typically used that
gave the highest pairwise 2-D IsoIBG, FC. These features are then
used to compute the final 8-D IsoIBG and 8-D IsoINN. Note that,
for calculating the IsoINN of a particular cluster C, we use FC when
calculating each IsoI(C, X), where X is any other cluster than C.
The automatically chosen features in FC maximize cluster isola-
tion and compactness. Although the selected features typically
differ somewhat for each cluster, this technique allows estimation
of isolation quality using the features best suited for isolating each
individual single unit.

Although computing pairwise 2-D di-
vergence for each cluster comes at the cost
of increased computation time, it allows
for selecting dimensions that maximize
both isolation and compactness. Using one-
dimensional (1-D) divergence to select for
optimal dimensions does not allow selecting
for compactness because 1-D divergence
will only be maximal when the separation
between the two clusters is high. The choice
of 8-D for the final analysis was a conserva-
tive choice after testing assessment at differ-
ent dimensions. In any case, the final 8-D
calculation was not computationally ex-
pensive compared with the pairwise 2-D
comparisons.

Sensitivity of isolation information
measures to isolation errors
To measure the sensitivity of IsoI to clas-
sification error, we assessed various forms
of cluster degradations, starting with high-
quality clusters defined by an expert user
and verified by our inspection. These clus-
ters were compact and had a large separa-
tion from each other, as well as from the
background, resulting in large IsoI values,
ranging from �7 to 14 bits (Fig. 1). Clus-
ter 1 (C1) (red) and C3 (green) have the
highest separation from background
and from their nearest-neighboring clus-
ters. This can be seen in the larger distance
of C1 and C3 from the other clusters and
background spikes in Figure 1b in slices 1,
2, and 4, as well as slice 3 for C1. The other
clusters, C2 (blue), C4 (purple), and C5
(light blue) are well isolated in some slices
but not as well in others, particularly in
slices 3 and 4. Although sometimes only a
single slice is used to determine separa-
tion, separability in more dimensions
does add to cluster quality. As a result, the
IsoI values of C2, C4, and C5 are lower
than those for C1 and C3. Degradations
were tested on various clusters both from
this dataset and others. Degradation ef-
fects (Fig. 2) were assessed on the clusters
from Figure 1 after alterations to C1. Most
of the alterations were performed in a sin-
gle 2-D subspace (Fig. 1b3), which dis-

plays voltages at specific times on two different microwires. This
2-D slice contained the C1 boundary that contributed the most to
isolating it from the background, as evidenced by it contributing
the highest 2-D IsoIBG of any 2-D feature slice. This shows an
advantage of this method, with implications for future develop-
ment of automated systems. By allowing the use of arbitrary fea-
tures, higher isolation quality may be sought by keying in on
peculiarities in waveform shape that are revealed through visual
or automated inspection of the most influential slices. As a sug-
gestion for best practice, we typically used standard features con-
sisting of waveform peak amplitude, energy, principal
components, and voltage level or derivative at different times.

Figure 1. a, Extracellular action potential waveforms (negative up) of five well-defined clusters, C1–C5. Gray waveforms (C0)
are unclustered spikes. The four signals recorded from each wire of the tetrode (T1–T4) are drawn next to each other, separated by
vertical black lines. Waveforms were stored 250 �s before the upward threshold crossing and 1.75 ms afterward. b, Different 2-D
slices of the clusters in feature-space. T1-peak is defined as the peak voltage on wire 1 (see Materials and Methods). T1-V(0.181) is
a user-defined feature defined as the voltage on wire 1 at time 181 �s of the stored waveform. T3-V(0.307) is the voltage on wire
3 at 307 �s. These features were selected by an expert user to optimize waveform isolation, as reflected in the well-separated
clusters. Only the five best clusters found are highlighted here. Voltage is in units of millivolts. c, Top, IsoIBG of the five clusters
shown in b. Bottom, IsoINN of the five clusters.
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In the first degradation, we considered
a common scenario in which features of
two clusters are intermingled. Although a
user would always avoid the extreme case
of near complete intermingling (Fig. 2a),
users commonly define what appears to
be a single cluster in feature space and
subsequently, during close inspection of
the waveforms, find an additional feature
with potential to partially split the cluster
in two. In this scenario, a user would first
“clone” the original cluster boundaries
and then attempt to find new distinguish-
ing features. To simulate this, we dupli-
cated C1 boundaries, splitting the feature
vectors into two C1 clusters shown in pink
and yellow (C1	,C1
 respectively). The
two derived clusters are now each other’s
nearest neighbor. Additionally, each de-
rived cluster now has the other one as part
of its background. As a result, the IsoIBG,
IsoINN values of C1	 and C1
 dropped sig-
nificantly (note that oscillatory behavior
about the exact value, 0 for IsoINN here,
during convergence is a general property
of the nearest-neighbor divergence esti-
mator from the study by Wang et al.,
2006). IsoIBG values for all the other clus-
ters remained unchanged. The IsoINN val-
ues were subject to minor change, because
nearest-neighboring clusters can be
changed by modifying a single cluster. As
a result, C3 and C5 have lower IsoINN val-
ues than the originals.

The next degradation was a less ex-
treme example of intermingling. Here, we
contaminated C1 by creating a new cluster
within its boundaries (Fig. 2b). In this in-
stance, two clusters C1	 and C1
 were
close in feature space but were still fairly
well separated from the background dis-
tribution. As a result, IsoINN is lowered
more significantly than IsoIBG for these
two clusters compared with C1. The deg-
radation again slightly lowered the IsoINN

values of clusters C3 and C5.
Another cause of overlap between clus-

ters occurs when a user has difficulty deter-
mining precise demarcations, typically as a
result of a high density of feature vectors in
the area between two or more clusters. To replicate this situation, we
expanded several of the 2-D boundaries of C1 by randomly reassign-
ing a proportion of the points falling within this expanded boundary
from their original clusters to C1 (Fig. 2c). C1 now encroached into
the territory of the other clusters. This degradation lowered IsoIBG

for cluster C1, because it was now closer to the background distribu-
tion. Other clusters, with some of their points removed, were closer
to the background distribution, resulting in reduced IsoIBG values,
most evident for C2 and C3. In addition, the IsoINN of C1, C2, and
C3 were all significantly lowered, because their nearest-
neighboring clusters became closer. Because the nearest-
neighboring cluster of C3 is C1, its IsoINN value was lowered the
most. Importantly, this demonstrates that our measures are sensitive

to nonlocal changes. Here, IsoIBG and IsoINN both show lower values
for C2 and C3 as well as for C1 because these are clusters who have
“given up” feature vectors to C1. A different problem occurs when
the density of feature vectors around a cluster is low, making it
difficult to determine where to place the border of a cluster. In
this case, the user may exclude feature vectors that should
belong to the cluster. To replicate this, we contracted one of
the 2-D boundaries of C1, excluding feature vectors that lie
outside the new boundary (Fig. 2d). These excluded vectors
were added to the background, resulting in a lower IsoIBG

value. Contraction also produced an insignificant increase in
the IsoINN value of C1 because C1 is now farther from its
nearest-neighboring cluster, C3, as a result of the contraction.

Figure 2. Sensitivity of IsoI measures to various cluster degradations. Left, Degradations are a high level of random intermin-
gling, lower level of intermingling, expansion, and contraction. Scatter plots of the clusters in the same 2-D projections after the
various degradations of C1 are shown in a– d. Voltage is in units of millivolts. Right, IsoI values before (circle) and after (triangle)
degradation. Square in a and b shows IsoI value for the additional new cluster (color coded). Faint gray arrows pointing downward
emphasize where decreases in IsoI values occur. a, Random 50% reassignment produces substantial decrease in IsoI values for the
two derived clusters. Note that oscillatory behavior about the exact value, e.g., 0 for the new IsoINN of C1 here, during convergence
is a general property of the nearest neighbor divergence estimator. b, Approximate bisection of cluster C1 within a 2-D feature slice
also reduces IsoI values, despite the clear border between derived clusters. c, Expansion: C1 is brought closer to C2 and C3, so IsoI
values of C2 and C3 also decrease. C3, nearest neighbor to C1, shows large decrease in IsoINN. C4 and C5 are also slightly degraded.
d, Contraction primarily degrades C1 IsoIBG as a result of poor isolation from points that are now part of background.
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Validation using simultaneous intracellular and
extracellular recordings
We used publicly available simultaneous intracellular and extra-
cellular neuronal recordings from hippocampal area CA1 (see
Materials and Methods) to validate the IsoI measures (Fig. 3). We
also used the same recordings and methods to compare the per-
formance of two previously developed measures, IsoD and LRa-
tio (see Materials and Methods). In each recording, all
extracellular feature vectors belonging to the intracellularly re-
corded neuron were set to belong to the IC cluster. The remain-
ing feature vectors belonged to the background distribution. To
calculate correlation of IsoINN with error rates, a nearest-
neighboring cluster was required for each IC cluster. To estimate
this, we performed k-means clustering on the background distribu-
tion and selected the cluster with smallest IsoINN values as the
nearest-neighboring cluster of IC. For IsoINN, false-positive and
false-negative corruptions were performed using these two clus-
ters (IC and NN).

We correlated each cluster quality measure with false positives
and false negatives using 28 levels of corruption to the IC clusters

(Fig. 3b). Error rates were defined by the
percentage of points added to (false posi-
tives) and subtracted from (false nega-
tives) the IC cluster. As an example of this
procedure on the simultaneous intracel-
lular and extracellular dataset for one cor-
ruption level, Figure 3a shows a cluster
(center) containing 833 spikes, with a
high IsoIBG value of 5.2 bits and high val-
ues of IsoD (250.5) and LRatio (0.00836).
We performed false-negative corruptions
by removing up to 70% of the feature vec-
tors of the cluster (Fig. 3a, left), bringing
the new cluster closer to the background
distribution. As a result, the IsoIBG value
dropped drastically, to 3.8 bits, and the
IsoD and LRatio values decreased to 45.8
and 0.87, respectively. We performed
false-positive corruptions of the original
cluster (Fig. 3a, right), by adding 583 fea-
ture vectors from the background distri-
bution (70% of the original 833 feature
vectors). As a result, the IsoIBG value
dropped to 2.8 bits, and the IsoD and LRa-
tio values worsened, changing to 59.8 and
0.56, respectively. All measures had their
highest quality values at zero corruption
and dropped off sharply with the corrup-
tion, illustrating that all the measures
were able to objectively quantify cluster
quality.

To calculate error rates for the mea-
sures, we performed corruptions on the
four recordings. At baseline, the (IsoIBG,
IsoINN, IsoD, LRatio) values of the IC
clusters from the four recordings had the
following values: (3.6, 3.3, 18.8, 0.20),
(4.2, 2.0, 25.8, 0.05), (3.1, 2.0, 20.7, 0.20),
and (5.2, 4.7, 42.5, 0.04). The clusters
ranged in size from 172 to 833 feature vec-
tors, which allowed us to make significant
reductions in cluster size when perform-
ing false-negative corruptions. For all re-

cordings, the peak IsoIBG (Fig. 3b, left) and IsoINN (Fig. 3b, right)
values occurred when there was no corruption to the IC clusters,
verifying the usefulness of our measures as an objective quantifi-
cation of neuronal isolation quality. Similar results were obtained
for the IsoD and LRatio measures (Fig. 3c).

We defined relative cluster quality values, for each of the clus-
ter quality measures, as the cluster quality value at the given error
rate divided by the uncorrupted IC cluster quality value. We
found that increasing levels of corruption tended to monotoni-
cally decrease the relative quality indicated by IsoIBG and IsoINN.
Similar results were obtained with IsoD and LRatio.

We calculated the Pearson’s correlation between false-positive
and false-negative error rates with the relative cluster quality val-
ues, for each of the measures. The overall correlation levels be-
tween each of the measures and error rates were high and
statistically significant at the p � 0.001 level for all recordings.
The IsoIBG correlation levels with false negatives ranged from
�0.71 to �0.97 and had an average of �0.87. We found that
IsoIBG correlation with false positives had similarly high values,

Figure 3. Correlation of IsoI measures with error rates. a, False positives (right) and false negatives (left) were incrementally
added to the known IC feature distribution, and the corresponding relative IsoI values were calculated. The cluster displayed has
833 feature vectors. b, Correlation of relative IsoIBG and IsoINN values with false-positive and false-negative error rates were found
to be large and significant ( p � 0.001). Peak IsoI value occurs at zero error rate. Error rates were defined by the percentage of
points added to (false positives) and subtracted from (false negatives) the IC cluster. At high error rates, variability of relative IsoI
values increased, but IsoI values remained non-negative. c, Correlation of relative IsoD and LRatio values with false-positive and
false-negative error rates were found to be significant ( p�0.001). Note that LRatio increases with increasing error rate, indicating
a drop in single-unit isolation quality.
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ranging from �0.82 to �0.99, with an average of �0.90. IsoINN

correlation with false negatives ranged from �0.65 to �0.91,
with an average of �0.78, and the IsoINN correlation with false
positives ranged from �0.49 to �0.97, with an average of �0.71.
The strong correlation levels of both IsoI measures with increasing
error rates confirms that IsoI may be used to objectively validate
the quality of single neuronal identification from extracellular
recordings. Similar results were found for both IsoD and LRatio,
which had (minimum, maximum, average) correlations with
false negatives of (0.98,1.0, 0.99) and (0.94,0.99, 0.96) for IsoD
and LRatio, respectively, and (minimum, maximum, average)
correlations with false positives of (0.63, 0.89, 0.77) and (0.80,
0.99, 0.89), respectively. These results indicate the utility of these
measures in quantifying single-unit isolation quality as well.

To determine whether the different measures were sym-
metrically sensitive to both types of errors, we calculated the
skew of the relative values of each of the measures, defined as

�
�rfp � rfn�

3

N
, where rfp and rfn represent the relative value of the

measure at the given false-positive and false-negative corruption
level, respectively, and N is the number of corruption levels (28).
We found that IsoIBG and IsoINN had average skews of �0.0143
and �0.0095, respectively, across the four recordings. These low
skew values suggest nearly symmetric sensitivity to both types of
errors and may be particularly useful where it is not known what
type of error will occur. Although IsoD had a low average skew of
�0.015, LRatio had a high average skew of �49.738.

Comparison of IsoI to other measures
We performed additional comparisons of the IsoI measures with
two published measures of cluster quality, IsoD and LRatio (see
Materials and Methods), on a dataset of 350 clusters from �45
different recordings. In these recordings, the number of clusters
obtained ranged from 2 to 15. Detailed analysis of the compari-
sons is provided below.

The Pearson’s correlation coefficient was computed between
each pair of cluster quality measures, between the measures and
the number of spikes in the cluster, and between the measures
and the number of clusters that were isolated from the tetrode
recording (Table 1). Before computing the correlation coeffi-
cients on IsoD and LRatio, we computed their natural logarithms
first (Schmitzer-Torbert et al., 2005).

There is a high correlation between ln(IsoD) and ln(LRatio),
showing significant redundancy. ln(IsoD) and ln(LRatio) also
have high correlations with the number of spikes in the cluster.
This property of these measures is undesirable because principal
cells in hippocampus, striatum, entorhinal cortex, and other
brain regions have low firing frequencies, whereas interneurons
have high firing rates. Low values of these measures may wrongly
exclude such cells from analysis. IsoIBG is not correlated with
cluster size.

There is a statistically significant but only small correlation
between each of the IsoIBG, IsoD, and LRatio measures with the
number of clusters in the recording, suggesting that these mea-
sure perform well across a wide range of recording qualities. The
correlation between IsoINN and the number of clusters in a re-
cording is not significant, indicating enhanced robustness of this
measure to the different recording conditions.

Importantly, IsoINN is not as strongly correlated with IsoIBG as
LRatio is with IsoD, demonstrating that IsoINN and IsoIBG mea-
sure different aspects of cluster quality. This was of course our
intention when designing these as complementary measures.

Comparison of IsoIBG with IsoD
The standard implementations of IsoD and LRatio operate in the
8-D feature space consisting of the energy of the spike waveform
and first principal component of the energy-normalized wave-
form on each microwire of a tetrode. Because IsoI has no such
constraint, an operator that uses other features to isolate a single-
unit waveform can more accurately evaluate the quality of isola-
tion using IsoI than with the standard implementation of IsoD or
LRatio. The correlation of IsoIBG versus ln(IsoD) is significant
and positive (r � 0.5, p � 0.001, n � 350, two-tailed test), and the
correlation with IsoIBG versus ln(LRatio) is significant and nega-
tive, although outliers are seen (Fig. 4a). We examined clusters
where the measures agreed/differed to see the strengths/weak-
nesses of the measures. In exemplar 2-D slices of feature space,
the examined cluster is shown in red, and its nearest neighbor is
shown in blue. Because IsoD and LRatio are highly correlated
(r � �0.91, p � 0.001, n � 350, two-tailed test), we focus on the
IsoIBG and IsoD comparisons.

The first cluster examined had high ratings in both IsoIBG

(11.99 bits) and IsoD (203.98) (Fig. 4b). This cluster has good
separation from the background distribution using both sets of
features. The next cluster had low ratings in both of these mea-
sures: an IsoIBG of 5.3 bits and IsoD of 2.82 (Fig. 4c). The cluster
is poorly isolated from the background and dispersed in both sets
of features.

The next cluster examined had a low IsoD of 8.64 and a high
IsoIBG of 13.12 (Fig. 4d). The operator selected the boundaries of
this cluster using the voltage at two different times in the action
potential waveform, which allows for good discrimination of this
cluster. These features are not measured by IsoD, and, as a result,
less than optimal features are used in calculating the quality of
this cluster. In addition, this cluster comprises �0.001% of the
spikes in the recording. This makes it difficult for IsoD to give this
cluster a good score, because IsoD is proportional to the cluster
size (see Materials and Methods). IsoIBG does not share these
problems. This case illustrates how relying on IsoD may exclude
valid clusters that require nonstandard parameters for isolation
or exclude low-frequency firing single units from analysis.

The next cluster examined (Fig. 4e) had a relatively low IsoIBG

of 5.28 bits and a relatively high IsoD of 47.37. Although this
cluster is not so well isolated from the background distribution, it
comprises �19% of the spikes in the recording. As a result, the
IsoD score is inflated, because a large distance from the center of
the cluster must be traversed to accumulate as many noise spikes
as are in the cluster (see Materials and Methods). IsoIBG has no
such problem as reflected in the low score of 5.28 bits. This case
again illustrates the problem of using a quality measure that de-
pends on the number of spikes in the cluster.

Table 1. Pearson’s correlations between different measures and the number of
spikes in the cluster and the number of clusters in the recording

IsoIBG IsoINN ln(IsoD) ln(LRatio) Clusters

IsoIBG � f f f 0.28
IsoINN 0.55 � f f �0.11
ln(IsoD) 0.5 0.47 � f 0.16
ln(LRatio) �0.57 �0.46 �0.91 � �0.13
Spikes �0.02 0.21 0.37 �0.26 �

Circles represent diagonal elements of table which all have value of 1.0. Squares represent redundant values that are
symmetrical across the diagonal and were left out. Significant correlations ( p � 0.05, n � 350, two-tailed test) are
in bold.
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Comparison of IsoINN with IsoD
IsoINN measures the separation between nearest-neighboring
clusters, and IsoD measures the separation of clusters from the
background distribution. The correlation between IsoINN and
IsoD is significant and positive (r � 0.47, p � 0.001, n � 350,
two-tailed test), and the correlation between IsoINN and LRatio is
significant and negative (r � �0.46, p � 0.001, n � 350, two-
tailed test), with outliers visible (Fig. 5a). We examined the high-
lighted cases in Figure 5a to see where the measures agree and
disagree. Again, we focus on comparing IsoINN and IsoD.

The two measures agree when a cluster is well separated from
both the background and from its nearest-neighboring cluster
(Fig. 5b). This is shown in Figure 5b, where the cluster has a high
IsoINN of 14.52 bits and a high IsoD of 531.66. The two measures
also agree when a cluster is poorly separated from both the back-
ground and from its nearest-neighboring cluster. This is shown
in Figure 5c, where the cluster has an IsoINN of 5.04 bits and an

IsoD of 3.29. We next examined a cluster with good separation
from the nearest-neighboring cluster, with an IsoINN of 14.47
bits, but poor separation from the background, with an IsoD of
7.73 (Fig. 5d). These measures indicate that the cluster is probably
not a single unit and needs to be reclustered. This demonstrates
that IsoINN provides additional information on the quality of a
good cluster: only when it is already known that the cluster is
isolated from the background distribution should IsoINN be used,
providing a stricter criterion of cluster quality than either IsoD or
IsoIBG alone.

The next cluster examined (Fig. 5e) has poor separation from
the nearest-neighboring cluster, with an IsoINN of 1.34 bits, but
good cluster-background separation, with an IsoD of 53.62. The
former can be seen in the overlap between the red and blue clus-
ters and the latter in the relatively large distance of the red and

Figure 4. Comparison of IsoIBG with ln(IsoD) and ln(LRatio) on all clusters in the 350 cluster
dataset along with several case studies. a, Plot of IsoIBG versus ln(IsoD) and ln(LRatio). Larger,
labeled points represent clusters discussed in Results. These clusters are shown in b– e. In b– e,
the red cluster is the cluster of interest (highlighted point from a), and the blue cluster is its
nearest neighbor. The gray points are the remaining spikes. The left column of b– e shows the
slices of the feature space used by IsoIBG, and the right column shows slices of the feature space
used by IsoD. Voltage is in units of millivolts. b, A well-isolated cluster according to both mea-
sures. c, A poorly isolated cluster according to both measures. d, A well-isolated cluster accord-
ing to IsoIBG and a poorly isolated cluster according to IsoD/LRatio. e, Poorly isolated cluster
according to IsoIBG and a well-isolated cluster according to IsoD/LRatio.

Figure 5. Comparison of IsoINN and ln(IsoD), ln(LRatio) on all clusters in the dataset along
with several case studies. a, Plot of IsoINN versus ln(IsoD) and ln(LRatio). Larger, labeled points
represent clusters discussed in Results. These clusters are shown in b– e. b– e, The red cluster is
the cluster of interest, and the blue is its nearest-neighboring cluster. The gray points are the
remaining unassigned spikes. The left column of b– e shows the slices of the feature space used
by IsoINN, and the right column shows slices of the feature space used by IsoD. Voltage is in units
of millivolts. b, A well-isolated cluster according to both measures. c, A poorly isolated cluster
according to both measures. d, A well-isolated cluster from its nearest-neighbor cluster but
poorly isolated from background. This example illustrates that neither IsoD nor LRatio is sensi-
tive to separation between clusters. e, A cluster with poor separation from its nearest-neighbor
cluster but good cluster-background separation. The overlap between the red and blue clusters
indicates they may need to be merged into a single cluster or discarded.
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blue clusters to the remaining feature vectors. This example dem-
onstrates that a non-unique cluster, C, is only separated from the
background (high IsoD or IsoIBG) but not from its nearest-
neighboring cluster (low IsoINN), NN. This may suggest that C
and NN should be merged into a single, larger cluster, which will
have better isolation and uniqueness. This example illustrates
that IsoD is not sensitive to uniqueness and that IsoINN can help
point out problems of over-splitting waveform feature clusters.

Comparison of isolation quality across
electrode configurations
Although the IsoI measures were designed to work on arbitrary
feature spaces, different laboratories use electrode configurations
that vary in the number of microwires composing each electrode,
and these differences can have a substantial impact on single-unit
isolation quality (Gray et al., 1995). We therefore used a dataset of
31 recording sessions from hippocampal CA1, consisting of 437
single units, to measure how IsoI values change as a function of
the number of electrode microwires used.

Initial clustering was performed by an expert, using features
available from all four microwires of the tetrode. We then used
the feature space derived from all four microwires to compute the
baseline IsoI values. To allow for comparison across these feature
spaces, RelIsoI(N) was defined as the IsoI value computed when
using the best eight features available from N (1 or 2) microwires,
divided by the baseline IsoI value. We performed these calcula-
tions for both IsoIBG and IsoINN. As expected, our calculations
confirm that using only one or two microwires degrades the iso-
lation quality significantly (Table 2). It is noteworthy that the
degradation in quality had a larger impact on IsoINN, which con-
firms that a particular benefit of using multiple microwire elec-
trodes is in reducing the contamination that can often occur
between two or more clusters of action potential waveforms that
are of sufficiently large amplitude to be distinct from the back-
ground activity.

Comparison of isolation quality across brain areas
Firing properties, including rates and action potential features, as
well as the density of neurons, can differ significantly across dif-
ferent brain areas. These differences can impact the ability of
experimenters to accurately identify single units from waveform
feature distributions. We therefore tested IsoI sensitivity to dif-
ferences in the extracellular waveform characteristics of different
brain areas, using in vivo recording datasets from awake rats from
multiple areas, including hippocampal CA1, CA3, and dentate
gyrus (Table 3, using data from Fenton et al., 2008; Park et al.,
2011). The average IsoI values had similar ranges from �6 to 11
bits, across regions. IsoIBG values ranged from 3.7 to 14.6,
whereas IsoINN values had a larger range, from �0.3 to 16.7 bits.

We examined a recording of 56,005 spikes from CA3 in detail
(Fig. 6a). Approximately 21% of the spikes recorded were con-
sidered noise (Fig. 6a, left, gray points). The remaining spikes
formed six clusters, corresponding to putative single cells. These
clusters were characterized as follows (color, number of spikes,
IsoIBG, IsoINN): red, (2358, 7.7, 6.9); blue, (2095, 5.4, 3.0); green,

(33,213, 4.8, 4.7); purple, (1809, 7.1, 4.4); orange, (3616, 4.3, 3.0);
maroon, (1274, 4.5, 4.7). Cluster 1 (red) showed the best separa-
tion from both background (IsoIBG of 7.7 bits) and its nearest-
neighboring cluster (IsoINN of 6.9 bits). Cluster 4 (purple) also
showed strong background separation (IsoIBG of 7.1 bits) and
separation to its nearest-neighboring cluster (IsoINN of 4.4 bits).
Although cluster 6 (maroon) appears to overlap cluster 3 (green),
it has both substantial background separation (IsoIBG of 4.5 bits)
and nearest-neighbor separation (IsoINN of 4.7 bits), which is
attributable to good separation in other planes of feature space.
The other clusters had fairly high IsoIBG values, all larger than 4 bits,
whereas their IsoINN were usually only slightly less. Although firing
activity of CA3 neurons can be fairly sparse, these substantial IsoI
values demonstrate that, with a sufficiently large dataset, it is possible
to accurately identify single units from this brain region.

We evaluated IsoI from recordings made in mPFC and hip-
pocampal CA1 from rats under urethane anesthesia (Table 4;
unpublished observation). Both of these areas showed similar
average IsoIBG values of 7.6 
 0.3 and 7.7 
 0.3 for CA1 and
mPFC, respectively. The IsoINN values were also similar, with
averages of 10.4 
 0.4 for CA1 and with a slightly higher value of
11.3 
 0.6 for mPFC. Minimum and maximum values were sim-
ilar to those from the awake, freely moving rats.

Next, we examined a recording of 283,469 spikes recorded
from mPFC in detail (Fig. 6b). Approximately 95% of the spikes
recorded were considered noise as a result of low-amplitude
spikes on several channels (Fig. 6b, left, gray points). The remain-
ing �12,000 spikes were isolated into six clusters. These clusters
were characterized as follows (color, number of spikes, IsoIBG,
IsoINN): red, (1449, 9.0, 15.2); blue, (504, 10.2, 14.5); green, (617,
9.3, 14.3); purple, (4370, 6.0, 9.5); orange, (3326, 7.4, 12.9); ma-
roon, (1872, 5.6, 8.1). All of the clusters showed high separation

Table 2. Average � SEM of the RelIsoI values calculated using one or two
microwires

RelIsoI(1)BG 0.698 
 0.183
RelIsoI(2)BG 0.550 
 0.020
RelIsoI(1)NN 0.165 
 0.014
RelIsoI(2)NN 0.430 
 0.027

Table 3. IsoI values from different hippocampal regions, recorded from awake,
freely moving rats

IsoIBG IsoINN

Park et al. (2011)
CA1

Ave 6.76 8.67
SEM 0.19 0.31
Min 4.11 4.12
Max 11.86 16.46
n 167 167

CA3
Ave 7.14 8.39
SEM 0.21 0.39
Min 4.48 4.19
Max 10.55 15.8
n 79 79

DG
Ave 7.04 8.97
SEM 0.14 0.37
Min 4.01 4.07
Max 9.45 16.71
n 104 104

Fenton et al. (2008)
CA1

Ave 7.90 7.16
SEM 0.11 0.19
Min 3.66 0.34
Max 14.63 16.03
n 268 268

Ave, Min, Max, and n denote average, minimum, maximum, and number of recordings used, respectively. DG
indicates dentate gyrus. Note that the Park et al. (2011) data displayed are obtained only from place cells.
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from both background and their nearest-neighboring clusters.
Although each of the six clusters had high IsoIBG values, ranging
from 5.6 to 10.2 bits, each cluster had a higher IsoINN value,
ranging from 8.1 to 15.2 bits. The higher IsoINN values found in
these recordings were partially attributable to the higher level of
noise present in the recording (95% of the spikes) compared with a
hippocampal recording. However, because the IsoIBG values were
typically in the same range as those from hippocampal recordings,
the single-unit isolation from background should be considered suf-
ficiently high. The fact that this is so demonstrates that the IsoI mea-
sures are useful for quantifying single-unit isolation in hippocampal
as well as neocortical structures.

The minimum IsoI values across the datasets described was
typically near �3 bits. We have adopted a best practice of reject-
ing clusters in which the IsoI values are �4 bits. The similarity of
IsoI values from these different brain regions demonstrates the
utility of the methods in quantifying single-unit isolation quality
in different recording conditions.

Comparison of computation time
We used a dataset of �400 single units from 31 different record-
ings from hippocampal CA1 to estimate computational costs for

the different isolation quality measures.
For IsoI calculations, we started with 12
feature vectors from the action potential
energy, peak, and first principal compo-
nent on each of the four microwires. The
feature selection stage of IsoI, which iter-

ates over all
n�n � 1�

2
pairs of 2-D slices,

for each cluster, to find the best features
for the final 8-D IsoI calculation, was the
largest bottleneck of the IsoI calculation.
This stage had a computational cost rang-
ing from 1.24 to 35.37 s, with an average 

SEM of 7.28 
 0.28 s (n � 440) per clus-
ter. IsoIBG had the next largest computa-
tional cost, ranging from 0.25 to 22.5 s and
averaging 2.84 
 0.13 s per cluster. IsoINN

had a slightly lower computational cost,
ranging from 0.01 to 27.85 s and averaging
1.43 
 0.13 s per cluster. This lower cost
for IsoINN was attributable to the smaller
number of comparisons between feature
vectors belonging to two distinct clusters,
which are less than the large number of
comparisons needed to compare feature

vectors belonging to a cluster and its complement, as is done for
IsoIBG.

IsoD and LRatio both operate in an 8-D space, consisting of
energy and the first principal component of the action potential
waveform on each tetrode wire and do not use feature selection.
Their lower computational costs are partly a result of these dif-
ferences. IsoD and LRatio had the following values for minimum
to maximum and average 
 SEM (in ms/cluster): (5.6 – 46.4,
18.3 
 0.5) and (10.0 – 82.2, 32.8 
 0.8), respectively. Although
the IsoI measures had a higher computational cost, judicious use
of KD trees by caching nearest-neighbor values may help reduce
the cost of the calculations. In addition, parallelizing the 2-D
search across multiple threads would allow for additional time
savings. Nonetheless, use of IsoI amounts to spending approxi-
mately a minute extra to compute estimates of single-unit isola-
tion quality. This is an insignificantly short amount of time with
enormous value, given that it can take an expert hours to select
the waveform boundaries.

Discussion
We have developed and validated an information-theoretic mea-
sure for determining single-unit isolation quality in a standard-
ized way that generalizes across brain regions and electrode
configurations. The method, IsoI, calculates a symmetrized KLD
between two sets of waveform-feature probability distribu-
tions in two complementary ways: between a cluster and the
background (IsoIBG) and between a cluster and the nearest-
neighboring cluster (IsoINN). These two measures, respectively,
quantify the isolation and uniqueness of a cluster. We selected the
features maximizing 2-D IsoIBG on a per-cluster basis to calculate
a final IsoI. This approach permitted comparison of IsoI values
across different feature spaces. This is important for comparing
quality across different users, who will choose different features
given the same dataset, and also for comparisons across labora-
tories. It is also important, as demonstrated, that the measures
permit comparisons of single-unit isolation quality across re-
cordings from different brain regions. In our datasets, single-unit
isolation quality did not differ for recordings from the different

Figure 6. Comparison of single-unit isolation quality in CA3 (a) and mPFC (b). Left, Scatter plots of feature vectors from six
different clusters. Features displayed are microwire voltages normalized to be between 0 and 1. Gray points represent feature
vectors in the noise distribution. Note that T1-V(0.407) is a user-defined feature defined as the voltage on wire 1 at time 407 �s of
the stored waveform. Middle and right panels display bar plots of the IsoI values, color coded to match the clusters in the scatter
plots.

Table 4. IsoI values from recordings from rats under urethane anesthesia

IsoIBG IsoINN

CA1
Ave 7.64 10.41
SEM 0.26 0.40
Min 4.34 4.06
Max 13.61 20.69
n 67 67

mPFC
Ave 7.69 11.32
SEM 0.27 0.59
Min 4.44 4.2
Max 15.18 25.05
n 58 58

Ave, Min, Max, and n denote average, minimum, maximum, and number of recordings used, respectively.
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hippocampal subfields, nor did isolation quality differ if record-
ings were made from mPFC or under anesthesia. This does not
imply that it is just as easy to isolate single units in each of these
areas and conditions, but rather that similar isolation quality
standards were applied to the different datasets by the manual
operators. Indeed, we have observed a reduction of isolation
quality that was captured by a significant decrease of the IsoI
measures in conditions when a larger proportion of the record-
able cells were actively discharging (Fenton et al., 2008; Park et al.,
2011). The IsoI measures were also lower for recordings that only
used waveform information from one or two electrodes rather
than from all four electrodes of a tetrode, which simply quantified
the fact that multi-wire electrode configurations provide more
information and power for single-unit isolation. There is sub-
stantial merit in the use of a single-unit isolation metric that has
general applicability (Hill et al., 2011), and we suggest that the
IsoI measures described here are well suited to quantify the qual-
ity of single-unit isolation, regardless of where the data were re-
corded from and regardless of how the units were recorded and
isolated.

The isolation measures were applied to a database of clusters,
and the values matched expert judgments of isolation quality. We
simulated common clustering errors and demonstrated that IsoI
reasonably quantified the degree of degradation whether changes
were made locally (only a single cluster perturbed) or globally.

To objectively validate our IsoI measures, we used publicly
available, simultaneous intracellular and extracellular neuronal
recordings to demonstrate that reductions in both of our IsoI
measures correlated strongly with false-positive and false-negative
error rates. The strong correlation levels indicate that our IsoI mea-
sures may be used to objectively validate the quality of single neuro-
nal identification from extracellular recordings.

Our new measures generally correlated well with older
measures (IsoD and LRatio) but showed additional significant
advantages. One advantage is that IsoI is intuitive via its stan-
dard information theoretic scaling, providing a consistent in-
terpretation even when varying features are used for isolation.
Another advantage is insensitivity to cell firing rate, particu-
larly important when both fast-firing interneurons and
slower-firing principal cells are recorded. An additional advan-
tage occurs with “over-splitting,” a common problem in single-
unit isolation. Over-splitting occurs when waveforms from a
single-unit are inaccurately split into two or more clusters. This
occurs, for example, when higher-amplitude spikes precede low-
amplitude spikes in a complex-spike burst (Quirk and Wilson,
1999). IsoINN directly detects over-splitting by identifying clus-
ters that are excessively entangled with their nearest neighbor.
Here, as in all cases, IsoIBG remains a necessary complement, because
IsoINN is only useful to quantify uniqueness once minimal isolation
quality has been established with IsoIBG. IsoINN can of course only be
used when there are at least two single units to compare.

Certifying students
Isolating single units from multiple extracellular electrodes is a
time sink for many neuroscience laboratories (Buzsáki, 2004). It
can take �2– 4 h for an expert to manually cluster a 10 min
ensemble recording. IsoI can speed up this process by identifying
particular clusters that are not well defined. Such clusters can
then be eliminated from consideration or examined using alter-
native feature sets. Because IsoI is agnostic to feature choice, it
can be used as an aid in the choice of the most discriminative
features that end up producing the best clusters. Spike clustering
is even more frustrating for the student, who must also wonder

when to stop refining clusters. Using the IsoI measures, the nov-
ice user can make several different clustering attempts and iden-
tify the best outcome. The measures also provide a laboratory
with a criterion to use both while training new researchers in this
skill and subsequently certifying the student to perform these
assessments independently.

Certifying projects
Manual spike clustering includes use of subjective judgments of
cluster quality: different clusters look better or worse to different
researchers depending on their levels of expertise (Wood et al.,
2004). As a result, incorrect conclusions may be drawn when
clustering quality is inconsistent or lower than required for a
particular investigation (Harris et al., 2000). For example, accu-
rate characterization of the milliseconds scale temporal interac-
tions among two or more neurons may require greater isolation
quality than estimating the stability of the receptive fields (Quirk
and Wilson, 1999). A standardized measure will permit data
quality to be assessed during paper review and after publication.
The generality of the IsoI measures, allowing comparison across
different choices of feature sets, is a key advantage in its use and
potential adaptation by neurophysiologists using different elec-
trode designs and amplifier settings, and looking at different spe-
cies and different brain location, factors that require the use of
different features to provide optimal discrimination.

Usefulness for long-term recordings
Until now, widespread long-term recording on the scale of days
and months has not been practical because of a variety of techni-
cal difficulties (Emondi et al., 2004). IsoI can provide a robust
method for investigating the consequences of these problems and
for determining recording periods that are stable enough for de-
tailed analysis. In this application, the user would first cluster a
minimal n-minute period of the recording, defining cluster
boundaries. The duration of this period would then be incremen-
tally augmented and the IsoI measures applied with these same
cluster boundaries. With duration increase, the larger set of
waveforms will blur the clusters, resulting in lower values of the
IsoI measures. With experience, a threshold can be set that de-
fines a distinction between “blurring” and cluster degradation,
allowing identification of a time after which we can no longer be
confident that the same units are being recorded. At this point,
the user will need to recluster and find new cluster boundaries.
This incremental “chunk-and-cluster” procedure will allow a
quantified interpretation of whether it is reasonable to accept that
individual units have been continuously isolated for periods of
minutes or possibly hours (days or weeks seem unlikely with
current technologies). Note that there will be nothing in this
determination to distinguish whether unit appearance has changed
or whether new units have been recorded.

Automation
The IsoI measures represent an important step toward spike-
sorting automation, which has been investigated previously by
multiple groups (Lewicki, 1998; Wheeler, 1999; Shoham et al.,
2003; Quiroga et al., 2004). IsoI automates quality control, allow-
ing methods to be developed that use IsoI as a fitness function in
machine learning optimization algorithms. IsoI can also be used
to determine whether and when the output of an algorithm ap-
proaches or exceeds expert efforts. Additional uses of IsoI include
using the measures in a real-time system that assigns spikes and
periodically prompts the user to adjust cluster boundaries (or
recluster) when IsoI values fall below a threshold. Use of IsoI in
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such an automated manner would require optimizations, such as
caching of values in KD trees and a single calculation of optimal
dimensions. Once the KD trees and best dimensions are found,
nearest neighbors can be found in logarithmic time, proportional
to the number of elements in the KD tree. Because a nearest-
neighbor lookup will be required for each element in a cluster, the
runtime will also scale in proportion to cluster size. The complex-
ity of iterative optimization algorithms would also be propor-
tional to the number of iterations run. Additional development
of partial or full automation methods will be a great time savings
for many laboratories and also allow for inter-laboratory ex-
change of data, reducing error and bias.

Importance for neuroscience
Improved understanding of physiological and pathophysiologi-
cal brain states will require long-term recordings that can deter-
mine how individual neurons perform computations over time
and across different experimental conditions (Thompson and
Best, 1990; Tolias et al., 2007; Dickey et al., 2009). Spike-sorting
methods, already widely used for cortical recordings, will find
increasing use in determining ensemble activity patterns in sub-
cortical areas as well (Schmitzer-Torbert and Redish, 2004; Bry-
ant et al., 2009). Furthermore, usage can be expected to expand
beyond the classical assessments of sensory and place-cell ensembles
and begin to look at the pathophysiology of ensemble discoordina-
tion and hypercoordination seen in the dynamical brain disorders:
epilepsy, Parkinson’s disease, and schizophrenia (Olypher et al.,
2006; Lytton, 2008).
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