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Motor learning changes the activity of cortical motor and subcortical areas of the brain, but does learning affect sensory systems as well?
We examined in humans the effects of motor learning using fMRI measures of functional connectivity under resting conditions and found
persistent changes in networks involving both motor and somatosensory areas of the brain. We developed a technique that allows us to
distinguish changes in functional connectivity that can be attributed to motor learning from those that are related to perceptual changes
that occur in conjunction with learning. Using this technique, we identified a new network in motor learning involving second somato-
sensory cortex, ventral premotor cortex, and supplementary motor cortex whose activation is specifically related to perceptual changes
that occur in conjunction with motor learning. We also found changes in a network comprising cerebellar cortex, primary motor cortex,
and dorsal premotor cortex that were linked to the motor aspects of learning. In each network, we observed highly reliable linear
relationships between neuroplastic changes and behavioral measures of either motor learning or perceptual function. Motor learning
thus results in functionally specific changes to distinct resting-state networks in the brain.

Introduction
Neural plasticity at a systems level is reflected in the ability of the
brain to alter its functional organization as a result of experience.
In work on motor learning, studies of plasticity have primarily
focused on motor function and motor areas of the brain. The
extent to which motor learning affects sensory systems has re-
ceived less attention. Recent behavioral work has shown that mo-
tor learning results in systematic perceptual changes to both the
sensed position of the limb (Haith et al., 2008; Cressman and
Henriques, 2009; Ostry et al., 2010) and perceptual acuity (Wong
et al., 2011). These changes appear to play a functional role in the
learning process in that, after learning, movements follow trajec-
tories that are aligned with shifted perceptual boundaries. The
effects of learning on perceptual function are not limited to limb
movement. In previous work, it has been shown that changes in
the perception of speech sounds accompany speech motor learn-
ing (Nasir and Ostry, 2009; Shiller et al., 2009).

Previous studies have reported changes in activation in sen-
sory areas in conjunction with motor learning (Lotze et al., 2003;
Pleger et al., 2003; Hlustík et al., 2004; Floyer-Lea and Matthews,
2005). These studies as a group share a problem in interpretation.
There is a confound such that differences in activation that are
observed after learning may simply reflect changes in motor per-

formance between pre-learning and post-learning measures.
Here we eliminate this problem by using resting-state functional
magnetic resonance imaging (fMRI) to assess changes in the
functional connectivity (FC) of brain areas after motor learning.
Scanning during resting-state conditions enables us to rule out
the possibility that differences in activation that are observed
after learning are attributable to differences in how the task is
performed in pre-learning versus post-learning scans.

One previous study has reported changes in resting-state FC
in association with motor learning (Albert et al., 2009). Effects are
observed in a frontoparietal network and a cerebellar network.
The extent to which these changes are related to behavioral indi-
ces of learning is unknown, as is whether the changes reflect
adaptation in sensory or motor systems or the two in combina-
tion. Here we introduce a technique for incorporating behavioral
measures into resting-state connectivity analyses. The method
allows us to identify networks whose connectivity changes with
learning and specifically to dissociate changes in connectivity that
are related to motor learning from those related to perceptual
changes that occur in conjunction with learning. The power of
this technique lies in its ability to distinguish changes in neural
function that are directly related to behavioral measures in both
motor and sensory domains.

We find that changes in brain networks that occur in combi-
nation with motor learning can be partitioned into those that are
primarily motor in nature and those that reflect the perceptual
changes that arise during motor learning. The sensory networks
that are strengthened in conjunction with learning are the same
as those involved in somatosensory perceptual learning and
decision-making (Romo et al., 2002; de Lafuente and Romo,
2006). Thus, the process of motor learning appears to engage the
perceptual learning network.
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Materials and Methods
We studied learning by having subjects reach
straight ahead to a single visual target while a
robot applied forces to the arm in a lateral di-
rection in proportion to movement velocity.
Vision of the arm was blocked throughout the
training procedure. Measures of BOLD activa-
tion under resting-state conditions were ob-
tained �1 h after training trials in the absence
of load and again on the following day �1 h
after force-field learning. On each day, sub-
ject’s perception of limb position was assessed
using an adaptive staircase technique (Taylor
and Creelman, 1967).

Subjects. Thirteen right-handed volunteers
of either sex between the ages of 21 and 44 years
participated in this study. The McGill Univer-
sity Research Ethics Board approved all exper-
imental procedures.

Experimental setup. A 2 degree of freedom
(DOF) planar robotic arm (InMotion2; In-
teractive Motion Technologies) was used for
psychophysical parts of study. Subjects were
seated in front of the robot and held the handle
with their right hand. They performed reach-
ing movements in a horizontal plane. The start
position, target, and a cursor that repre-
sented the position of the subject’s hand were
all projected on a semi-silvered mirror that
was placed horizontally just above the subject’s
arm. The visual feedback appeared in the same
plane as the arm. Two white circles, 20 mm in
diameter, represented the start and target posi-
tions; a 12 mm yellow circle indicated the sub-
ject’s hand position. Subjects were not able to see their hand or arm, and
all experiments were done under conditions of low ambient light. The
seat height was adjusted for each subject individually, to give an 80°
abduction angle at the shoulder. The position of the robot handle was
recorded by means of optical encoders at the robot joints (Gurley Preci-
sion Instruments).

Experimental task. Subjects participated in three sessions on three sep-
arate days. The first day (day 0) familiarized subjects with the psycho-
physical procedure. In this session, subjects completed three blocks of
trials. In the first block, they were trained to make straight reaching
movements to the same target location that was used on subsequent days
for the experimental manipulation. In the second and third blocks, sub-
jects practiced the perceptual testing procedure, in which the subject’s
perception of the boundary between left and right was estimated.

The experimental manipulation was performed in the second and
third sessions (experimental days 1 and 2), which took place at the same
time on consecutive days. On each day, the session began with a series of
reaching movements to the visual target. Subjects then moved to the
Montreal Neurological Institute (MNI) imaging facility. The scanning
phase took approximately one hour. During the resting state scans sub-
jects were instructed to rest quietly with their eyes closed and to stay
awake. Subjects then returned to the laboratory and completed a percep-
tual test. On the last day of study, the perceptual test was followed by a
final block of reaching movements (Fig. 1 A).

Reaching movements. Subjects made straight-ahead reaching move-
ments to a single visual target that was 20 cm from the start point in the
midsagittal plane. The desired maximum velocity was 0.5 � 0.04 m/s.
Visual feedback of movement speed was provided as soon as the subject’s
hand entered the target zone. After the feedback, the robot returned the
subject’s hand to the start position.

The familiarization session (day 0) started with 50 movements under
null field conditions. On day 1 of the actual experiment, subjects com-
pleted 200 reaching movements under null field conditions. On day 2,
subjects made 200 reaching movements in a counterclockwise force field

(force field A) before they went for the resting-state scan. When subjects
returned from the day 2 scan (and after perceptual testing), they completed a
final block of 100 reaching movements in a clockwise force field (force field
B). The clockwise force field was applied according to Equation 1:

� fx

fy
� � D� 0 18

� 18 0 �� vx

vy
� . (1)

In this equation, x and y are lateral and sagittal directions, fx and fy are the
commanded force to the robot, and vx and vy are hand velocity in Carte-
sian coordinates. D defines the direction of force field. For a clockwise
field, D was set to 1; in the counterclockwise condition, D was �1.

Perceptual judgments. Subject’s perception of the boundary between
left and right was estimated using the PEST procedure (parameter esti-
mation by sequential testing), as described previously by Ostry et al.
(2010). In the current study, subjects were asked to hold their hand at the
start position as indicated by a yellow cursor (the subjects’ arm was
blocked from view). After a semi-random wait time of 500 � 500 ms, the
robot was programmed to move the subjects’ hand outward toward the
target following a fork-shaped pattern (Fig. 1 B) under position servo
control. Subjects were instructed not to resist the action of the robot. The
programmed sequence was as follows. As soon as the hand had been
moved 5 mm, both the target and the yellow circle that indicated hand
position disappeared. At 15 mm from the start, the robot gradually
shifted the hand laterally either to the left or the right over a period of 300
ms by an amount that was updated on a trial-by-trial basis. The limb was
maintained at this lateral position for the remainder of the outward
movement. Thus, at the end of each movement, the subjects’ hand was
either to the left or the right of the actual target position. When robot
reached its final position, subjects were asked to indicate whether or not
the hand had been moved to the right. On each trial, the magnitude of the
lateral deviation of the hand was modified in an adaptive manner (Taylor
and Creelman, 1967), until an estimate of the perceived boundary be-
tween left and right was obtained. On each PEST run, which typically
involved 8 –16 movements, a single estimate of the perceptual boundary

Figure 1. A, Sequence of experimental procedures showing evolution of PD during training averaged across subjects. B,
Representative hand paths during perceptual testing starting from the left (left panel) and right (right panel). The color code gives
the trial number in the PEST sequence. C, Motor learning results in changes to the sensed position of the limb. The figure shows the
mean � SEM perceptual boundary under baseline conditions and after force-field learning (After FF). D, Subjects who show
greater motor learning (MI) have greater shifts in the perceptual boundary. The solid line gives the best linear fit.
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was obtained. On successive PEST runs, the initial displacement direc-
tion alternated between left and right. The lateral displacement on the
first movement of each run was randomly selected from a uniform dis-
tribution with values ranging from 20 to 30 mm (in both directions). All
of our subjects were easily able to correctly discriminate the direction of
the first arm deflection. On the next trial, the deflection was reduced by
10 mm, and this was repeated on successive trials until the subject re-
ported a change in the direction of lateral displacement. At this point, we
reduced the step size by half, and the next displacement was in the oppo-
site direction. The algorithm terminated whenever the step size for the
upcoming movement fell below 1 mm.

Data analysis. Hand position and the force applied by the subject to the
robot handle were both sampled at 400 Hz. The recorded signals were
low-pass filtered at 40 Hz using a zero-phase-lag Butterworth filter. Po-
sition signals were numerically differentiated to produce velocities. The
start and end of each trial were defined at the time at which hand tangen-
tial velocity went above or fell below 5% of peak velocity. The resulting
time series was resampled to have the same number of data points in each
trial. For analysis purposes, we calculated the maximum perpendicular
deviation of the hand (PD) from a straight line connecting movement
start and end positions (Malfait et al., 2002). In this way, we obtained
quantitative estimates of movement straightness.

Each block of perceptual tests had six PEST runs, three starting from
the right and three from the left. We obtained an estimate of the percep-
tual boundary between right and left for each subject and each experi-
mental condition separately by fitting a logistic function to that subject’s
entire set of lateral deviations and associated binary (yes/no) responses.
The 50% point of the psychometric function was taken as the perceptual
boundary. A perceptual index (PI) was defined as the change in the
perceptual boundary normalized by the mean absolute value of the per-
ceptual boundaries on day 1 and day 2.

We quantified motor learning �90 min after learning force field A by
measuring the extent to which this previous experience interfered with
learning of force field B, which produced force in the opposite direction;
greater interference indicated greater retention of force field A. For each
subject, we calculated PD averaged over the first three trials in force field
A and over the first three trials in force field B, with both measures taken
relative to each subject’s average PD over the last 50 null field trials
(�PDA and �PDB, respectively). We normalized for differences between
subjects by dividing �PDB by �PDA on a per-subject basis. The resulting
ratio, or motor learning index (MI), is given in Equation 2. MI scores
�1.0 indicate interference caused by force field A learning on initial
performance in force field B. The greater the value of MI, the greater the
learning and also retention of force field A:

MI �
�PDB

�PDA
. (2)

fMRI acquisition. All data were acquired using a 1.5 tesla Siemens
Sonata MR scanner at the MNI. The whole-brain functional data were
acquired using a T2*-weighted EPI sequence (eight head-coil channels;
resolution, 4 mm isotropic; 32 slices; 64 � 64 matrix; TE, 50 ms; TR, 3000
ms; flip angle, 90°; generalized autocalibrating partially parallel acquisi-
tions with an acceleration factor of 2). The functional images were super-
imposed on a T1-weighted anatomical image (1 mm slice thickness;
256 � 256 matrix; TE, 9.2 ms; TR, 27 ms; flip angle, 30°). A T2-weighted
structural image, aligned with the EPI images (4 mm slice thickness;
256 � 256 matrix; 32 slices; TE, 83 ms; TR, 5000 ms; flip angle, 180°), was
also acquired to enhance the registration transformation from the EPI to
T1-weighted scan. Each session began with two 12-min resting-state
fMRI scans, separated by an 18-min T2-weighted structural scan and a
T1-weighted high-resolution anatomical scan. A final 7-min scan in-
volved arm movement in a block design.

Image preprocessing. Data processing was performed using FSL
(FMRIB Software Library) software packages [www.fmrib.ox.ac.uk,
FMRIB (Functional MRI of the Brain), Oxford, UK; FSL version 4.1
(Smith et al., 2004; Woolrich et al., 2009)]. Image preprocessing con-
sisted of the following: (1) the removal of the first two volumes in each
scan series (volumes acquired before equilibrium magnetization was

reached), (2) slice time correction (using Fourier-space time-series phase
shifting), (3) non-brain removal using Brain Extraction Tool (Smith et
al., 2004), (4) motion correction (using a six-parameter affine transfor-
mation implemented in FLIRT (FMRIB Linear Image Registration Tool)
(Smith et al., 2004), (5) global intensity normalization (because there
may be global intensity differences between BOLD runs, multiplicative
differences can be factored out by scaling each run to a global mean), (6)
spatial smoothing (Gaussian kernel of FWHM, 6 mm), and (7) temporal
high-pass filtering (Gaussian-weighted least-squares straight-line fitting
with � � 100.0 s).

To achieve the transformation between the low-resolution functional
data and standard space (MNI 152: average T1 brain image constructed
from 152 normal subjects), we performed two transformations. The first
was from the T2*-weighted image to the T1-weighted structural image
(using a 6 DOF transformation), and the second was from T1-weighted
structural image to the average standard space (using a 12 DOF linear
affine transformation; voxel size, 2 � 2 � 2 mm).

It has been shown that removing physiological noise (cardiac- and
respiratory-related signals) substantially improves the results of the FC
analysis at rest (Krüger and Glover, 2001). For physiological noise re-
moval, we used the method reported previously (Shehzad et al., 2009).
This method uses average signals taken over sections of white matter
(WM) and CSF, plus the global signal as nuisance regressors. To extract
the WM and CSF time series, we segmented each individual’s high-
resolution structural T1 image, using an automatic segmentation pro-
gram implemented in FSL (Smith et al., 2004). The resulting segmented
WM and CSF images were then thresholded to ensure 80% tissue type
probability. Each thresholded mask was then applied to that individual’s
time series, and the mean time series was calculated by averaging the time
series from all voxels within the mask. The global signal accounts for
several potential sources of physiological noise assuming that fMRI ex-
periments are concerned with local changes in neuronal activity and that
global signals represent uninteresting sources of noise (Desjardins et al.,
2001). The global signal was calculated by averaging the time series over
all voxels in the brain. In total, nine nuisance regressors were used: WM,
CSF, global signal, and six motion parameters (x, y, and z translations and
rotations obtained from the motion-correction step in preprocessing).
For each individual, a separate multiple regression analysis was per-
formed on the time series of nuisance signals using the FEAT (FMRIB
Expert Analysis Tool) toolbox (Beckmann et al., 2003). In this way, the
nuisance signals are modeled and the residual image represents the cor-
rected signal. We further applied temporal bandpass filtering (Butter-
worth filter with zero-phase lag) to the resulting residual image to retain
frequencies in the 0.009 – 0.08 Hz band because, in resting-state fMRI, we
expect a neuronal activity-related signal within this range (Fox et al.,
2005; Fox and Raichle, 2007).

Movement imaging analysis. After preprocessing (except for physiolog-
ical noise removal, which is specific to the resting-state functional data),
the regressor for arm movement versus baseline was modeled with a
boxcar function, and another regressor was added to represent the tem-
poral derivative of the stimulation timing. The regressors were then con-
volved with a double-gamma hemodynamic response function (HRF).
For each participant, a first-level GLM analysis was performed using
FEAT, which is part of FSL. Then the Z statistic images were input to a
group-level GLM. The group-level analysis used the FEAT mixed-effects
model with a stringent cluster thresholding (Z � 3.5, corrected, using
Gaussian random field theory, cluster significance threshold of p � 0.01).
Threshold activation maps were then overlaid on the MNI standard im-
age to define anatomical locations of activations by using the Harvard–
Oxford cortical and subcortical and Juelich histological atlases.

Region of interest selection. We selected seven regions of interest (ROIs)
in areas reported previously to have significant changes in activation
attributable to motor learning. These regions include contralateral pri-
mary motor cortex (M1) (Grafton et al., 1992; Steele and Penhune,
2010), dorsal premotor cortex (PMd) (Shadmehr and Holcomb, 1997),
supplementary motor area (SMA) (Padoa-Schioppa et al., 2004), ventral
premotor cortex (PMv) (Mitz et al., 1991), posterior parietal cortex BA7
(PPC) (Shadmehr and Holcomb, 1997), basal ganglia, caudate nucleus
(BG) (Doyon et al., 2009), and ipsilateral cerebellar cortex (adjacent to
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posterior–superior fissure) (Imamizu et al., 2000; Pasalar et al., 2006).
Because we also wanted to assess sensory plasticity in association with motor
learning (Eickhoff et al., 2005), we added two additional ROIs that are
known to play a significant role in perceptual learning: primary somatosen-
sory cortex (SI; BA1/2) (Pleger et al., 2003) and second somatosensory cortex
(SII) within the parietal operculum (Romo et al., 2002; Pleger et al., 2003).
Each of these areas was defined based on the Juelich histological (cyto-
architectonic and myelo-architectonic) atlas (Eickhoff et al., 2005). The cau-
date nucleus and cerebellar lobules were defined using the Harvard–Oxford
subcortical structural atlas (Desikan et al., 2006) and probabilistic cerebellar
atlas (Diedrichsen et al., 2009), respectively.

An arm movement task was used as a localizer to identify seed coordi-
nates for connectivity analyses. Specific coordinates in each of the ROIs
were selected on the basis of activation peaks obtained from a block-
design analysis of arm movements, which were recorded at the end of the
scanning session. The design involved alternate blocks of movement and
rest (six 36-s blocks of each), cued with a color-coded blinking visual
stimulus at the frequency of 1⁄3 Hz. The movement blocks involved slow
cyclic movements of the right arm that were �15 cm in amplitude in an
outward direction away from the body in the sagittal plane. The subjects
practiced this task outside the scanner to ensure consistency of move-
ment across subjects. The direction of movement was similar to that
using the robotic device, although at a lower speed was used to minimize
movement artifact in the scanner.

The preprocessing of the block-design data followed the same steps as
the resting-state data, except that physiological noise was not removed.
In this way, we made sure that the selected seed voxel in each ROI corre-
sponded somatotopically to areas activated by subjects’ arm movements.
The MNI coordinates of seed voxels, the Z value of the peak activity in the
movement block, and their anatomical labels are listed in Table 1. We used
this same set of seed coordinates for all individuals. We verified that Z values
for individual subjects were high (Z � 2.0) at the seed locations shown in
Table 1. One exception was caudate nucleus, in which for three individuals
the Z value at the group-level peak was lower, between Z�1 and Z�1.5. We
obtained the average BOLD time series of each ROI and each subject by
defining a spherical mask (radius of 6 mm) around the seed in standard
space. We resampled this mask first to the T1-weighted structural image of
each subject and from there to the low-resolution functional space of that
subject. For each subject, the average time course of the BOLD signal within
the transformed mask in the functional space was calculated.

FC analysis using behavioral factors. The mean BOLD time course of
each ROI identified above was used as a predictor in a per-subject GLM
to assess the FC of that ROI with every other voxel in the brain. We
included the time derivative of the signal of each ROI as a regressor in the
GLM to account for possible time differences in the HRF of different
cortical areas, as well as the latency for signal propagation from one
cortical area to another (see below, Response latency correction). This
analysis produced maps of all voxels that were positively and negatively
predicted with the mean time course of an ROI. This was followed by
between-subjects analyses that were performed using a mixed-effects
model (FLAME) implemented in FSL (Beckmann et al., 2003). In this
analysis, we used either the MI or PI as regressors, as well as regressors

modeling each subject’s overall mean across sessions and runs. Specifi-
cally, one set of regressors modeled the common effect between days for
each subject. This comprised the overall mean of each subject across all
four runs (two runs from day 1 and two from day 2). The second regres-
sor, which is the regressor of interest, modeled the difference between
days based on the subject-specific MI or PI weights. The applied regressor
of interest, after orthogonalization with respect to other regressors, com-
prises �MI/2 for the scans on day 1 and �MI/2 for the scans on day 2
(and the same for PI). Thus, instead of using the binary contrast day 2 �
day 1 as the contrast of interest in the GLM, we used a graded variable that
was based on each subject’s behavioral performance.

We ran two separate analyses involving MI and PI to identify those
changes to FC that were more strongly related to the retention of motor
learning than to the change in perception. Corrections for multiple com-
parisons at the cluster level were performed using Gaussian random field
theory (minimum Z � 2.7; cluster significance, p 	 0.05, corrected). To
correct for multiple ROIs, we identified as statistically significant those
clusters that had a probability level of better than p � 0.05/9 (in which 9
is the number of ROIs). This between-subjects analysis produced thresh-
olded Z score maps of activity associated with each ROI.

Response latency correction. To correct for response latency between
two different brain regions into our analysis, we used a method similar to
that of Henson et al. (2002). If the time course of an arbitrary voxel, y(t),
is a scaled (by �) version of the BOLD time series of a selected ROI, r(t),
but shifted by a small amount, dt, then using a first-order Taylor expan-
sion, we can write the following:

y(t) � �.r(t � dt) � �.r(t) � �.r
(t).dt,

where r
(t) is the first derivative of r(t) with respect to t. We use r(t) and
r
(t) as two basis functions in the subject-level GLM to estimate the
parameters �1 and �2, in which �1 � � and �2 � �.dt. This enables us to
cancel out the combined effect of the various latencies of HRF between
two brain regions and the signal propagation delay between them. Be-
cause the �2 values include the effects of both factors, a separate assess-
ment of response latency was not possible. Accordingly, the �2 values
were discarded and the analysis focused on the �1 weights that reflect
instantaneous FC.

Correspondence of �FC and index type. Because psychophysical mea-
sures of motor learning and perceptual change, MI and PI, are themselves
correlated, the strength of some functional connections will change in
conjunction with both of these factors. To separate the dependence of
each connection on MI, PI, or both factors, we removed the portion of
the total variance attributable to MI and PI together and calculated the
residual “mi” and “pi,” which are uncorrelated with PI and MI, respec-
tively (see below, Variance decomposition). We then constructed a vec-
tor for each connection between an ROI and target cluster whose
elements were each subjects’ change in FC from day 1 to day 2 (�FC).
This vector was correlated with a vector of associated mi or pi measures.
Finally, we performed paired-sample t tests ( p 	 0.001, uncorrected) to
assess the correspondence between neural (�FC) and behavioral mea-
sures (mi or pi) for each link separately.

Variance decomposition. The variance attributable to MI can be de-
composed into a part that is correlated with PI and a residual uncorre-
lated component (mi). Similarly, the variance attributable to PI can be
decomposed into a mutual component (M) and a residual component
that is uncorrelated with MI:

MI � M � mi, c.t.: cov(mi, PI) � 0

PI � M � pi, c.t.: cov(pi, MI) � 0.

where: M � c1 � MI � c2 � PI (3)

The solution to the above equations is:

� c1

c2
� � � var�MI� cov�MI, PI�

cov(MI, PI) var(PI) ��1

� � cov(MI, PI)
cov(MI, PI) �

(4)

Table 1. Seed coordinates of selected ROIs in MNI space (given in mm), their
anatomical labels, and the corresponding Z value of the activation peak during
movement

MNI coordinates

ROI Anatomical label x y z Z value

MI L primary motor cortex BA4 �32 �30 68 6.1
PMd L dorsal premotor cortex BA6 �26 �22 66 5.7
SMA L supplementary motor area proper �2 �8 58 4.6
PMv L ventral premotor cortex BA6 �34 �16 52 5
SI L primary somatosensory cortex BA2 �36 �38 58 5.5
SII L secondary somatosensory cortex, OP1 �62 �20 20 4.7
PPC L posterior parietal cortex, BA7 �22 �56 64 5.3
CB R cerebellum, lobule VI 32 �52 �28 5
BG L basal ganglia, caudate �16 �8 22 3.7

Each ROI is a sphere of radius 6 mm with its center located at the activation peak. L, Left; R, right.
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Results
Comparison of motor and perceptual adaptation
We examined the relationship between FC and each of motor
learning and perceptual change. Figure 1A shows the experimen-
tal sequence in which movement training and perceptual tests are
interleaved with scanning sessions in which resting-state FC is
assessed. Figure 1A also gives the maximum PD attributable to
the force field over the course of learning. It can be seen that
movements are straight under null field conditions. Application
of the load (force field A) results in increases in movement cur-
vature that approach baseline over the course of training. When
the direction of load application is reversed (force field B) after
the second scanning session, there is a large initial deviation in the
opposite direction that likewise approaches baseline values with
training. Figure 1B provides a representative example of the per-
ceptual testing sequence. An adaptive algorithm is used to move
the limb passively over a series of paths that quickly converge to
provide an estimate of the perceptual boundary. Figure 1C shows

a reliable change in the sensed position of the limb from the
pre-learning to the post-learning perceptual tests (t(12) � 3.11,
p 	 0.01). Moreover, as seen in Figure 1D, the shift in the per-
ceptual boundary is highly correlated with motor learning as
evaluated by MI (r � 0.75, p 	 0.005). The evident linear trend
underscores the effect of motor learning on perceptual recalibra-
tion on a per-subject basis.

Correspondence between neural plasticity and
behavioral performance
We conducted analyses to investigate changes in the sensorimo-
tor network in conjunction with motor learning. These analyses
enabled us to assess the possibility of changes over the entire brain
with respect to our selected ROIs. They also enabled us to test for
differences in FC from day 1 to day 2 that were related to motor
learning, to perceptual change, or to the two in combination. We
found that, in several cases, �FC was dependent to varying de-

Figure 2. Changes in connectivity in relation to perceptual change. Each row corresponds to a specific ROI whose FC is changed in relation to perceptual learning. Left column, Location of ROIs.
Two middle columns, Clusters showing significant change in connectivity with the corresponding ROI. Color-coded statistical Z score maps (corrected p 	 0.05 for spatial extent) showing increases
in positive correlation (coded in red to yellow) and negative correlation (coded in dark to light blue) from day 1 to day 2 with respect to PI (z-coordinates of cross-sections are reported in MNI space).
Right column, The linear trend between individual changes in FC and associated PI values on a per-subject basis. �FC gives the change in FC averaged over the significant clusters (the change in FC
in the bottom row is shown with respect to the blue-coded clusters alone). The value of r represents the Pearson’s product-moment correlation coefficient.
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grees on both the extent of motor learning and the amount of
perceptual change. We consider these possibilities in turn below.

Figure 2 shows the results of the whole-brain analyses, focus-
ing on changes in connectivity that were most strongly related to
perceptual function. Each row in the figure shows an ROI at the
left (purple dot) and, in the middle, the location of clusters whose
�FC from day 1 to day 2 was correlated with the amount of
perceptual change. The right shows that �FC was greater for
subjects who showed larger perceptual shifts. The primary
changes in connectivity associated with changes to perceptual
function are seen in the connection between SII and frontal mo-
tor areas (PMv and SMA) and between right anterior cerebellar
cortex (lobule VI) and clusters in superior parietal lobule (SPL;
BA7) and prefrontal cortex (BA10). Table 2 lists the locations of
significant clusters corresponding to each ROI, the associated
MNI coordinates of peaks of activity, and their anatomical labels.

Figure 3 shows the corresponding analysis for those changes in
connectivity that were only related to motor learning. As in Fig-
ure 2, each row gives the location of the ROI (left panel, purple
dot). The middle panels show the locations of clusters whose
connectivity from day 1 to day 2 changed in conjunction with
motor learning. The right panel shows that greater changes in
connectivity were observed for subjects who displayed greater
motor learning. The major change in connectivity related to mo-
tor learning was in the link between right cerebellar cortex adja-
cent to posterior–superior fissure (lobule VI, Crus I) and left M1
and SMA. There was also a reliable change in FC between right
cerebellar cortex and the SPL. The negative correlation is consis-
tent with the inhibitory relationship between cerebellar cortex
and cortical motor areas.

Tables 2 and 3 provide a summary of changes in FC from day
1 to day 2. The Z-scores on day 1 and day 2 correspond to the
group-level correlations on day 1 and day 2, respectively. For the
perceptual network comprising left SII, PMv, and SMA, the gen-
eral pattern of change is an elevation of a positive correlation
from pre-learning to post-learning. For the motor learning net-
work, comprising right cerebellum (CB), left M1, and SMA, the
general pattern of change is from no (or an insignificant negative)
correlation to a significant negative correlation. In all cases, the
magnitude (absolute value) of correlation increased from pre-
learning to post-learning.

A number of links showed changes in FC that were statistically
reliable with respect to both motor and sensory measures but
showed stronger correlations to sensory performance. In partic-
ular, the links between SII and PMv and between SII and SMA
showed a higher correlation across subjects (on the order of

�0.3) between �FC and perceptual change attributable to learn-
ing (PI) than between �FC and MI. Another difference is that
peaks in activity differed somewhat for changes in connectivity
correlated with sensory versus motor indices of learning. Specif-
ically, with an ROI in SMA or PMv, the peak of activity related to
motor learning (MI measure) lies in the parietal ventral area (the
more rostral part of SII, also called OP4). In contrast, for the same
ROI, the peak in activity related to perceptual change is located at
S2 (the more caudal part of SII, also known as OP1). This differ-
ence is in line with the results of anatomical and functional brain
imaging, in which it has been shown that the parietal ventral area
has more connections with frontal motor regions than the rostral
part of SII (Eickhoff et al., 2010).

As noted above, many identified links were dependent on
both motor learning and perceptual recalibration measures. To
further investigate the correspondence of each link with MI, PI,
or both factors, we separated the variance in the psychometric
variables to obtain measures of mutual variance, M, between MI
and PI, and residual variance attributable to either motor learn-
ing (mi) or perceptual change (pi) alone, that is, uncorrelated
with the other measure. Figure 4 shows the mean � SEM corre-
lation between �FC from day 1 to day 2 and each variance com-
ponent. �FC is calculated for each ROI separately over all
significant voxels in a cluster. Examination of the figure reveals
two distinct patterns. For links between frontal motor areas and
CB (shown at the left), the mi factor correctly explains the direc-
tion of change in FC with learning. That is, changes in FC are
negatively correlated with motor learning. For the four links
shown at the right of the figure (see CB-PFC, SII-PMC, SMA-SII,
and PMv-SII), the pi factor dominates the pattern of change in
connectivity with motor learning. For the CB-SPL link, both mo-
tor and sensory factors are significantly different from zero and
correctly explain �FC.

To test the specificity of our results, we examined a number of
other resting-state networks (Fox et al., 2005). We assessed
changes with motor learning in the default mode network, a net-
work that routinely shows decreases in activity during task per-
formance, and the task-positive network, a network that exhibits
increases in activity during cognitively demanding tasks. We ex-
amined FC associated with three previously defined seeds in the
default mode network [medial prefrontal cortex, (MNI; 1, 47, 4),
posterior cingulate cortex (5, 49, 40), and lateral parietal cortex
(45, 67, 36)] and three seeds in the task positive network [intra-
parietal sulcus (25, 57, 46), the frontal eye field region of the
precentral sulcus (25, 13, 50), and the middle temporal region
(45, 69, 2)] (Fox et al., 2005). We conducted the same FC analyses

Table 2. Summary of results using the PI as a regressor to predict FC

MNI coordinate

ROI pcorr Z value x y z Z value day 1 Z value day 2 Cluster’s anatomical label

SII 0.01 4.2 �30 �18 48 �0.06 4.47 L BA4, primary motor cortex
3.95 �26 �12 46 1.8 4.11 L BA6, ventral premotor cortex
3.8 �42 �12 56 1.54 3.62 L BA6, premotor cortex

SMA 0.002 4.39 �62 �16 12 4.6 7.4 L SII, OP1
3.4 �58 �20 20 3.3 5.2 L SII, OP1

PMv 0.0000 6.1 �62 �18 16 0.04 4.65 L SII, OP1
4.2 �56 �18 28 4.2 6.35 L inferior parietal lobule

CB 0.0007 4.08 �8 �84 50 �0.1 �3.7 L superior parietal lobule
4.02 36 �80 24 �1.2 �2.9 R inferior parietal lobule

0.0001 4.39 �10 66 16 0.45 3.8 L SFG, BA 10

The table shows clusters whose correlation with the corresponding ROI changed reliably with motor learning. pcorr is the corrected cluster-level p value related to the regressor of interest (PI). The associated Z score for the peak is shown in
the Z value column. Z value day1 and Z value day 2 give Z scores at the location of maximum activation based on values averaged over subjects on days 1 and 2, respectively. A negative Z score indicates an anti-correlation between the ROI
time series and the time series of activation peak. L, Left; R, right; SFG, superior frontal gyrus.
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as described in Materials and Methods.
Neither the task-positive nor the default
mode network showed a significant change
in FC in relation to either motor or per-
ceptual measures of learning.

We also verified that contralateral, but
not ipsilateral, cerebral cortex is central to
the pattern of changes that is measured
during the resting-state period after mo-
tor learning. We examined seven seed lo-
cations in the ipsilateral cerebral cortex
(right M1, PMd, PMv, SI, SII, PPC, and
BG) and one seed location in contralateral
CB, at the same locations in the opposite
hemisphere as those given in Table 1. The
only significant change in connectivity in
this analysis in conjunction with either MI
or PI was between a seed in left CB and a
cluster in right SPL (the peak of the cluster
in MNI; 8, �80, 38). Thus, the only re-
gions that showed bilateral changes in FC
in association with learning were cerebel-
lar cortex and SPL. The remainder of the
significant changes in connectivity were
contralateral to the limb that made the
movements.

Figure 3. Changes in connectivity in relation to motor learning (MI). Display conventions are as in Figure 2.

Figure 4. Dependence of changes in FC on uncorrelated sensory (pi) and motor (mi) indices of learning. Mean correla-
tion between individual changes in FC and exclusively motor (mi), sensory (pi), or mutual (M) components. SEs are specified
using red bars. The mean and SE for a specific link is calculated over significant voxels (Z � 2.7) defined on the union
of clusters associated with MI and PI. Each color-coded link comprises a pair of regions in which the first region repre-
sents the location of the ROI and the second region represents the area in which the activated cluster is located. *p 	 0.001,
significant differences in the correlation between �FC with mi and pi (Wilcoxon’s rank-sum test). PMC, Premotor
cortex.

Table 3. Summary of results using MI as a regresssor to predict FC

MNI coordinate

ROI pcorr Z value x y z Z value day 1 Z value day 2 Cluster’s anatomical label

MI 0.02 4.94 50 �58 �32 �2.50 �6.54 R cerebellum, Crus I
3.32 34 �48 �28 �1.60 �3.87 R cerebellum, lobule VI

CB 0.001 4 �6 �12 46 �1.3 �4.8 L SMA proper
3.85 �2 0 44 2.47 �2.19 Anterior cingulate gyrus

0.007 4.3 �8 �80 52 1.11 �3.21 L superior parietal lobule
3.86 8 �84 42 �1.5 �4.5 R superior parietal lobule

PMv 0.0001 5.26 �60 �12 16 1.18 4.7 L SII, OP4
SMA 0.0007 4.3 �64 �10 8 3.24 6.43 L SII, OP4
SII 0.04 4.14 �42 �12 56 1.54 3.62 L BA6, premotor cortex

3.83 �34 �16 48 1.94 5.23 L BA4, primary motor cortex

Details as in Table 2. Anatomical labeling is determined based on the Juelich histological atlas (Eickhoff et al., 2005). OP4 is also known as the parietal ventral area. L, Left; R, right.
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We considered the possibility that the negative correlations
shown in Figure 3 may be caused, as suggested by Murphy et al.
(2009), by the removal of the global signal, a common prepro-
cessing step in the resting-state fMRI analyses. To test for this
possible confound, we reanalyzed our data without removing the
global signal as part of nuisance signal correction. This analysis
resulted in maps of change in connectivity that were very similar
to those shown in Figures 2 and 3. Our finding is consistent with
the conclusion that removal of the global signal does not intro-
duce any major confound in group-level results (Fox et al., 2009).

Discussion
This study showed that functionally specific changes to both
sensory and motor areas of the brain can be obtained under
resting-state conditions 1 h after force-field learning. These
effects were observed at a time at which plastic changes were
ongoing (Brashers-Krug et al., 1996). The measures of neural
plasticity were highly correlated with both sensory and motor
indices of learning, such that subjects who learned more also
showed greater changes in FC. We were able to attribute differ-
ences in the observed patterns of connectivity to either motor
learning or perceptual change. We found that changes in connec-
tivity between right cerebellar cortex (lobule VI and Crus I; adja-
cent to the posterior–superior fissure) and left frontal motor
areas (M1 and SMA) depended only on motor learning. In con-
trast, the connections between left SII and both left PMv and
SMA were more strongly dependent on perceptual change (Figs.
2, 3). We found that the connection between CB and SPL was
equally dependent on both sensory and motor indices. This latter
finding is consistent with the results of recent anatomical studies
that show a link between CB and PPC and hypothesize its role in
perceptual processing (Strick et al., 2009). This distributed pat-
tern of cerebellar–frontal–parietal changes is consistent with the
idea that a distributed pattern of sensory and motor plasticity
accompanies motor learning.

At a behavioral level, we found that, across subjects, the mag-
nitude of perceptual change varied with the degree of motor ad-
aptation (Fig. 1D). We were able to detect this correlation by
using a new measure of motor learning that involved the use of a
force field that was opposite in direction to that experienced over
the course of the initial training. In so doing, the final block of
force-field trials acted, in effect, as an assistive load that amplified
the after-effect of limb displacement attributable to the initial
learning. This increased our sensitivity to detect the amount of
retention from the initial force field by measuring the amount of
negative transfer (Brashers-Krug et al., 1996).

We observed changes in perceptual function after motor
learning that involve SII, SMA, and ventral premotor cortex.
Romo and colleagues (Romo et al., 2002; Romo and Salinas,
2003; de Lafuente and Romo, 2006) have shown that perceptual
decision-making and the transformation of sensory information
into action take place in a distributed manner in these same areas.
SII has also been implicated in somatosensory perceptual learn-
ing in humans (Pleger et al., 2003; Hodzic et al., 2004). Motor
learning may thus result in changes to the perceptual learning and
decision-making circuitry. The observation that perceptual-
related plasticity involves changes in higher-order somatosensory
areas, such as SII and PPC, but not low-level centers, such as the
subdivisions of SI, is consistent with this conclusion.

Brain areas involved in force-field learning have been studied
previously by Shadmehr and Holcomb (1997) using positron
emission tomography and under resting-state conditions by Al-
bert et al. (2009). As in the study by Shadmehr and Holcomb, we

observe changes associated with learning involving cerebellar
cortex, contralateral PMd, and PPC. Our findings allow us to
extend these results by showing the ways in which neural connec-
tivity is tied to behavioral measures of learning. We find that
subjects who learned more had a greater increase in strength of
the related neuronal networks (Figs. 2, 3, right columns). More-
over, our techniques allow us to partition both the behavioral
measures and the underlying brain circuitry into changes that are
primarily sensory versus those that are motor in nature.

In the present study, all of the observed negative correlations
involve cerebellar cortex. There is a multisynaptic inhibitory cir-
cuit from cerebellar cortex to frontal motor areas. Purkinje cells
in cerebellar cortex form inhibitory synapses with deep cerebellar
nuclei, which in turn send excitatory output to cerebral cortex
through thalamus. When activity in cerebellar cortex increases,
activity in target regions in cerebral cortex decreases and vice
versa. There are several neuroimaging studies that have reported
negative correlation between cerebellar cortex and frontal motor
areas. Shehzad et al. (2009) reported reliable negative connectiv-
ity under resting-state conditions between cerebellar cortex and
SMA. Similarly, Yan et al. (2009) have observed negative correla-
tions between cerebellar cortex and anterior cingulate cortex. In
one of the few studies that have evaluated changes in connectivity
during motor learning, Ma et al. (2010) found that effective con-
nectivity from CB to M1 became increasingly negative during
task execution over several sessions of learning.

Christensen et al. (2007) reported the results of a recent study
implicating a related sensorimotor network in movement pro-
duction. They found that activation in PMv was correlated with
activity in somatosensory cortex during voluntary movement
without proprioceptive feedback. Moreover, the strength of FC
between SII and SI increased during movement without sensory
feedback compared with normal movement (Christensen et al.,
2007). The basic similarity of these results to those of the present
study may indicate that learning-related activity in PMv modu-
lates activity in somatosensory areas that interpret and compare
sensory inflow with the memory of past experiences. However,
causality and the directionality of the modulation cannot be in-
ferred from our FC analysis. Other types of analysis, such as ef-
fective connectivity analysis (Bullmore et al., 2000), or functional
tests using transcranial magnetic stimulation to modulate the
activity of certain brain areas before and after learning could be
useful in deducing causality within the network responsible for
sensorimotor plasticity.
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Kawato M (2000) Human cerebellar activity reflecting an acquired in-
ternal model of a new tool. Nature 403:192–195.
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