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Dynamic Changes in Superior Temporal Sulcus Connectivity
during Perception of Noisy Audiovisual Speech
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Humans are remarkably adept at understanding speech, even when it is contaminated by noise. Multisensory integration may explain
some of this ability: combining independent information from the auditory modality (vocalizations) and the visual modality (mouth
movements) reduces noise and increases accuracy. Converging evidence suggests that the superior temporal sulcus (STS) is a critical
brain area for multisensory integration, but little is known about its role in the perception of noisy speech. Behavioral studies have shown
that perceptual judgments are weighted by the reliability of the sensory modality: more reliable modalities are weighted more strongly,
even if the reliability changes rapidly. We hypothesized that changes in the functional connectivity of STS with auditory and visual cortex
could provide a neural mechanism for perceptual reliability weighting. To test this idea, we performed five blood oxygenation level-
dependent functional magnetic resonance imaging and behavioral experiments in 34 healthy subjects. We found increased functional
connectivity between the STS and auditory cortex when the auditory modality was more reliable (less noisy) and increased functional
connectivity between the STS and visual cortex when the visual modality was more reliable, even when the reliability changed rapidly
during presentation of successive words. This finding matched the results of a behavioral experiment in which the perception of incon-
gruent audiovisual syllables was biased toward the more reliable modality, even with rapidly changing reliability. Changes in STS
functional connectivity may be an important neural mechanism underlying the perception of noisy speech.

Introduction
A key problem for both humans and computers is how to under-
stand noisy speech, the most important method of human com-
munication (Hauser, 1996; Kryter, 1996; Dupont and Luettin,
2000). Multisensory integration is likely to be important for un-
derstanding noisy speech: because the information coming from
the auditory and visual modalities is independent, combining
across modalities reduces noise and allows for more accurate
perception (Sumby and Pollack, 1954; Stein and Meredith, 1993).
However, little is known about the neural mechanisms for mul-
tisensory integration during perception of noisy speech.

In humans, the superior temporal sulcus (STS) integrates au-
ditory and visual information about both speech and nonspeech
stimuli (Calvert et al., 2000; Sekiyama et al., 2003; Wright et al.,
2003; Beauchamp et al., 2004; Callan et al., 2004; Miller and
D’Esposito, 2005; Stevenson and James, 2009; Werner and Nop-
peney, 2010). Anatomical studies in nonhuman primates have
shown that the STS receives input from both auditory cortex and
extrastriate visual cortex (Seltzer et al., 1996; Lewis and Van
Essen, 2000). However, anatomical connections can vary in
strength under different behavioral circumstances, a property
that has been characterized as functional connectivity (McIntosh

and Gonzalez-Lima, 1994; Büchel and Friston, 2001; Horwitz et
al., 2005; Stein et al., 2007; de Marco et al., 2009).

Behavioral studies have shown that perception of multisen-
sory stimuli is reliability weighted: information from the more
reliable modality is given a stronger weight (Ernst and Banks,
2002; Alais and Burr, 2004; Ma et al., 2009). We hypothesized that
during perception of noisy audiovisual speech, the functional
connectivity between the STS and sensory cortex would be mod-
ulated by the amount of noise present in each sensory modality.
We predicted that this modulation would match the pattern
observed behaviorally. More reliable (less noisy) sensory stim-
uli would result in stronger connectivity between that sensory
cortex and STS, while less reliable (more noisy) sensory stim-
uli would result in weaker connectivity between that sensory
cortex and STS.

To test this hypothesis, we performed behavioral and func-
tional magnetic resonance imaging (fMRI) experiments in which
subjects were presented with more reliable and less reliable au-
diovisual speech stimuli consisting of syllables and words. Inde-
pendent functional localizers were used to identify STS, auditory
cortex, and extrastriate visual cortex regions of interest in each
subject. Then, in separate scan series, functional connectivity was
measured between STS and sensory cortex. A behavioral experi-
ment was conducted to verify that our noisy audiovisual speech
produced the same reliability weighting observed in previous be-
havioral studies (Ernst and Banks, 2002; Alais and Burr, 2004; Ma
et al., 2009). The first fMRI experiment measured STS functional
connectivity during perception of blocks of words that were reli-
able or unreliable in the auditory and visual modalities. However,
behavioral studies have demonstrated that reliability weighting
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can change dynamically from trial to trial, and can vary paramet-
rically (Ernst and Banks, 2002). Therefore, in the second and
third fMRI experiments, STS functional connectivity was mea-
sured while stimulus reliability was manipulated at one of two
levels (second experiment) or three levels (third experiment) and
changed dynamically in successive word presentations using a
rapid event-related design. Behavioral studies have also demon-
strated that reliability weighting occurs even in the presence of
sustained attention to one modality (Helbig and Ernst, 2008).
Therefore, in the fourth fMRI experiment, functional connectiv-
ity was measured while subjects’ attention was directed toward or
away from the auditory or visual modalities. Across experiments,
a consistent pattern of reliability-weighted STS functional con-
nectivity was observed, suggesting that functional connectivity is
a plausible candidate for the neural mechanism of behavioral
reliability weighting.

Materials and Methods
Subjects and stimuli
Thirty-four healthy right-handed subjects participated in one behavioral
and four fMRI experiments (13 female, mean age 27.6; 10 subjects in
experiment 1, 10 in experiment 2, 6 in experiment 3, 6 in experiment 4,
10 in experiment 5). The subjects provided informed written consent
under an experimental protocol approved by the Committee for the
Protection of Human Subjects of the University of Texas Health Science
Center at Houston.

Table 1 summarizes the stimulus conditions for each experiment,
which consisted of single-word or single-syllable speech presented in the
auditory modality, the visual modality, or both. A digital video system
was used to record a female speaker saying 200 single-syllable words from
the MRC Psycholinguistic Database with Brown verbal frequency of 20 –
200, imageability rating �100, age of acquisition �7 years, and Kucera–
Francis written frequency �80 (Wilson, 1988). The duration of the
words ranged from 0.5 to 0.7 s. The total length of each video clip ranged
from 1.1 to 1.8 s to start and end each video with the speaker in a neutral,
mouth-closed position and to include all mouth movements from
mouth opening to closing.

Multisensory audiovisual speech consisted of both the auditory and
visual recordings presented synchronously (for sample stimuli, see Fig.
1 A, B). Unisensory visual speech consisted of the video portion of the
speech, followed by a still image of a scrambled face presented for 50 ms
to minimize afterimages. Unisensory auditory speech consisted of the
audio portion of the speech and a visual display consisting of white
fixation crosshairs. The baseline condition consisted of only the fixation
crosshairs; the crosshairs were presented at the same position as the
mouth during visual speech to minimize eye movements.

Reliable (non-noisy) speech consisted of the original recordings with-
out any degradation. Unreliable (noisy) speech was created by indepen-
dently degrading the auditory and visual components of the recordings.
The auditory stimulus was degraded in Matlab (MathWorks) using a
noise-vocoded filter to modulate noise within the temporal envelope of
the stimulus in four separate frequency bands (0 – 800 Hz, 800 –1500 Hz,
1500 –2500 Hz, and 2500 – 4000 Hz), and the smoothing frequency, or

sampling rate of the temporal envelope of each frequency band of the
noise-vocoded speech, was 300 Hz (Shannon et al., 1995). The visual
stimulus was degraded by individually filtering each frame of the video in
Matlab. First, the contrast of the frame was decreased by 70%, and then
the frame was blurred with a Gaussian filter (the filter size depended on
the stimulus condition; see below). Both of these methods for degrading
speech decrease intelligibility: vocoding auditory speech stimuli de-
creases recognition scores (Shannon et al., 1995), and decreasing the
spatial resolution of visual speech stimuli decreases word identification
(Munhall et al., 2004).

General fMRI methods
At the beginning of each scanning session, two T1-weighted MP-
RAGE anatomical MRI scans were collected at 3 tesla using an eight-
channel head gradient coil; the anatomical scans were aligned to each
other and averaged to provide maximum gray-white contrast. Then, a
cortical surface model was created with FreeSurfer (Dale et al., 1999;
Fischl et al., 1999) to allow visualization and region-of-interest cre-
ation with SUMA (Argall et al., 2006). T2*-weighted images for fMRI
were collected using gradient-echo echo-planar imaging (TR � 2015
ms, TE � 30 ms, flip angle � 90°) with in-plane resolution of 2.75 �
2.75 mm. Thirty-three 3 mm axial slices were collected, resulting in
whole-brain coverage in most subjects. Each functional scan series
consisted of 154 brain volumes. The first four volumes, collected
before equilibrium magnetization was reached, were discarded result-
ing in 150 usable volumes. Ear defender (acoustic earmuff) type
pneumatic headphones were used to present auditory stimuli within
the scanner, ensuring stimulus audibility even without the use of a
sparse sampling paradigm. Visual stimuli were projected onto a
screen using an LCD projector and viewed through a mirror attached
to the head coil. Behavioral responses were collected using a fiber-
optic button response pad (Current Designs). MR-compatible eye
tracking (Applied Science Laboratories) was used in all fMRI experi-
ments to ensure alertness and visual fixation.

fMRI data analysis was performed using the freely available soft-
ware packages “R” (Ihaka and Gentleman, 1996) and Analysis of
Functional NeuroImages software (AFNI) (Cox, 1996). Appendices
A–C contain the complete list of commands used to analyze data in
experiments 1 and 2 to facilitate replication of our analyses. Correc-
tions for voxelwise multiple comparisons were performed using the
false discovery rate procedure (Genovese et al., 2002) and reported as
“q” values. Data were analyzed within each subject, and then group
analyses were performed by combining data across subjects using a
random-effects model.

Functional data were aligned to the average anatomical dataset and
motion corrected for each voxel in each subject using a local Pearson
correlation (Saad et al., 2009). All analysis was performed in all voxels in
each subject in the context of the generalized linear model using a
maximum-likelihood approach using the AFNI function 3dDeconvolve.

For block designs (localizer and experiment 1), a single regressor
was created for each stimulus type by convolving the stimulus timing
with a canonical gamma-variate estimate of the hemodynamic response
function. For rapid event-related designs (experiments 2, 3, and 4), the
amplitude of the hemodynamic response for each individual auditory-
reliable and visual-reliable stimulus presentation was estimated. A sepa-

Table 1. Stimuli and tasks across the five experiments

fMRI experimental design Auditory-only Visual-only Auditory-reliable Visual-reliable Task

Functional localizer Blocked Undegraded words (C) Undegraded words (C) n/a n/a Passive
Experiment 1 Blocked n/a n/a Words (C) Words (C) Passive
Experiment 2 Event-related n/a n/a Words (C) Words (C) Passive
Experiment 3 Event-related n/a n/a n/a Undegraded (C or I) C versus I

Midblur (C or I) C versus I
High blur (C or I) C versus I

Experiment 4 Event-related n/a n/a Syllables (C) Syllables (C) Attn-A: “ja” versus “ma”
Attn-V: eyes open versus closed

Experiment 5 n/a (behavioral) n/a n/a Syllables (C or I) Syllables (C or I) �Ma� versus �na�

C, Congruent; I, incongruent; Attn-A, auditory attention; Attn-V, visual attention; n/a, not applicable.
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rate regressor was created for each individual
stimulus using the -stim_times_IM mode of
3dDeconvolve. Movement covariates and
baseline drifts (as second-order polynomials,
one per scan series) were modeled as regressors
of no interest. All regressors were fit separately
to each voxel.

For volumetric group analysis, each sub-
ject’s average anatomical dataset was normal-
ized to the N27 reference anatomical volume
(Mazziotta et al., 2001) using the auto_tlrc
function in AFNI.

fMRI functional localizer and regions of
interest
A functional localizer scan series was used to
identify regions of interest (ROIs) important
for speech processing: auditory cortex, visual
cortex, and STS. Each ROI was identified sep-
arately in each subject (for ROI sizes and loca-
tions, see Table 2). The ROIs were then applied
to independent reliability-weighting data col-
lected in separate scan series, preventing bias
(Kriegeskorte et al., 2009). ROIs were created
in both left and right hemispheres, although
our analysis focused on the left hemisphere be-
cause the left hemisphere is usually dominant
for language (Branch et al., 1964; Ellmore et al.,
2010).

The functional localizer scan series con-
tained 10 blocks (five unisensory auditory and
five unisensory visual in random order) of du-
ration 20 s with 10 s of fixation baseline be-
tween each block. Each block contained ten 2 s
trials, each containing one undegraded word.
All ROIs were created on the cortical surface
using SUMA for maximum anatomical preci-
sion. The auditory cortex ROI was defined us-
ing the contrast of auditory speech versus
baseline to find active voxels within Heschl’s
gyrus, demarcated by the superior temporal
gyrus at the lateral/inferior boundary, the first
temporal sulcus at the anterior boundary, the
transverse temporal sulcus at the posterior
boundary, and the medial termination of Hes-
chl’s gyrus at the medial/superior boundary
(Patterson and Johnsrude, 2008; Upadhyay et
al., 2008). The visual cortex ROI was defined
using the contrast of visual speech versus base-
line to find active voxels along the inferior tem-
poral sulcus (ITS) or its posterior continuation
near areas LO and MT (Dumoulin et al., 2000) within extrastriate lateral
occipital cortex, a brain region critical for processing moving and biolog-
ical stimuli that includes the middle temporal visual area and the extra-
striate body area (Tootell et al., 1995; Beauchamp et al., 1997, 2002,
2003; Downing et al., 2001; Pelphrey et al., 2005). The STS ROI was
defined using a conjunction analysis to find all voxels that responded
to both auditory and visual speech significantly greater than baseline
in the anatomically defined posterior STS (q � 0.05 for each modal-
ity) (Beauchamp, 2005a; Beauchamp et al., 2008).

Structural equation modeling
To test the hypothesis that connection weights would be different for
auditory-reliable and visual-reliable speech, a structural equation model
was constructed and tested for each stimulus condition in each subject in
each experiment. Path coefficients from the models were compared
across subjects using an ANOVA.

The model consisted of the three ROIs (auditory cortex, visual cortex,
and STS) in the left hemisphere with unidirectional connections between

auditory cortex and STS and between visual cortex and STS (for ROIs in
one subject, see Fig. 1C,D). Models were also tested consisting of bidirec-
tional connections between the left-hemisphere ROIs and unidirectional
connections between right-hemisphere ROIs. In addition, we performed
a whole-brain connectivity analysis on the experiment 1 data to deter-
mine whether any other regions outside the auditory and visual cortex
ROIs showed condition-dependent changes in connection strength with
STS, similar to a psychophysiological interaction (Friston et al., 1997).
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Figure 1. Speech stimuli and functional connectivity. A, Auditory-reliable speech: undegraded auditory speech (loudspeaker
icon) with degraded visual speech (single video frame shown). B, Visual-reliable speech: undegraded visual speech with degraded
auditory speech. C, STS BOLD response and functional connectivity during auditory-reliable speech in a representative subject. The
inset graph shows the BOLD percentage signal change to blocks of speech (thick green line shows mean response; thin green lines
show SEM; thick black bar shows 20 s duration of each block). The green region on the cortical surface model shows the location of
the STS ROI. The blue number is the path coefficient between the STS ROI and the auditory cortex ROI (shown in blue); the red
number is the path coefficient between the STS ROI and the visual cortex ROI (shown in red). Lateral view of the partially inflated
left hemisphere, dark gray shows sulcal depths, light gray shows gyral crowns. D, STS BOLD response and functional connectivity
during visual-reliable speech, same subject as in C. E, STS–auditory cortex functional connectivity in experiments 1, 2, 4A (atten-
tion to auditory modality), and 4B (attention to visual modality). Light blue bars, Path coefficients during auditory-unreliable
speech. Dark blue bars, Path coefficients during auditory-reliable speech. F, STS–visual cortex functional connectivity in experi-
ments 1– 4.

Table 2. ROIs from fMRI localizer

Talairach coordinates (mm)

ROI Size (mm3) x y z

Auditory 3108 � 969 �45.4 � 4.1 �17.5 � 3.6 6.1 � 2.7
Visual 3111 � 1068 �42.4 � 3.6 �66.5 � 4.9 3.1 � 3.9
STS 3611 � 1210 �48.8 � 2.9 �46 � 6.4 9.7 � 3.8

Average size and location of individual auditory, visual, and STS ROIs created from functional localizers across all
subjects (mean � SD). Sample subject ROIs are shown in Figure 1, C and D.
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The whole-brain connectivity analysis was first performed in each subject
and then averaged across subjects using an ANOVA.

Experiment 1: fMRI block design
fMRI experimental design. To minimize the number of stimulus condi-
tions in experiments 1 and 2, reliable stimuli in one modality were paired
with unreliable stimuli in the other modality, resulting in only two con-
ditions: auditory-reliable (auditory-reliable � visual-unreliable) and
visual-reliable (visual-reliable � auditory-unreliable). Unreliable videos
were created by blurring with a 30 pixel diameter Gaussian filter. Three
reliability scan series were presented to each subject. Scan series con-
tained five blocks of auditory-reliable and five blocks of visual-reliable
congruent words. Each 20 s block contained ten 2 s trials, with one
different word per trial (10 words total per block). Each video ranged in
length from 1.1 to 1.8 s with fixation crosshairs occupying the remainder
of each 2 s trial. Each block contained a different set of randomly selected
words. There were 10 s of fixation baseline between each block, for a total
scan series time of 5 min.

fMRI data analysis. As shown in Figure 1, stimulus blocks evoked a
robust blood oxygenation level-dependent (BOLD) signal consisting of a
typical square-wave-like response. A generalized linear model analysis
was used to calculate the average amplitude of response to each stimulus
type in each ROI. However, analysis of fMRI time series containing these
large block onsets and offsets produces a very high correlation between
ROIs that obscures differences in functional connectivity (Büchel and
Friston, 1997). Therefore, for the connectivity analysis in each subject,
these block onset and offset responses (defined as the best fit of the
block-design regressors) were subtracted from the time series in each
voxel, as were the best-fit regressors of no interest for that voxel, using the
AFNI function 3dSynthesize (see Appendix A for the details of all func-
tions used in the analysis). Because a distinct set of areas is active during
baseline conditions in the so-called default-mode network (Raichle et al.,
2001), our connectivity analysis only examined the 10 volumes per block
collected during word presentation (150 time points for each condition,
consisting of 15 blocks of each stimulus type times 10 time points per
block). The residual time series for each condition was averaged across all
voxels in each ROI to create two time series for each ROI (one per con-
dition). The residual time series were used to calculate the correlation
matrix and path coefficients for each condition using the AFNI functions
1ddot and 1dsem (Chen et al., 2007). Two-way ANOVAs were per-
formed in MATLAB with condition (auditory-reliable or visual-reliable)
and sensory cortex (auditory or visual) as fixed factors, subject as a ran-
dom factor, and amplitude of response and path coefficient as the depen-
dent measures.

Whole-brain connectivity: psychophysiological interactions. The ROI
analysis determined whether the connectivity between auditory cortex,
visual cortex, and STS differed across conditions. To determine whether
any other brain regions showed differing connectivity with the STS, we
performed a whole-brain connectivity analysis similar to a psychophys-
iological interaction (Friston et al., 1997). The time series for each con-
dition was created consisting of the concatenated residual time series for
the auditory-reliable and visual-reliable stimulation blocks (see Appen-
dix B for details). A generalized linear model analysis was performed on
this dataset using three regressors of interest. The first regressor (physi-
ological factor) consisted of the residual time series from the STS ROI.
The second regressor (psychological factor) consisted of 150 values of �1
(corresponding to the 150 visual-reliable time points) and 150 values of
�1 (corresponding to the 150 auditory-reliable time points). The third
regressor (the psychophysiological factor) consisted of the first regressor
multiplied by the second regressor. Voxels with a significant amount of
variance accounted for by the third regressor show a different slope
relating activity in the STS to activity in the target region as a function
of condition. The t-statistic of the psychophysiological factor and the
t-statistic of the full model from each individual subject were aver-
aged across subjects using a voxelwise ANOVA to find all voxels that
showed a significant response to a threshold of all word stimuli (q �
0.0095) and a significant difference in correlation with the STS across
conditions (q � 0.05).

Experiment 2: fMRI rapid event-related design
Two reliability scan series were presented to each subject, each contain-
ing 60 auditory-reliable word trials (2 s each), 60 visual-reliable word
trials (2 s each), and 30 null trials (2 s of fixation baseline) presented
pseudorandomly in optimal rapid event-related order (Dale, 1999). The
amplitude of the hemodynamic response was estimated for each individ-
ual word stimulus and averaged within each ROI to produce a vector of
60 auditory-reliable word amplitudes and 60 visual-reliable word ampli-
tudes (see Appendix C for details). These amplitudes were used to calcu-
late the correlation matrix and path coefficients for each condition in
each subject using the AFNI functions 1ddot and 1dsem. The path coef-
ficients were then entered into the group ANOVA.

Experiment 3: fMRI rapid event-related parametric design
To create a parametric design in experiment 3, the auditory unreliable
words from experiments 1 and 2 were paired with visual words that were
either the same word (congruent; 50% of trials) or a different word
(incongruent). Subjects made a two-alternative forced choice (2-AFC)
about each stimulus using a button press (congruent vs incongruent).
The visual words were reliable (unblurred) or blurred with one of three
Gaussian filter widths: 5 pixels, 15 pixels, or 30 pixels. Three reliability
scan series were presented to each subject. Each scan series contained
30 trials of each of the four stimulus types (120 total) and 30 trials of
fixation baseline in optimized order. The behavioral and fMRI data
from the 5 and 15 pixel stimuli did not differ significantly, so they
were collapsed for the final analysis, resulting in three levels: reliable
visual (unblurred); unreliable, blurred visual (30-pixel-width blur,
the same as used in experiments 1 and 2); and intermediate midblur
(5- and 15-pixel-width blur). The three conditions were then ana-
lyzed as in experiment 2.

Experiment 4: attention experiment
Although the event-related designs of experiments 2 and 3 eliminated the
effect of sustained attention over the course of a block, subjects could still
have reallocated attention on a trial-by-trial basis. Therefore, in experi-
ment 4, we manipulated the behavioral task to explicitly direct subjects’
attention to either the auditory or visual modality during presentation of
auditory-reliable and visual-reliable syllables. A rapid event-related de-
sign was used in which auditory-reliable and visual-reliable congruent
syllable stimuli were randomly intermixed. Subjects performed a behav-
ioral 2-AFC task that directed their attention to either modality.

The stimuli consisted of two instances of syllable “ja” and two in-
stances of “ma,” one with the speaker’s eyes open and one with the
speaker’s eyes closed. For the auditory attention task, subjects discrimi-
nated the syllables (“ja” vs “ma”). For the visual attention task, subjects
discriminated the visual appearance of the speaker (eyes open vs eyes
closed).

Our choice of different auditory and visual tasks was motivated by
several competing desires. First, we wished subjects to maintain attention
to the auditory or visual speech, to ensure a high level of activity in STS.
This ruled out an orthogonal discrimination task, such as detection of
brightness changes at fixation or auditory beeps. Second, we wished to
maintain ethological validity by using tasks that were not too different
from cognitive processes that might occur during normal speech pro-
cessing. We did not wish to use tasks that were so difficult that they might
drive a high level of activity, obscuring the brain activity related to speech
perception. This ruled out complex semantic decision tasks. Third, we
wished to make information from the opposing modality uninformative
for the task. There was absolutely no information about eyes open or eyes
closed in the auditory stimulus, so subjects’ optimal strategy would be to
ignore the auditory modality, presumably enhancing any effect of atten-
tion and reducing any effect of reliability weighting (if reliability weight-
ing depended on voluntary attention to the auditory modality). In
contrast, if we had asked subject to perform a visual “ja” from “ma”
discrimination, they could have “cheated” by using auditory informa-
tion. To prevent cheating, we would have had to introduce incongruent
auditory–visual stimuli, which would in itself cause changes in brain
activity, since the STS is very sensitive to auditory–visual congruence
(van Atteveldt et al., 2010).
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Each scan series contained 120 stimuli and
30 presentations of the baseline condition in a
random order. Within the 120 stimuli in each
scan series, there were equal numbers of
auditory-reliable and visual-reliable stimuli,
equal numbers of syllables corresponding to
“ja” and “ma,” and equal numbers of stimuli
with the speaker’s eyes open and closed. Sub-
jects performed the auditory attention task for
two scan series and the visual attention task for
two scan series. Four separate structural equa-
tion models were constructed, one for each
condition in each attentional state.

Experiment 5: behavioral experiment
A behavioral experiment was performed to
make sure that our stimuli elicited the behav-
ioral reliability weighting observed in previous
studies. Ten healthy right-handed subjects
(two female, mean age 24.8) participated in the
behavioral study. To prevent ceiling effects, all
stimuli were degraded more than the stimuli
used in the fMRI experiments. The auditory-
reliable stimuli consisted of auditory syllables
noise-vocoded with a smoothing frequency of
1000 Hz and visual-unreliable syllables blurred with a 50 pixel diameter
Gaussian filter, and the visual-reliable stimuli consisted of auditory-
unreliable syllables noise-vocoded with a smoothing frequency of 300 Hz
and visual syllables blurred with a 30 pixel diameter Gaussian filter.
Congruency was manipulated in experiment 5 so that half the stimuli
were congruent and half were incongruent. A 2 � 2 � 2 factorial design
was used, with auditory syllable (“ma” vs “na”) as the first factor, visual
syllable (“ma” vs “na”) as the second factor, and reliability (auditory-
reliable vs visual-reliable) as the third factor. Auditory stimuli were de-
livered through headphones at 	70 dB, and visual stimuli were presented
on a computer screen. Each of 10 subjects was presented with 80 stimuli
(10 examples of each stimulus type) and made a 2-AFC about their
perception of each stimulus (“ma” vs “na”). Responses to incongruent
stimuli (e.g., auditory “ma” � visual “na”) were analyzed with a within-
subjects paired t test.

Results
The STS responded to both auditory-reliable and visual-reliable
audiovisual speech with a robust BOLD response (Fig. 1C,D), but
there was no difference in the amplitude of the response: 0.62%
for auditory-reliable versus 0.69% for visual-reliable ( p � 0.18,
paired t test across subjects).

Although the amplitude of the BOLD response was similar
between conditions, there was a large change in STS functional
connectivity: the STS was more strongly connected to a sensory
cortex when that sensory modality was reliable (Fig. 1E,F). STS–
auditory cortex connectivity increased from 0.33 for auditory-
unreliable to 0.44 for auditory-reliable ( p � 0.02, paired t test)
for the blocks of words presented in experiment 1 and from 0.31
to 0.42 ( p � 0.003) for the single words presented in an event-
related design in experiment 2. STS–visual cortex connectivity
increased from 0.30 for visual-unreliable to 0.40 for visual-
reliable ( p � 0.04) in experiment 1 and from 0.26 to 0.39 ( p �
0.0003) in experiment 2. In experiment 3, in which a parametric
design was used with single words presented at three levels of
visual reliability, STS–visual cortex connectivity increased from
0.32 to 0.42 to 0.50 with increasing levels of visual reliability
(ANOVA with main effect of reliability: F(1,5) � 17.9, p �
0.0005).

Whole-brain connectivity: psychophysiological interactions
Our initial analysis measured the connection strength between
the STS and auditory and visual cortex ROIs created from inde-
pendent functional localizers. To determine whether other brain
areas also showed reliability-weighted connections, we per-
formed a post hoc whole-brain connectivity analysis that searched
for brain areas showing stimulus-dependent interactions with
the STS (Fig. 2, Table 3).

Regions with greater STS connectivity during auditory-
reliable speech were concentrated in and around auditory cortex,
while regions with a greater STS connectivity during visual-
reliable speech were concentrated in lateral occipital cortex.
These regions largely corresponded to the auditory and visual
ROIs generated from the localizer. Additional regions showing
differential connectivity were found in the fusiform gyrus
(greater STS connectivity during auditory-reliable speech) and
dorsal occipital cortex, near visual area V3A (greater STS connec-
tivity during visual-reliable speech). Notably, neither calcarine
cortex (the location of V1) nor portions of Heschl’s gyrus (the
location of primary auditory cortex) showed condition-depen-
dent changes in connectivity.

BOLD amplitudes
The observed increases in functional connectivity with reliability
could be driven by differential responses in sensory cortex. The
amplitudes of the BOLD response in sensory cortex increased
significantly for more reliable stimuli in experiments 1 and 2
[auditory cortex, experiment (Expt.) 1: 0.46% to 0.72%, p �
0.000003; Expt. 2: 0.18% to 0.36%, p � 0.0003; visual cortex:
0.38% to 0.51%, p � 0.001; 0.23% to 0.29%, p � 0.002] but not

Figure 2. Whole-brain connectivity group map. A, Whole-brain connectivity analysis showing regions with differential con-
nectivity with STS during auditory-reliable and visual-reliable words. Shown is a group map from 10 subjects with STS seed region
shown in green surrounded by dashed line. Blue areas showed greater connectivity with the STS during auditory-reliable speech,
and red areas showed greater connectivity during visual-reliable speech. Shown is a lateral view of the partially inflated average
cortical surface, left hemisphere. B, Ventral view of the left hemisphere showing a region near the location of the fusiform face area
that showed stronger connections with the STS during auditory-reliable speech. C, Dorsal view of the left hemisphere showing a
region of dorsal occipital cortex, near visual area V3A, with greater STS connectivity during visual-reliable speech.

Table 3. Whole-brain connectivity analysis

Talairach coordinates

Interaction Brain region Size (mm 3) x y z

Auditory-reliable L STG 1427 �63 �33 8
L fusiform gyrus 210 �43 �67 �16

Visual-reliable L LOC 202 �43 �79 2
L V3a 142 �17 �93 12

Regions in the experiment 1 group dataset showing a positive interaction with STS during auditory-reliable blocks or
visual-reliable blocks. The regions are illustrated in Figure 2. L, Left.
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experiment 3 (0.32% to 0.34% to 0.37%, F(1,5) � 2.1, p � 0.18). If
there was a simple relationship between STS connectivity and
sensory cortex BOLD amplitude, we might expect to find a cor-
relation across subjects between connectivity and amplitude.
However, there was little correlation between the two in any ex-
periment, with all p values �0.20 (auditory cortex, correlation
between STS functional connectivity and BOLD amplitude, Expt.
1, r � 0.14, p � 0.70 for auditory-unreliable stimuli and r � 0.44,
p � 0.20 for auditory-reliable stimuli, Expt. 2, r � �0.15, p �
0.68 and r � �0.06, p � 0.87; visual cortex, correlation between
STS functional connectivity and BOLD amplitude, Expt. 1, r �
0.16, p � 0.85 for visual-unreliable stimuli and r � �0.08, p �
0.66 for visual-reliable stimuli, Expt. 2, r � �0.41, p � 0.25 and
r � �0.10, p � 0.78; Expt. 3, r � �0.21, p � 0.69 for visual-
unreliable, r � 0.18, p � 0.73 for visual mid-reliable, and r �
�0.42, p � 0.41 for visual-reliable).

Attention experiment
Another possible cause of reliability-related changes in connec-
tion weights could be top-down factors, especially attention
(Büchel and Friston, 1997; Friston and Büchel, 2000; Macaluso et
al., 2000; Mozolic et al., 2008). In experiment 4, the behavioral
task was manipulated to direct subjects’ attention to either the
auditory or visual modality during presentation of auditory-
reliable or visual-reliable speech. Subjects accurately performed
the instructed task (97% correct during auditory attention and
93% correct during visual attention), indicating that subjects at-
tended to the correct modality. Despite the presence of directed
attention, the changes in STS connectivity observed in experi-
ments 1, 2, and 3 were replicated (STS–auditory cortex: 0.32 to
0.50, p � 0.00003; STS–visual cortex: 0.25 to 0.40, p � 0.002). An
ANOVA demonstrated no interaction between attention and re-
liability (F(1,5) � 0.11, p � 0.74).

Additional analyses
Structural equation models depend on initial assumptions about
connections within the network. When we modified the model to
include bidirectional connections or right hemisphere regions of
interest, we observed similar, but weaker, patterns of reliability
weighting. For bidirectional connections, STS–auditory cortex
connectivity increased from 0.55 to 0.60 ( p � 0.10) in experi-
ment 1 and from 0.45 to 0.53 ( p � 0.01) in experiment 2, and
STS–visual cortex connectivity increased from 0.55 to 0.59 ( p �
0.13) in experiment 1, 0.45 to 0.50 ( p � 0.01) in experiment 2,
and 0.51 to 0.62 to 0.68 (F(1,5) � 39.1, p � 0.00002) in experiment
3. For right hemisphere regions of interest, STS–auditory cortex
connectivity increased from 0.39 to 0.47 ( p � 0.15) in experi-
ment 1 and from 0.40 to 0.50 ( p � 0.007) in experiment 2, and
STS–visual cortex connectivity increased from 0.28 to 0.32 ( p �
0.42) in experiment 1, 0.20 to 0.26 ( p � 0.03) in experiment 2,
and 0.45 to 0.40 to 0.53 (F(1,5) � 1.9, p � 0.21) in experiment 3.

Behavioral experiment
To replicate previous studies demonstrating that the perception
of audiovisual speech is driven by the more reliable sensory mo-
dality, in experiment 5 we created incongruent stimuli whose
reliability was altered using the techniques of experiments 1– 4.
When subjects were presented with incongruent stimuli that
were reliable in one modality and unreliable in the other modal-
ity, they were more likely to classify the stimulus as the syllable
presented in the reliable modality ( p � 0.0001, paired t test).

Discussion
The most important result of these experiments was the surpris-
ing finding that the functional connectivity of the STS changes
dramatically during perception of noisy speech, depending on
the reliability of the auditory and visual modalities. The changes
in connectivity were striking: the dominant modality, defined as
the sensory modality with the strongest input to STS, was deter-
mined by reliability. The changes in functional connectivity were
rapid, happening within 2 s during the rapid event-related exper-
iments (experiments 2, 3, and 4) in which auditory-reliable and
visual-reliable speech was randomly intermixed. Consistent re-
sults were observed across a variety of stimuli and behavioral
tasks in four experiments, suggesting that the phenomenon of
reliability-weighted STS connectivity is not dependent on a par-
ticular stimulus or task.

An obvious candidate to produce rapid and large changes in
functional connectivity between STS and sensory cortex is the
activity within sensory cortex itself. Consistent with this idea, we
observed increases in the BOLD amplitude of response in sensory
cortex for more reliable stimuli. This is consistent with previous
fMRI studies in which auditory speech degraded using a noise-
vocoded filter (as used in our study) resulted in reduced activity
in auditory cortex (Scott et al., 2000; Narain et al., 2003; Giraud et
al., 2004; Davis et al., 2005; Obleser et al., 2007) and low-contrast
images (such as the blurred videos in our study) resulted in re-
duced activity in visual cortex (Callan et al., 2004; Olman et al.,
2004; Park et al., 2008; Stevenson et al., 2009). While the changes
in BOLD amplitude in sensory cortex in our study can be parsi-
moniously explained as reflecting low-level stimulus properties,
we did not observe a significant correlation between STS connec-
tivity and sensory cortex BOLD amplitude. One possible expla-
nation is that STS neurons are driven by only a subset of neurons
within sensory cortex, with a normalization that divides the
strongest response in the input population by the pooled back-
ground activity (Ghose, 2009; Lee and Maunsell, 2009; Reynolds
and Heeger, 2009). If we could more accurately measure the ac-
tivity of this subset of neurons, perhaps using MR adaptation
techniques (van Atteveldt et al., 2010), a stronger relationship
between activity and connectivity might be observed.

These results can be also be interpreted in light of predictive
coding models of cortical function (Kersten et al., 2004). The
BOLD signal in sensory cortex is higher when a correct inference
(hit) is made about auditory or visual stimuli than during misses
of identical stimuli or false alarms (Hesselmann et al., 2010),
suggesting that the BOLD signal in sensory cortex could be a
measure of the brain’s confidence about the perceptual hypoth-
esis represented by neurons in that sensory cortex. In this model,
the STS could use this confidence measure to adjust its own pre-
dictive model of the multisensory environment by adjusting its
connection weights with sensory cortex.

The experimental findings are consistent with the idea that the
STS is a critical brain area for auditory–visual multisensory inte-
gration (Beauchamp, 2005b). In macaque STS, a region known as
STP (superior temporal polysensory) or TPO (temporo-parietal-
occipital) receives projections from auditory and visual associa-
tion cortex (Seltzer et al., 1996; Lewis and Van Essen, 2000) and
contains single neurons that show enhanced responses to audi-
tory and visual communication signals (Dahl et al., 2009). For
brevity, we have referred to the human homolog of this region as
“STS” while noting that the STS also contains other functionally
and anatomically heterogeneous regions (Beauchamp, 2005b;
Van Essen, 2005; Hein and Knight, 2008). During speech percep-
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tion, the auditory cortex processes spectral and temporal infor-
mation from the auditory vocalization, extrastriate visual cortex
processes cues from lip movements, and the STS integrates the
auditory and visual information (Binder et al., 1997; Price, 2000;
Scott and Johnsrude, 2003; Belin et al., 2004; Hickok and Poep-
pel, 2007; Zatorre, 2007; Bernstein et al., 2008, 2010; Campbell,
2008; Poeppel et al., 2008). Interrupting activity in the STS re-
duces the McGurk effect, an illusion that depends on auditory–
visual interactions (Beauchamp et al., 2010b), supporting a role
for the STS in auditory–visual multisensory integration during
speech (Scott and Johnsrude, 2003; Miller and D’Esposito, 2005;
Campanella and Belin, 2007).

A number of behavioral studies show that the presence of
information from both the auditory and visual modalities aids
the perception of noisy speech (Sumby and Pollack, 1954;
Hauser, 1996; Kryter, 1996; Grant and Seitz, 2000; MacDonald et
al., 2000; Shahin and Miller, 2009). The perception of multisen-
sory stimuli is reliability weighted: information from the more
reliable modality is given a stronger weight (experiment 5) (Ernst
and Banks, 2002; Alais and Burr, 2004). The connectivity differ-
ences we observed followed this same pattern, with more reliable
sensory stimuli producing stronger connectivity between that
sensory cortex and STS. If both modalities provide equivalent
amounts of information, then the neural signals representing
those modalities should be weighted equally. In contrast, if one
modality provides poor quality information, it should receive less
weighting by multisensory areas such as the STS. Therefore, it
seems plausible that reliability-weighted functional connectivity
between STS and sensory cortex could be the neural substrate for
the reliability weighting observed behaviorally. This brain mech-
anism for understanding noisy speech may also be applicable to
machine-learning strategies for computer-based speech recogni-
tion (Dupont and Luettin, 2000; Girin et al., 2001).

For the initial analysis, a structural equation model was se-
lected in which auditory and visual cortex provide unidirectional
projections to STS. However, there are both top-down and
bottom-up connections throughout the cortical processing hier-
archy (Felleman and Van Essen, 1991; Murray et al., 2002; de la
Mothe et al., 2006; Winer, 2006; van Atteveldt et al., 2009). When
incorporating bidirectional connections into the structural equa-
tion model, we also observed reliability weighting. Models of the
right hemisphere showed weaker reliability weighting, perhaps
reflecting the less important role of the right hemisphere in
speech perception (Wolmetz et al., 2011).

Even without the constraints of the functional localizers (used
to identify sensory cortex regions of interest), the whole-brain
connectivity analysis demonstrated reliability-weighted connec-
tivity changes between STS and auditory and extrastriate visual
cortex. Interestingly, the whole-brain analysis also suggested that
connectivity between core regions of auditory cortex and primary
visual cortex were not reliability weighted. This may reflect the
anatomical finding that STS receives strong visual input from
extrastriate visual areas such as MT, but not V1, and that STS
receives stronger input from auditory association areas than from
core areas of auditory cortex (Seltzer and Pandya, 1994; Lewis
and Van Essen, 2000; Smiley et al., 2007). A provocative finding
in our dataset was the increased connection weight between STS
and regions of ventral temporal cortex (near the fusiform face
area) during auditory-reliable stimulation. If this region forms a
node in the network for person identification (Kanwisher and
Yovel, 2006; von Kriegstein et al., 2008), and auditory informa-
tion is especially useful for person identification when visual
information is degraded, then it would be behaviorally advanta-

geous to increase connection weights between the fusiform face
area and STS.

Behavioral studies have shown that reliability weighting oc-
curs even if subjects are forced to attend to one modality, suggest-
ing that reliability weighting is independent of modality-specific
attention (Helbig and Ernst, 2008). Consistent with this finding,
in experiment 4 we found that reliability-weighted connection
changes persisted even if subjects’ attention was directed to one
modality or the other. Because we observed the same pattern of
connectivity changes in experiments with passive word presenta-
tion (experiments 1 and 2) and with three different behavioral
tasks (congruence detection in experiment 3; visual discrimina-
tion and auditory discrimination in experiment 4), attention or
behavioral context is unlikely to be the sole explanation of our
results.

We define “noisy” and “unreliable” stimuli operationally, as
stimuli with reduced intelligibility (perceptual accuracy). Vo-
coded auditory speech (Davis et al., 2005; Dahan and Mead,
2010) and blurred visual speech (Thomas and Jordan, 2002; Gor-
don and Allen, 2009) have been used in many previous studies to
reduce intelligibility. A recent study of visual–tactile integration
used dynamic visual white noise, instead of blurring, to degrade
the visual modality and found similar reliability-weighted
changes in functional connectivity (Beauchamp et al., 2010a),
suggesting that the precise method used to degrade stimuli is
unlikely to explain our results.

Changes in functional connectivity have been observed in
other studies of multisensory integration (Hampson et al., 2002;
Horwitz and Braun, 2004; Fu et al., 2006; Patel et al., 2006; Gruber
et al., 2007; Kreifelts et al., 2007; Noesselt et al., 2007; Obleser et
al., 2007; Noppeney et al., 2008), with stronger weights most
often observed in conditions in which multisensory stimuli result
in behavioral improvements. Kreifelts et al. (2007) found that
connection weights from sensory cortex to multisensory areas
increased in strength during multisensory stimulation compared
with unisensory stimulation. Noesselt et al. (2007) observed
greater functional coupling between sensory cortex and STS
when audiovisual stimuli were temporally congruent than when
they were not. In our study, the sensory cortex processing the
more reliable modality had a stronger connection with STS. To-
gether with these previous fMRI studies, our results suggest that
increased functional coupling could be a general mechanism for
promoting multisensory integration. Under situations in which
multisensory integration occurs, as codified by Stein and
Meredith’s laws of multisensory integration (Stein and Meredith,
1993), connection strengths between sensory cortex and multi-
sensory areas are expected to be strong.

Appendix A: Commands for Analyzing Experiment 1
Data
The following are the commands used to analyze a single-subject
dataset for experiment 1.

First, we aligned the two T1 anatomical scans (“${ec}” refers to
the subject’s experiment code, the code for each patient used to
preserve anonymity).
3dAllineate -base 3dsag_t1_2.nii -source 3dsag_t1_1.nii -prefix
${ec}anatr1_1RegTo2 -verb -warp shift_rotate -cost mi -auto-
mask -1Dfile ${ec}anatr2toanatr1

Then, we averaged the two aligned anatomical scans into one
dataset.
3dmerge -gnzmean -nscale -prefix ${ec}anatavg 3dsag_t1_2.nii
${ec}anatr1_1RegTo2�orig
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We created skull-stripped anatomy to which the EPI could be
aligned.
3dSkullStrip -input {$ec}anatavg�orig -prefix {$ec}anatavgSS

The skull-stripped anatomy was then normalized to the N27
reference anatomical volume.
@auto_tlrc -base TT_N27�tlrc -no_ss -input {$ec}anatavgSS�
orig
adwarp -apar {$ec}anatavgSS_at�tlrc -dpar {$ec}anatavg�
orig

The four fMRI scan series were concatenated to one file (1–3
refer to block design reliability runs, and 4 refers to the localizer
run).
3dTcat -prefix {$ec}rall fmri_1.nii fmri_2.nii fmri_3.nii fmri_
4.nii

The next steps were for motion correction and distortion
correction.
3dresample -master {$ec}rall�orig -dxyz 1.0 0.938 0.938 -inset
{$ec}anatavgSS�orig -prefix {$ec}anatavgSScrop
align_epi_anat.py -epi2anat -anat {$ec}anatavgSS�orig -anat_
has_skull no -epi {$ec}rall�orig -epi_base mean

The aligned EPI data were smoothed using a 3 � 3 � 3 mm
FWHM Gaussian kernel.
3dmerge -doall -1blur_rms 3 -prefix {$ec}Albl {$ec}rall_al�orig

A mask of the EPI dataset was created.
3dAutomask -dilate 1 -prefix {$ec}maskAlbl {$ec}Albl�orig

fMRI activation maps were created through a deconvolution
analysis.
3dDeconvolve -fout -tout -full_first -polort a -concat runs.txt
-cbucket {$ec}mr_bucket
-input {$ec}Albl�orig -num_stimts 10 -nfirst 0 -jobs 2
-mask {$ec}maskAlbl�orig
-stim_times 1 ARblock.txt ’BLOCK(20,1)’ -stim_label 1 ARblock
-stim_times 2 VRblock.txt ’BLOCK(20,1)’ -stim_label 2 VRblock
-stim_times 3 Ablock.txt ’BLOCK(20,1)’ -stim_label 3 Ablock
-stim_times 4 Vblock.txt ’BLOCK(20,1)’ -stim_label 4 Vblock
-stim_file 5 {$ec}rall_vr_al_motion.1D’[0]’ -stim_base 5
-stim_file 6 {$ec}rall_vr_al_motion.1D’[1]’ -stim_base 6
-stim_file 7 {$ec}rall_vr_al_motion.1D’[2]’ -stim_base 7
-stim_file 8 {$ec}rall_vr_al_motion.1D’[3]’ -stim_base 8
-stim_file 9 {$ec}rall_vr_al_motion.1D’[4]’ -stim_base 9
-stim_file 10 {$ec}rall_vr_al_motion.1D’[5]’ -stim_base 10
-prefix {$ec}mr

The next steps describe the structural equation modeling of
the block design data. First, we used 3dSynthesize to find the best
fit of the block-design regressors.
3dSynthesize -cbucket {$ec}mr_bucket�orig -matrix {$ec}mr.
xmat.1D -select all -prefix {$ec}mr_all

Then, the best fits of the block-design regressors were sub-
tracted from the aligned and smoothed EPI dataset to create a
residual dataset.
3dcalc -a {$ec}Albl�orig -b {$ec}mr_all�orig -prefix {$ec}mr_
noall -expr “a-b”

The trials in the residual dataset corresponding to the
auditory-reliable (AR) and visual-reliable (VR) blocks were ex-
tracted into separate files.
3dTcat -prefix {$ec}AR_noall {$ec}mr_noall�orig’[300..309,315..
324,375..384,405..414,435..444,450..459,465..474,480..489,495..
504,570..579,615..624,645..654,690..699,705..714,735..744]’
3dTcat -prefix {$ec}VR_noall {$ec}mr_noall�orig’[330..339,345..
354,360..369,390..399,420..429,510..519,525..534,540..549,555..
564,585..594,600..609,630..639,660..669,675..684,720..729]’

These residual time series were used to calculate the correla-
tion matrix for each condition. The rows (left to right) and col-

umns (top to bottom) refer to the auditory ROI, visual ROI, and
STS ROI.
3dROIstats -quiet -mask {$ec}_L_ROI�orig {$ec}AR_noall�
orig � AR.1D
1ddot -terse AR.1D

1.00000 0.58155 0.58876
0.58155 1.00000 0.51082
0.58876 0.51082 1.00000

3dROIstats -quiet -mask {$ec}_L_ROI�orig {$ec}VR_noall�
orig � VR.1D
1ddot -terse VR.1D

1.00000 0.58355 0.60122
0.58355 1.00000 0.67784
0.60122 0.67784 1.00000
The output from 1ddot was then entered into the afni func-

tion 1dsem, which prompted the user for the number and names
of the ROIs, the correlation matrix (as shown above), and the
parameters of the structural equation model. For the unidirec-
tional model, we specified unidirectional connections from au-
ditory and visual cortex to STS; for the bidirectional model, we
specified bidirectional connections. The output of the SEM from
each subject was then entered into an ANOVA in Matlab for
group analysis.

Appendix B: Commands for Whole-Brain
Connectivity Analysis
The following are the commands used to perform the whole-
brain connectivity analysis (PPI) for experiment 1. First, the
commands in Appendix A were executed, followed by these ad-
ditional commands.

The auditory-reliable and visual-reliable residual time courses
were concatenated together.
3dTcat -prefix {$ec}RelWt_noall {$ec}AR_noall�orig {$ec}VR_
noall�orig

A generalized linear model analysis was performed on this
dataset using three regressors of interest: the residual time
series from the STS ROI, 150 values of �1 (150 auditory-
reliable time points) and 150 values of �1 (150 visual-reliable
time points), and the first regressor multiplied by the second
regressor (all regressors created in Microsoft Excel and saved
as text files).
3dDeconvolve -fout -tout -full_first -polort a
-input {$ec}RelWt_noall�orig -num_stimts 9 -nfirst 0 -jobs 2
-mask {$ec}maskAlbl�orig
-stim_file 1 STSnoall.txt -stim_label 1 STSnoall
-stim_file 2 condition.txt -stim_label 2 condition
-stim_file 3 PPI_noall.txt -stim_label 3 PPI_noall
-stim_file 4 {$ec}rall_vr_al_motion.1D’[0]’ -stim_base 4
-stim_file 5 {$ec}rall_vr_al_motion.1D’[1]’ -stim_base 5
-stim_file 6 {$ec}rall_vr_al_motion.1D’[2]’ -stim_base 6
-stim_file 7 {$ec}rall_vr_al_motion.1D’[3]’ -stim_base 7
-stim_file 8 {$ec}rall_vr_al_motion.1D’[4]’ -stim_base 8
-stim_file 9 {$ec}rall_vr_al_motion.1D’[5]’ -stim_base 9
-prefix {$ec}PPImr

The single-subject output from each subject was then entered
into a group analysis with the following command:
3dANOVA2 -overwrite -type 3 -alevels 2 -blevels 10
-dset 1 1 FPPPImr�tlrc’[8]’ -dset 2 1 FPPPImr�tlrc’[10]’
-dset 1 2 FRPPImr�tlrc’[8]’ -dset 2 2 FRPPImr�tlrc’[10]’
-dset 1 3 FTPPImr�tlrc’[8]’ -dset 2 3 FTPPImr�tlrc’[10]’
-dset 1 4 FVPPImr�tlrc’[8]’ -dset 2 4 FVPPImr�tlrc’[10]’
-dset 1 5 FXPPImr�tlrc’[8]’ -dset 2 5 FXPPImr�tlrc’[10]’
-dset 1 6 GFPPImr�tlrc’[8]’ -dset 2 6 GFPPImr�tlrc’[10]’
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-dset 1 7 GGPPImr�tlrc’[8]’ -dset 2 7 GGPPImr�tlrc’[10]’
-dset 1 8 GIPPImr�tlrc’[8]’ -dset 2 8 GIPPImr�tlrc’[10]’
-dset 1 9 GKPPImr�tlrc’[8]’ -dset 2 9 GKPPImr�tlrc’[10]’
-dset 1 10 GMPPImr�tlrc’[8]’ -dset 2 10 GMPPImr�tlrc’[10]’
-fa Stimuli -amean 1 PPI_Tstat -amean 2 AVFullFstat
-bucket 3dANOVA_PPI

Appendix C: Commands for Analyzing Experiment 2
Data
The following are the commands used to analyze a single-subject
dataset for experiment 2.

First, we aligned the two T1 anatomical scans (“ec” refers to
the subject’s experiment code).
3dAllineate -base 3dsag_t1_2.nii -source 3dsag_t1_1.nii -prefix
${ec}anatr1_1RegTo2 -verb -warp shift_rotate -cost mi -auto-
mask -1Dfile ${ec}anatr2toanatr1

Then, we averaged the two aligned anatomical scans into one
dataset.
3dmerge -gnzmean -nscale -prefix ${ec}anatavg 3dsag_t1_2.nii
${ec}anatr1_1RegTo2�orig

We created skull-stripped anatomy to which the EPI could be
aligned.
3dSkullStrip -input {$ec}anatavg�orig -prefix {$ec}anatavgSS

The skull-stripped anatomy was then normalized to the N27
reference anatomical volume.
@auto_tlrc -base TT_N27�tlrc -no_ss -input {$ec}anatavgSS�
orig
adwarp -apar {$ec}anatavgSS_at�tlrc -dpar {$ec}anatavg�
orig

The four fMRI scan series are concatenated to one file (1–3
refer to block design reliability runs, and 4 refers to the localizer
run).
3dTcat -prefix {$ec}rall fmri_1.nii fmri_2.nii fmri_3.nii fmri_
4.nii

The next steps are for motion correction and distortion
correction.
3dresample -master {$ec}rall�orig -dxyz 1.0 0.938 0.938 -inset
{$ec}anatavgSS�orig -prefix {$ec}anatavgSScrop
align_epi_anat.py -epi2anat -anat {$ec}anatavgSS�orig -anat_
has_skull no -epi {$ec}rall�orig -epi_base mean

The aligned EPI data are smoothed using a 3 � 3 � 3 mm
FWHM Gaussian kernel.
3dmerge -doall -1blur_rms 3 -prefix {$ec}Albl {$ec}rall_al�orig

A mask of the EPI dataset is created.
3dAutomask -dilate 1 -prefix {$ec}maskAlbl {$ec}Albl�orig

The amplitude of the hemodynamic response was estimated
for each individual word stimulus.
3dDeconvolve -fout -tout -full_first -polort a -concat runs.txt
-cbucket {$ec}RERmr_bucket
-input {$ec}Albl�orig -num_stimts 10 -nfirst 0 -jobs 2
-mask {$ec}maskAlbl�orig
-stim_times_IM 1 ARevent.txt ’BLOCK(2,1)’-stim_label 1
ARevent
-stim_times_IM 2 VRevent.txt ’BLOCK(2,1)’-stim_label 2
VRevent
-stim_times_IM 3 Ablock.txt ’BLOCK(20,1)’ -stim_label 3
Ablock
-stim_times_IM 4 Vblock.txt ’BLOCK(20,1)’ -stim_label 4
Vblock
-stim_file 5 {$ec}rall_vr_al_motion.1D’[0]’ -stim_base 5
-stim_file 6 {$ec}rall_vr_al_motion.1D’[1]’ -stim_base 6
-stim_file 7 {$ec}rall_vr_al_motion.1D’[2]’ -stim_base 7
-stim_file 8 {$ec}rall_vr_al_motion.1D’[3]’ -stim_base 8

-stim_file 9 {$ec}rall_vr_al_motion.1D’[4]’ -stim_base 9
-stim_file 10 {$ec}rall_vr_al_motion.1D’[5]’ -stim_base 10
-prefix {$ec}RERmr

The trials corresponding to the auditory-reliable (AR) and
visual-reliable (VR) words are extracted into separate files.
3dbucket -prefix {$ec}AR ’{$ec}RERmr_bucket�orig[24-143]’
3dbucket -prefix {$ec}VR ’{$ec}RERmr_bucket�orig[144-263]’

These vectors of 60 auditory-reliable word amplitudes and 60
visual-reliable word amplitudes were used to calculate the corre-
lation matrix for each condition. The rows (left to right) and
columns (top to bottom) refer to the auditory ROI, visual ROI,
and STS ROI.
3dROIstats -quiet -mask {$ec}_L_ROI_v1�orig {$ec}AR�
orig � AR.1D
1ddot -terse AR.1D

1.00000 0.69681 0.75244
0.69681 1.00000 0.70460
0.75244 0.70460 1.00000

3dROIstats -quiet -mask {$ec}_L_ROI_v1�orig {$ec}VR�
orig � VR.1D
1ddot -terse VR.1D

1.00000 0.43685 0.57950
0.43685 1.00000 0.67163
0.57950 0.67163 1.00000
The output from 1ddot was then entered into the afni func-

tion 1dsem, which prompted the user for the number and names
of the ROIs, the correlation matrix (as shown above), and the
parameters of the structural equation model. For the unidirec-
tional model, we specified unidirectional connections from au-
ditory and visual cortex to STS; for the bidirectional model, we
specified bidirectional connections. The output of the SEM from
each subject was then entered into an ANOVA in Matlab for
group analysis.

References
Alais D, Burr D (2004) The ventriloquist effect results from near-optimal

bimodal integration. Curr Biol 14:257–262.
Argall BD, Saad ZS, Beauchamp MS (2006) Simplified intersubject averag-

ing on the cortical surface using SUMA. Hum Brain Mapp 27:14 –27.
Beauchamp MS (2005a) Statistical criteria in FMRI studies of multisensory

integration. Neuroinformatics 3:93–113.
Beauchamp MS (2005b) See me, hear me, touch me: multisensory integra-

tion in lateral occipital-temporal cortex. Curr Opin Neurobiol
15:145–153.

Beauchamp MS, Cox RW, DeYoe EA (1997) Graded effects of spatial and
featural attention on human area MT and associated motion processing
areas. J Neurophysiol 78:516 –520.

Beauchamp MS, Lee KE, Haxby JV, Martin A (2002) Parallel visual motion
processing streams for manipulable objects and human movements. Neu-
ron 34:149 –159.

Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) fMRI responses to
video and point-light displays of moving humans and manipulable ob-
jects. J Cogn Neurosci 15:991–1001.

Beauchamp MS, Lee KE, Argall BD, Martin A (2004) Integration of auditory
and visual information about objects in superior temporal sulcus. Neuron
41:809 – 823.

Beauchamp MS, Yasar NE, Frye RE, Ro T (2008) Touch, sound and vision in
human superior temporal sulcus. Neuroimage 41:1011–1020.

Beauchamp MS, Pasalar S, Ro T (2010a) Neural substrates of reliability-
weighted visual-tactile multisensory integration. Front Syst Neurosci
4:25.

Beauchamp MS, Nath AR, Pasalar S (2010b) fMRI-guided transcranial
magnetic stimulation reveals that the superior temporal sulcus is a cortical
locus of the McGurk effect. J Neurosci 30:2414 –2417.

Belin P, Fecteau S, Bédard C (2004) Thinking the voice: neural correlates of
voice perception. Trends Cogn Sci 8:129 –135.

Bernstein LE, Lu ZL, Jiang J (2008) Quantified acoustic-optical speech sig-

1712 • J. Neurosci., February 2, 2011 • 31(5):1704 –1714 Nath and Beauchamp • Changes in STS Connectivity during Noisy AV Speech



nal incongruity identifies cortical sites of audiovisual speech processing.
Brain Res 1242:172–184.

Bernstein LE, Jiang J, Pantazis D, Lu ZL, Joshi A (2010) Visual phonetic
processing localized using speech and nonspeech face gestures in video
and point-light displays. Hum Brain Mapp. Advance online publication.
Retrieved September 30, 2010. doi:10.1002/hbm.21139.

Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Hu-
man brain language areas identified by functional magnetic resonance
imaging. J Neurosci 17:353–362.

Branch C, Milner B, Rasmussen T (1964) Intracarotid sodium amytal for
the lateralization of cerebral speech dominance; observations in 123 pa-
tients. J Neurosurg 21:399 – 405.
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