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Local Tissue Growth Patterns Underlying Normal Fetal
Human Brain Gyrification Quantified In Utero
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Existing knowledge of growth patterns in the living fetal human brain is based upon in utero imaging studies by magnetic resonance
imaging (MRI) and ultrasound, which describe overall growth and provide mainly qualitative findings. However, formation of the
complex folded cortical structure of the adult brain requires, in part, differential rates of regional tissue growth. To better understand
these local tissue growth patterns, we applied recent advances in fetal MRI motion correction and computational image analysis tech-
niques to 40 normal fetal human brains covering a period of primary sulcal formation (20 -28 gestational weeks). Growth patterns were
mapped by quantifying tissue locations that were expanding more or less quickly than the overall cerebral growth rate, which reveal
increasing structural complexity. We detected increased local relative growth rates in the formation of the precentral and postcentral gyri,
right superior temporal gyrus, and opercula, which differentiated between the constant growth rate in underlying cerebral mantle and the
accelerating rate in the cortical plate undergoing folding. Analysis focused on the cortical plate revealed greater volume increases in
parietal and occipital regions compared to the frontal lobe. Cortical plate growth patterns constrained to narrower age ranges showed that
gyrification, reflected by greater growth rates, was more pronounced after 24 gestational weeks. Local hemispheric volume asymmetry was
located in the posterior peri-Sylvian area associated with structural lateralization in the mature brain. These maps of fetal brain growth patterns

construct a spatially specific baseline of developmental biomarkers with which to correlate abnormal development in the human.

Introduction

Maturation of the human brain in the latter half of gestation is
manifested by substantial increases in volume, increasing com-
plexity of the cortical plate, and changes in the molecular and
cellular composition of the cerebral mantle tissue zones. In par-
ticular, gyrification occurs in a hierarchical fashion in which pri-
mary sulci emerge in a stereotyped fashion between 10 and 28
gestational weeks, followed by secondary and tertiary sulci that
show increasing variability across individuals (Dooling et al.,
1983; Garel et al., 2003; Bendersky et al., 2006).

Evidence from two-dimensional (2D) in utero fetal magnetic
resonance imaging (MRI) studies shows a spatially varying corti-
cal growth pattern. Manual segmentations of cerebral mantle
tissue zones on MRI describe the different growth trajectories for
the overall cerebral brain, germinal matrix, and ventricular vol-
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umes (Grossman et al., 2006; Kazan-Tannus et al., 2007; Hu et al.,
2009). Additionally, manual 2D measurements of laminar thick-
ness suggest regionally varying thickness in cortex and subplate
(Widjaja et al., 2010). These studies are dependent upon selective
manual measurements rather than comprehensive analysis of
normal brain growth. Recently, 3D reconstruction techniques for
fetal MRI (Rousseau et al., 2006; Jiang et al., 2007; Kim et al.,
2010) were developed together with a corresponding spatiotem-
poral atlas of developing brain tissues (Habas et al., 2010a). Ac-
curate and automated delineation of developing and transient
tissue boundaries (Habas et al., 2010b) allows for global and re-
gional volumetry. However, the development of a sulcated adult
brain from a smooth fetal brain requires an intricate series of local
tissue volume changes to form the complex shape and cortical fold-
ing pattern (Smart and McSherry, 1986a; Hilgetag and Barbas, 2006)
that underpins the functional specialization of the cortex. Local per-
turbations in cortical morphology are of interest as biomarkers of
abnormal neurodevelopment. Here, we aim to examine the early
stages of these tissue growth patterns without specific spatial hypoth-
eses with the use of tensor-based morphometry (TBM), which ex-
amines the pattern of local size differences across a set of anatomies
(Davatzikos et al., 1996; Studholme et al., 2001; Thompson et al.,
2001; Aljabar et al., 2008). In this study, we use TBM analysis com-
bined with a linear model of age to create maps that answer the
question, where is tissue being added more or less quickly than the
overall growth rate of the brain?
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Figure1.  Estimated volume increases of the cerebrum from 20 to 28 weeks GA. The volume
gain per week was 12.31 ml/week, and the percentage gain relative to the group average
volume (mean age 23.9 weeks GA) is 17%/week.
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2007), we anticipate growth rates to differ across the zones of the
cerebral mantle. We expect regions that add tissue at differential
rates to be correlated with the shape changes inherent to cortical
folding or reflect periods of rapid development or regression in par-
ticular structures. Knowledge of the spatiotemporal pattern of brain
growth in a normal population may provide structural biomarkers for
the study of abnormal brain development (Boardman et al., 2006).

Materials and Methods

Fetal subjects and image acquisition. The following experiments were
performed using 40 clinical scans of 38 fetuses at gestational ages
(GAs) ranging from 20 to 28 weeks GA (age distribution illustrated in
Fig. 1), estimated by last menstrual period. The mothers were referred
for fetal MRI due to questionable findings on prenatal ultrasound
(n =9) or a prior abnormal pregnancy (n = 8), or volunteered for
scans (n = 21) as part of studies at University
of California, San Francisco. All women had
normal fetal MRI. The subject population
contains 19 females and 19 males. The mean
delivery age was 39.3 weeks GA (37.4-41.57
weeks GA). The imaging study has Institutional Re-
view Board approval and complies with National
Institutes of Health human subject guidelines.

Clinical MR imaging was performedona 1.5T
scanner (GE Healthcare) using an eight-channel
torso phased-array coil. Multiple stacks of single-
shot fast spin-echo T2-weighted (T2w) slice im-
ages (in-plane pixel size of 0.5 mm X 0.5 mm,
thickness 3 mm, no gap) were obtained in the
approximately axial, sagittal, and coronal planes
with respect to the fetal brain. All slice images
were acquired in an interleaved manner to reduce
saturation of spins in adjacent slices. The MR se-
quence parameters (repetition time TR = 3000—
9000 ms, echo time TE = 91 ms) were originally
designed for clinical scans.

To account and correct for spontaneous fe-
tal movement during scanning, all image slices
in the slice stacks of a subject were registered
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Figure 2.

We focus on the critical period of early cortical folding, and re-
port results of a cross-sectional study of normal fetal human anato-
mies imaged in utero to extract statistical models of growth patterns.
As previously shown by regional volumetry (Kazan-Tannus et al.,

Graphical flowchart of the analysis procedure used to compute the growth rate maps and identify regions with
significant accelerations or decelerations. The fetal MRIs of the subjects are segmented into CP; NCP, which includes subplate,
intermediate zone, and deep gray nuclei; and VENT. GMAT. The segmentation maps are spatially normalized with a global affine
initialization followed by groupwise registration. Jacobian determinant maps from the deformation fields are computed and are
used in linear regression modeling of local volume changes with age. A t test is used to study deviations in the local growth rate relative to
the overall cerebral rate. Statistical significance is computed and corrected for multiple comparison using permutation tests.

jectory occurring during imaging. We have
recovered trajectories where individual slices
were displaced by as much as 15 mm or 30° of
rotation in one or more axes with respect to
their neighbors. Although fetal motion may
be expected to be highly correlated with fetal
age, in a separate study of data acquired at
our site, we found that maximum slice displace-
ment did not clearly correlate with age over the
age range of this study (Kim et al., 2010). The 3D
volume was reconstructed by gradient-weighted
Gaussian averaging, where voxels were selectively
weighted by the acquisition quality and com-
pounded into a 3D volume that is consistent with
each of the 2D slices.

Automatic tissue segmentation. The recon-
structed volumes were automatically segmented into regions of the cor-
tical plate (CP); subplate, intermediate zone, and deep gray nuclei [not
cortical plate (NCP)]; germinal matrix (GMAT); and ventricles (VENT)
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(as illustrated in Fig. 2) using the following ap-
proach. A spatiotemporal atlas of MR inten-
sity, tissue probability, and shape of the fetal
brain was created from 30 manual segmenta-
tions of subjects with gestational ages ranging
from 20 to 28 weeks GA (Habas et al., 2010a).
From this atlas, a synthetic age-specific MR in-
tensity template and an age-specific tissue
probability map were generated for each of the
40 scans. The subject MRI was aligned to the
age-matched MR template using a sequence of
global linear registrations driven by maximiza-
tion of normalized mutual information (Stud-
holme et al., 1999) followed by multiple elastic
deformations driven by maximization of mu-
tual information (Viola and Wells, 1997)
within a fixed mask. Based on the inverse of the
estimated spatial transformation, the age-
matched tissue probability map was aligned
with the subject MRI and used as a source of
spatially varying priors for automatic atlas-
based expectation-maximization (EM) brain
tissue segmentation (Habas et al., 2010b). This
approach to atlas-based segmentation of devel-
oping tissues in the human brain had been pre-
viously validated for young fetal subjects with
normal brain development (Habas et al.,
2010a, Habas et al., 2010b). The average values
of Dice similarity coefficient (DSC) between
automatic and manual segmentations calcu-
lated for 30 fetal anatomies were 0.88 = 0.03
for CP, 0.95 * 0.01 for NCP, 0.80 *0.04 for
GMAT, and 0.90 * 0.03 for VENT.

Groupwise registration. To compare anatomies at different stages of
development in detail, we need to estimate a mapping that brings each sub-
ject’s anatomy into correspondence with a common anatomical coordinate
system. Unlike adult morphometric studies (Thompson et al., 2000; Stud-
holme et al., 2004; Cardenas et al., 2007; Pieperhoff et al., 2008), because of
the significant range of anatomies being studied here, we have used a
template-free approach (Studholme and Cardenas, 2004) to avoid the intro-
duction of shape bias into the analysis. To do this, the tissue label maps for
each of the 40 scans were coaligned using an unbiased groupwise registration
algorithm (Fig. 2). The algorithm simultaneously estimated an average brain
shape and a deformable mapping to each of the anatomies being studied.

This average shape was estimated in such a way to ensure that the
average distance from each point in that space, when mapped to the
individuals in the group, is forced to be zero, forming a so-called mini-
mum deformation anatomy. To avoid the additional possibility of bias
caused by significant MR tissue contrast change with age in the develop-
ing fetal brain, we took the approach of aligning tissue label maps derived
from automated segmentation, rather than aligning the raw MR image
values directly, as is commonly used in adult TBM studies (Chung et al.,
2001), where tissue contrast can be assumed to be constant. Finally, we
also know that some transient tissue classes are not consistently present
over the age range of our study, specifically regions of GMAT and subplate
are present at the beginning of this period (20.5 weeks GA) but are not visible
in MRI in many brain regions later in the developmental period (27 weeks
GA). Asaresult, estimating a meaningful diffeomorphic mapping fora TBM
analysis would not be possible with these inconsistent boundaries, since
these would induce artifactual folding of the mapping between anatomies as
the alignment attempts to account for the missing tissue classes in older
anatomies. In this study, we therefore took the approach of combining the
tissue classes, so as to exclude inconsistent transient tissue boundaries from
the registration process. This was achieved by combining the transient tissue
classes, corresponding to the germinal matrix, the intermediate zone, sub-
plate, and subcortical gray matter, into NCP tissue label.

For the alignment of the different anatomies, we first seeded the
groupwise registration using a linear registration of the NCP regions of
each subject to a single average NCP tissue map as in (Habas et al.,

Figure 3.
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Example intermediate results of processing steps for a representative subject (26.86 weeks GA). a, Original T2-
weighted image. b, Automatic segmentation of the image into CP, NCP, GMAT, and VENT. The segmentation is converted into
tissue probability maps for CP and NCP to exclude age-inconsistent, transient tissue boundaries. ¢, Deformation vector map
overlaid on the population average image showing the deformation required to map the group average anatomy to the subject. d,
Jacobian determinant map computed from the deformation vectors; bright regions correspond to local expansions and dark
regions correspond to local contractions.

2010a). We then estimated a set of unbiased dense field deformations
that minimize the mean square difference between each subject tissue
label map (NCP, CP, CSF) and the current average (NCP, CP, CSF) tissue
label map of the group. This was iteratively refined using a gradient
descent of the squared difference in tissue labels between the current
average and each individual’s tissue map, summed over each tissue class,
then minimized with respect to the displacement vector at each voxel. A
Gaussian smoothing operator (Thirion, 1998; Modersitzki, 2004) was
used to regularize the deformation fields during alignment to ensure a
spatially differentiable mapping. A composition of a sequence of two of
these diffeomorphic mappings, each characterized by a vector field of
displacements, from the average anatomy to each subject was estimated.
This first captures larger-scale shape differences (using a 2 mm Gaussian
regularization kernel) and then more local shape differences (using a 1
mm Gaussian regularization kernel). These regularization factors were cho-
sen experimentally to enforce numerically diffeomorphic mappings during
the registration. To validate this process, we used a subset of subjects with a
representative age distribution for which manual tissue segmentations were
also available. First, this group was aligned using the combination of auto-
mated tissue segmentation and groupwise alignment used in this paper.
Then the transformations were used to map the manual segmentations into
the resulting average space, allowing an independent measure of tissue align-
ment. The resulting overlap of the manually segmented regions in the com-
mon space was evaluated with DSC coefficients of 0.84 = 0.02 for the CP and
0.94 = 0.01 for the NCP. This was comparable to the underlying differences
between manual and automated tissue segmentation, indicating that the
groupwise registration had resolved the majority of true differences in anat-
omy. In addition, we confirmed that all deformations remained diffeomor-
phic for these regularization parameters.

Deformation tensor morphometry and statistical analysis. The resulting
Jacobian matrix of the sequence of deformations at each point in the
reference space to each subject was then calculated (Christensen et al.,
1996) and used to provide a map of the local size differences between the
average anatomy and each individual anatomy of the group. The deter-
minant of this matrix provided a scalar summary of the volume changes
in three spatial axes (Fig. 2). An illustration of the Jacobian determinant
map for a representative subject is shown in Figure 3.
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axial sections from superior to inferior at 5 mm intervals. The growth rate varied across the zones of the cerebral mantle.

Figure4.

We analyzed the set of maps of the subjects using voxelwise general linear
modeling with age, to test the hypothesis that the relationship between the
local tissue volume changes with age (i.e., growth rate) is significantly differ-
ent (greater or lesser) than the overall cerebral growth rate. Here we deter-
mined the overall cerebral growth rate by the size changes captured by the
initial linear registration together with the average Jacobian of the cerebral
tissues for each subject. We performed two forms of shape analysis derived
from the deformation tensor maps (Fig. 2): first, a voxelwise analysis cover-
ing all voxels in brain tissues to create 3D statistical map of growth, and then
one specifically focused on the cortical plate by forming 2D maps over the
brain surface to provide increased sensitivity by constraining the statistical
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analysis to the cortex. To perform a cortical surface analysis, the outer surface
of the cortical plate in the group average tissue segmentation map was
formed into a triangulated mesh using a topology preserving marching cubes
algorithm (Lopes and Brodlie, 2003). The Jacobian determinant values rep-
resenting changes in local thickness and area of the cortical plate within 4
mm of each surface vertex were averaged and placed onto the surface mesh
for surface modeling. For each subject, this then provided a map that summa-
rizes underlying changes in both surface area and thickness of the outer CP.
For both voxel and surface analyses, a linear model against age was
constructed to test our hypotheses (Fig. 2). This formed a linear regres-
sion (using all scans) with age as the independent variable and the Jaco-
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bian determinant (after correction for total cerebral size) as the dependent
variable. The resulting regression coefficients ( B) provided an estimate of the
local rate of growth relative to the whole cerebrum. T statistics were calcu-
lated for each voxel or surface vertex together with the corresponding
multiple-comparisons-corrected significance values (corrected using
nonparametric permutation testing) (Nichols and Holmes, 2002).

Changes in relative growth rate and pattern over time. We initially per-
formed a constant linear growth model for our voxelwise analysis,
though we were interested in the changes in the rate of relative tissue
growth. However, statistically and computationally we were limited by
the sample size for a full voxelwise nonlinear analysis. Therefore we chose
to look for changes in rate by dividing the group by age and estimate
linear models in each. The subgroups were more mature (17 scans with
GA =24 weeks such that age distribution is 26.03 = 1.04 weeks GA) and
less mature (23 scans with GA <24 weeks such that age distribution is
22.31 = 0.82 weeks GA). Groupwise registration was repeated for each
group separately and growth patterns (over both whole brain and the CP
region) were analyzed as described previously. By analyzing the two
groups individually, we examine changes in the growth pattern over time.
Qualitative MRI studies typically detect sulci 2—3 weeks later than found by
histopathology (Dooling et al., 1983; Garel et al., 2003). For example, the
central, collateral, and superior temporal sulci are visible by 23 weeks GA on
histology, but after 26 weeks GA on MRI (Garel et al., 2003). Here, we
examine whether TBM allows us to identify emergence of early primary sulci
before they are known to become visually detectable on the MRI.

Quantifying regional growth rates. We next performed a secondary
analysis of regions with significant deviations from the cerebral growth
rate to explore whether the rate of growth in these regions was better
modeled nonlinearly. However, explicit nonlinear modeling of changes
in the relative growth rate at each voxel is limited by the number of
subjects in our study. Therefore, we used the initial voxelwise statistical
maps to identify distinct subregions among the significantly faster grow-
ing voxels. We then located highly significant voxels (with T'= 10) and
used these as region centers. For every voxel with T > 5.86 ( p < 0.05,
corrected), we assigned it to the nearest connected region center to create
a partitioning of the growth pattern. The regions of interest (ROIs) cor-
responded to anatomical regions that contribute to the most significant
local variations in growth rate. Using all subjects, we computed the av-
erage Jacobian determinant value within each ROI, which gives a sum-
mary measure of how that region of tissue changes in size relative to the
cerebrum. Growth in each ROI was then represented as a percentage
change per week relative to the cerebral growth rate. For larger regions
with volume =0.2 cm?, we also computed the local growth rate by using
a best-fit linear or nonlinear model with the average Jacobian determi-
nant as the dependent variable and age as the independent variable.
These models allowed us to quantify the rates at which tissue is being
added at specific anatomical locations in the brain within groups of
voxels that are growing together, rather than enforce a priori spatial
hypothesis of manually delineated regions.

Local volume asymmetry. To examine the emergence of asymmetries,
we performed an additional TBM analysis that used a symmetric group-
wise nonrigid registration of the tissue maps that also accounted for
differences in anatomy on each side of the brain. This was performed by
reflecting each of the tissue maps along the sagittal midline (longitudinal
fissure) and then registering the original and reflected brains collectively to
form a single symmetric average brain shape from the group. We then tested
for age-consistent size differences between the left and right hemispheres,
while accounting for linear growth rate in the group. This analysis was ap-
plied to the whole group and then separately to the less and more mature
groups to look for changes in asymmetry. Permutation testing was used
within a brain mask of the right hemisphere to correct the asymmetry maps
of significance for multiple comparisons. Positive significant hemispheric
differences in local volume indicated greater volume in the right hemisphere
compared to the left and vice versa for negative values.

Results

In overview, we detected volumetric patterns of significantly
(p < 0.05, corrected) slower or faster linear growth than the
overall cerebral growth rate as determined from voxelwise and
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Figure5.  Cortical growth rate patterns. a, b, Dorsal () and lateral (b) views of T statistic map of
the model of CP volume increases. White contours indicate regions that are statistically significantly
different from the cerebral growth rate after multiple-comparisons correction ( p << 0.05). Mostly
positive T values indicate faster than cerebral growth rate across the majority of the CP.

surface-based analyses. Reported local rates are percentage vol-
ume change per week relative to the average cerebral growth rate
of 17% per week (Fig. 1). For example at a particular voxel or
vertex, —6% means that this location grew 6% per week less than
the average weekly rate of 17%, or an absolute rate of ~11% per
week. Voxelwise results are presented in order of increasing
depth of the brain: cortical plate, remaining fetal brain tissue
zones and subcortical nuclei (NCP), and ventricles. Significant
changes in volume are predominantly bilateral unless noted oth-
erwise. T statistic maps displayed in each orthogonal plane and
minimum and maximum intensity projections are included in
supplemental material (available at www.jneurosci.org).

In this TBM study, folding of the cortical plate would appear asa
greater expansion rate at sulcal fundi because the tissue is being
warped away from the corresponding voxel on the average brain.
Therefore our interpretation of faster growth in the cortical plate at
anticipated sulcal sites reflects the additional infolding of the sulci
relative to the outer skull boundary. Without additional image con-
trasts that provide cortical landmarks [e.g., diffusion tensor imaging
(DTI)] to define corresponding regions of cortex at different develop-
mental ages, these maps cannot directly examine differences in growth
rate between gyral crests and sulcal valleys as histological studies may be
able to (Hilgetag and Barbas, 2006; Bystron et al., 2008).

For the voxelwise analysis, growth rate maps showing re-
gions of significantly increased or decreased growth (com-
pared to the overall growth) are overlaid on the spatially
normalized average MRI (Fig. 4) and displayed using the
RView software (http://rview.colin-studholme.net). T value
surface maps computed from the analysis of the CP surfaces
are used to indicate differential growth patterns on the CP with
contours delineating regions of statistically significant local varia-
tions in growth rates (Fig. 5). Mean relative growth rates are reported
in Table 1 and Figure 6 for regions that exhibit significantly greater
growth rate than average cerebral growth rate. Differences in
relative growth rates between less and more mature groups are
studied by comparing their individual regression analyses (Figs.
7, 8). Last, we tested for local volume differences across hemi-
spheres over the full age range and the age subgroups (Figs. 9, 10).

Local relative growth patterns

Cortical plate

The deformation tensor model localized to the cortical plate is
sensitive to focal changes in both cortical thickness and area.
Local growth in the cortical plate was either similar to or signifi-
cantly greater than the overall cerebral rate (Fig. 1). Quantita-
tively, from the regional analysis, the local relative growth rates
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Table 1. Average regional growth rates (relative to cerebral growth rate) for the
most significant regions
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and parietal lobes (Fig. 4b). Posterior to the central sulcus, the
dorsal and lateral cortical plate expanded faster than the over-

Rate Volume  all cerebral rate (Figs. 4b—h, 5a). Specifically, increased growth
Regions Hemisphere (%/week) (cm”) was apparent over most of the insula and frontal, parietal, and
Anterior frontal NCP Left 9.63 0.27 temporal opercula.(F%g. 5b). )
Anterior frontal NCP Right 11.00 0.16 Other areas of significantly greater growth were found bilat-
Anterior temporal NCP Left 12.90 0.14 erally at emerging sulci: central (Figs. 4a—e, 5b, 6b), circular (Figs.
Anterior temporal NCP Right 12.27 0.07 4h—k, 5a), and cingulate (Fig. 4c—g). From the quantitative re-
Anterior thalamus Right 737 0.02 gional analysis, the central and cingulate sulci expanded at the
Central sulcus Left 17.94 0.02 greatest relative rate compared to other locations in the cortical
Central sulcus Right 1889 0.03 plate (Table 1). However, the regional growth rate along these
Cingulate _SUICUS Both 11.99 0.79 sulci were better fit by exponential curves, rather than a constant
Frontoparietal NCP Left 10.45 0.55 . . C e s .

. ) linear rate (Fig. 6a,b), which indicates an acceleration of growth
Frontoparietal NCP Right 9.90 0.95 in th . Toal d hel | orbital (Fie. 41
Hippocampus tail Right 1409 0.05 in these regions. To a lesser degree, the lateral orbita ( ig. —n-),
Insula and operculum Left 11.84 0.67 superior temporal (Fig. 4h—j), right parieto-occipital (Fig. 4j),
Insula and operculum Right 11.10 0.84 and right calcarine (Fig. 41) sulci grew at increased rates.

Orbital sulcus Left 10.63 0.03 Fetal brain ti d subcortical oi
Superior temporal sulcus Right 9.73 0.06 I etla raim .téssue zones an ;uhcofr tlcil bnuF e h
Temporal operculum Left 1041 0o n large uniform regions of the fetal brain tissue zones (such as
Ventral caudate Left 6.57 o3 deep within the cerebral mantle), the available contrast of T2w
Ventromedial occipital NCP Right 15.56 0.02 MRI (and the derived NCP segmentation) limits our ability to
localize volume changes to specific tissue
zones. As a result, TBM studies of patterns
a Cingulate Sulcus b R & L Central Sulcus of tissue expansion or contraction occur-
°] ’ ° ring within these regions must be inter-
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Figure 6.

to the color used for the growth rate plot lines (a—e).

varied in that the greatest deviations were up to twice the global
rate (Table 1, Fig. 6). Similar patterns in the cortical plate were
found in the voxelwise and surface analyses, though larger re-
gions of significant change were detected by the models specifi-
cally constrained to the surface (Fig. 5). The most rapid growth in
the cortical plate occurred along the midline surface of the frontal

Regional analysis of growth rate changes for bilateral ROIs with volume =0.2 cm . a—e, Mean Jacobian determinant
calculated for each significant RO, for all subjects mapped against age of the subject. Each panel shows the best-fit model against
age foreach ROI (right, solid; left, dashed): combined right and left cingulate CP (blue) (a), right (square) and left (diamond) central
sulci CP (green) (b), right and leftinsulaand operculum CPand NCP (purple) (c), right and left frontal NCP (yellow) (d), and right and
left midline frontoparietal NCP (red) (e). fand g are 3D surface representations of significant ROIs. The color of each ROl corresponds

I). The dorsomedial aspect of the subplate
and intermediate zone in the frontal and
the parietal lobes (Fig. 4b,c,e—g) and the
anterior frontal cerebral mantle (Fig.
4h-1) grew faster than the overall cerebral
rate. Near 20 weeks GA, the relative size of
these cerebral mantle areas to the average
brain was similar, as shown by the growth
curve intercept (calculated from regional
analyses) in Figure 6. Further calculation of the regional mean
rates show that these are growing linearly with age (Fig. 6c—e).
Some regions of subcortical nuclei displayed significantly
greater than cerebral growth rates. The ventral part of the basal
ganglia showed elevated relative growth rates (Fig. 4j—1) as well
a region localized to the anterior thalamus (Fig. 47). The hip-
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Figure 7.  Surface rendering of average shape of the inner CP for 20 —23 weeks GA (a) and
24-28 weeks GA (b). The progression of folding is clearly visible, with primary sulci discernible
on the average inner CP surface in b.
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Figure 8.  Maps showing the changes in the relative linear growth pattern over time be-
tween the more and less mature groups. T statistic map of CP growth rate relative to overall
cerebral brain growth, overlaid on average the CP surface for the less (a) and more (b) mature
age groups. White contours indicate regions that are statistically significantly different from
overall cerebral brain growth after multiple-comparisons correction ( p << 0.05). Before 24
weeks GA, significantly greater than average growth is seen along the left frontoparietal oper-
culum. The superior part of the central sulcus grew at an accelerated rate compared to average
growth from 24 and 28 weeks GA.

pocampus showed accelerated growth in the tail bilaterally
and in the right anterior part (Fig. 4k—m). Reduced growth
rates were localized to the basal forebrain (Fig. 41,m).

Decreased relative growth rates were observed in the NCP,
close to the NCP-VENT boundary, corresponding to the germi-
nal matrix bilaterally in frontal (Fig. 4f—j), parietal (Fig. 4f~h),
and occipital (Fig. 4h,i) lobes. In the frontal lobe, only the germi-
nal matrix surrounding the horns of the lateral ventricles had
a lower growth rate. In the parietal lobe, the germinal matrix
around the lateral ventricles, and not the subcortical nuclei,
showed significantly lower relative growth rates. No areas of
the germinal matrix exhibited greater than cerebral growth
rates.

Ventricles

The boundary of the ventricles shared with the cerebral mantle
showed decreased relative growth rate (Fig. 4¢—j). The ventricles
did not have any areas of relatively greater growth rate than the
whole cerebrum.
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Relative growth patterns before and after 24 weeks GA

The mean NCP surfaces of the average shape of the less and more
mature groups are shown in Figure 7 and demonstrate the in-
creased volume and development of cortical folds with age in the
two groups. In the TBM analysis, as a consequence of smaller
group sizes and conservative multiple-comparisons correction,
fewer voxels reached significance in the analysis within the age
groups, and the patterns exhibited less similarity in both hemi-
spheres compared to the results from the full age range (Fig. 8).
Despite this, the patterns in the relative growth rate maps of the
more mature group were similar to that of the full age range (Fig.
8D). In the latter age group, increased relative growth rates were
localized to the central, cingulate, and superior temporal sulci
and dorsal parietal and occipital lobes. Relative to the average
growth rate from 24 to 28 weeks GA, the opercula had a lower
growth rate, which was unlike the broader age range.

The pattern of growth in the less mature group qualitatively
matched that of the full age range, in that reduced relative growth
rates were present in much of the dorsal frontal lobe (Fig. 8a). In
contrast to the more mature group, the posterior operculum and
insula grew at a slightly faster rate in the less mature group, which
is also represented in the full age range.

Hemispheric volume asymmetry

In some regions of accelerated growth, the volume was not bilat-
erally symmetrical. Specifically, the opercula showed a distinct
asymmetry in which the left posterior frontoparietal operculum
was larger than the right and the right posterior temporal oper-
culum was larger than the left (Fig. 9a). As shown by asymmetry
analysis of the less and more mature age groups, the location of
significant asymmetry shifted posteriorly with age (Fig. 9b,c). The
difference in the local volume is illustrated in Figure 10, in which
the original and symmetrical average cortical plate are overlaid.
The frontal and postcentral dorsomedial cerebral mantle, includ-
ing cortical plate, was larger in the right hemisphere (Fig. 9a) and
did not include the frontal pole. This pattern was also found when
the more mature group was analyzed alone (Fig. 9¢), whereas in
the less mature group, right greater than left asymmetry was pri-
marily localized to the presumptive precentral gyrus (Fig. 9b).

A small area of the left parahippocampal cerebral mantle was
larger on the left compared to the right, and this asymmetry was
present in the age subgroups. In the analysis of the entire age
range, the ventromedial cerebral mantle of the occipital pole was
larger in the left hemisphere, but this was not detected in either
subgroup. In addition, an area of the caudate body was larger in the
right hemisphere when the whole group was analyzed, but not in
either subgroup. In a ventrolateral part of the cerebral mantle of the
posterior temporal lobe, there was a localized region that was larger
on the left hemisphere, though this did not correspond to a distinct
anatomical location. In the less mature group only, the tail of the hip-
pocampus was larger in the left hemisphere. There were not any regions
of significant asymmetry found in the more mature group alone.

Discussion

In this work we have created, for the first time, maps of the local
variation in tissue expansion in the normal human fetal brain in
utero to examine the emergence of structural complexity. The age
range studied (20—28 weeks GA) covers a developmental stage
from a time at which few sulci have formed to a time at which
most of the primary sulci have formed, but before secondary sulci
appearance on MRI (Garel et al., 2003). This age range is also
important clinically, since this coincides with the typical gesta-
tional age for clinical MRI scans, when critical evaluations of the



Rajagopalan et al. ® Fetal Brain Growth Patterns J. Neurosci., February 23,2011 - 31(8):2878 —2887 + 2885

T values

I+7

Figure9. Tstatisticmaps of significant ( p << 0.05, corrected) local volumetric asymmetries present from 20 to 28 weeks GA, in which warm colors indicate right hemisphere greater than left and
cool colors represent left greater than right. T values are projected on the surface of the brain and overlaid on cross-sectional slices of the right hemisphere. The peri-Sylvian and dorsomedial
asymmetric regions are illustrated in the full age range (a), less mature (b), and more mature (c) groups. The asymmetry around the Sylvian fissure was concentrated to the posterior extent during
this opercularization process. The volume of rightward asymmetry in the frontal and parietal lobes increased with age as shown by the small pericentral region in the less mature group compared

to the much larger extent in the more mature group.

Figure 10.  Cross-sectional images of the CP mask and symmetrical contour of the average
brains from 20to 23 weeks GA (a) and 24 to 28 weeks GA (b) shown in the axial (left) and coronal
(right) planes. The asymmetry in the peri-Sylvian region is clearly visible in the more mature
average brain, which demonstrates that the asymmetry becomes more pronounced with age
(solid arrow, temporal operculum; open arrow, parietal operculum).

pregnancy are often needed (Bendersky et al., 2006; Glenn and
Barkovich, 2006). Normal growth patterns of this period are
therefore vital for defining delay or abnormality in the formation
of sulcal and gyral structures (e.g., Guibaud et al., 2008). Our
findings highlighted the development of primary sulci, by the
locations of significant volume changes, that are known to appear
between 20 and 28 weeks GA, namely, the central, cingulate,
circular, calcarine, and superior temporal sulci (Dooling et al.,
1983; Garel et al., 2003). Relative growth in the fetal brain was
spatially heterogeneous and associated with specific tissue zones.
Generally, faster than average growth was localized to emerging
sulci and the subplate and intermediate zone. On the other hand,
slower growth was found in the germinal matrix and ventricles.
These spatiotemporal patterns derived from the relative growth rate

maps cannot be directly compared to previous qualitative and quan-
titative studies that do not have comprehensive local measurements.
So, we will discuss how these results fit into the existing knowledge
based upon global MRI morphological analyses and developmental
time courses from histopathology of the human fetal brain.

Comparison to previous findings

We have detected the formation of sulci by a voxelwise model of
local volume changes over time, in contrast to visual inspection
that qualifies only the presence or absence of a sulcus. This means
we could identify the period of time in which a change in shape
was occurring. By calculating mean relative growth rate in ana-
tomically meaningful regions, we have differentiated between
the growth patterns in subplate and intermediate zone and the
accelerating rate in the cortical plate undergoing folding (Fig.
6). This may reflect the developmental processes of increasing
complexity and transient connectivity in the subplate and the
beginning of corticocortical and thalamocortical connectivity
leading to gyrogenesis (Hilgetag and Barbas, 2006; Diaz and
Gleeson, 2009; Kostovi¢ and Judas, 2010). The timing of the
differential growth patterns corresponds to what is known
about the time course of cortical connectivity. For example,
we show that the accelerating changes at the central sulcus
were concentrated to after 24 weeks GA (Fig. 8), which over-
laps with the arrival of thalamocortical input to somatosen-
sory cortical plate (Kostovic and Rakic, 1990).

The relative growth rate maps show how growth of multiple
tissue zones is associated with morphological changes of the cor-
tical sheet. Global measures of volume (e.g., ROIs) or curvature
(e.g., gyrification index) alone would not have revealed the spatial
relationship between tissues since they do not localize where the
tissue-specific changes are occurring. For example, Hu et al.
(2009) did not find strong correlations between regional cerebral
volume growth rates and regional curvature index between 21
and 37 weeks GA. However, global analysis of volume and gyri-
fication show that acceleration of growth occurs at the same time
as primary gyrification (Kochunov et al., 2010). By studying sim-
ilar parameters (volume and shape) in a voxelwise manner with
TBM, we have shown that tissue volume is expanding in NCP
under gyral crests adjacent to sites of sulcation, which was indi-
cated by increased relative growth rates in the cortical plate at sulcal
fundi (Fig. 4¢; supplemental Figs. 12, 13, available at www.jneurosci.
org as supplemental material). The associated volume changes be-
tween tissue zones have not previously been demonstrated in the
human fetal brain in utero, but been proposed in histological studies
of other species (e.g., Smart and McSherry, 1986b).
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Like visual inspection-based MRI studies of gyrification, our
TBM analysis also detected the emergence of most primary sulci
after 24 weeks GA. Application of TBM to the less mature group
did not identify significant changes in some sulci, such as the
superior temporal sulcus, which are also not identified in quali-
tative MRI studies at this age (Garel et al., 2003; Bendersky et al.,
2006). However, histopathological studies do locate the superior
temporal sulcus in 75% of cases by 23 weeks GA (Dooling et al.,
1983). The disparity between what can be visualized in T2w MRI
compared to histopathology at this fetal stage suggests limitations
in the resolution and contrast of in utero MRI studies. Addition-
ally, TBM analysis is not sensitive to sulci that are developing at a
rate similar to the average growth of the brain. These may include
the callosal and olfactory sulci, which are identified before 20
weeks GA on histopathological sections (Dooling et al., 1983).

By comparing the local volume differences across hemi-
spheres, we have shown that peri-Sylvian asymmetries are emerg-
ing by 20 weeks GA (Toga and Thompson, 2003). This is
demonstrated by the greater volume in the right posterior tem-
poral operculum, which would be associated with the sharper
angle of the posterior Sylvian fissure on the right hemisphere
(LeMay, 1976), resulting in relatively more tissue in this region
on the right hemisphere. The leftward parietofrontal operculum
asymmetry was not anticipated (Toi et al., 2004; Quarello et al.,
2008) and may be due to morphological characteristics associated
with the Sylvian fissure path that shift the relative position of the
tissue (Fig. 10). Interestingly, the rightward asymmetry in the
medial frontal lobe and leftward asymmetry in the medial occip-
ital pole may be evidence of the beginning of hemispheric frontal
and occipital torque, which is present in the neonatal brain (Tza-
rouchietal., 2009). These findings suggest that some hemispheric
asymmetries occur as the structures form.

Growth in the germinal matrix and ventricles was significantly
slower than cerebral growth from 20 to 28 weeks GA. Previous
volumetric studies indicate that little, if any, absolute increase in
germinal matrix size occurs after 20 weeks GA (Jammes and Gilles,
1983; Kinoshita et al., 2001). The current TBM analysis adds that the
reduced relative growth rate is consistent across much of the germi-
nal matrix. Planimetry analysis of postmortem fetal brain tissue
shows that both the ganglionic and extraganglionic eminences reach
maximum volume at ~26 weeks GA and then decrease (Jammes
and Gilles, 1983), which supports the pattern seen in this analysis.
Also by 20 weeks GA, the basic organization of supragranular and
infragranular layers is present in the cortical plate, and further pro-
liferation of cortical neural precursor cells is limited to the subven-
tricular zone of the germinal matrix [ for review, see Rakic (1988) and
Bystron etal. (2008)]. The diminishing proliferation in the germinal
matrix during our period of study may explain the slower growth.

Future directions

Motion correction and 3D reconstruction of in utero multislice
2D T2w MRI provide a geometrically consistent 3D volumetric
image of the entire brain, and enable quantitative normal brain
growth studies that complement postmortem histological studies
of the human fetus. Although our analysis is now based on a
relatively small number of fetuses, compared to postnatal imag-
ing studies, we have established the applicability and strength of
our method for early fetal imaging studies. By using our TBM
approach, definitive patterns of spatial variations in brain growth
and maturation rates may be obtained as more normal fetal im-
ages become available. Due to the ethical considerations of re-
peated in utero fetal MRI and the necessary short intervals
between imaging sessions, we were not able to conduct longitu-
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dinal analysis to look at individual growth patterns and reduce
intersubject variability. However, the morphological changes
over this age range far outweigh intersubject differences in the
fetal brain before the emergence of tertiary sulci. These normative
profiles of change in volume derived from cross-sectional data
may quantify the normal variation and distinguish abnormal
brain development from random intersubject variations.

Though in the present study we solely used the volume infor-
mation from the deformation tensor analysis, additional param-
eters can represent other aspects of the growth patterns. For
example, studying directional, volume-preserving changes in tis-
sue growth (Lepore et al., 2008) may complement the findings
presented in this study.

Anatomical interpretations of the growth rate maps derived
from the nonlinear registration are limited to the available tissue
boundaries—in this study, CP, NCP, and VENT. Further refine-
ments of these maps will be possible with the development of
registration methods capable of dealing with transient tissue
classes, such as the germinal matrix and subplate, and making use
of additional tissue contrasts such as DTI (Studholme, 2008).

Conclusion

This was the first application of TBM to in utero structural MRI of
normally developing fetal brains and appends to the age range of
the growing body of work characterizing growth patterns in chil-
dren, term neonates, and prematurely born infants (Hiippi et al.,
1998; Giedd et al., 1999; Sowell et al., 2003; Aljabar et al., 2008;
Dubois et al., 2008; Knickmeyer et al., 2008; Hua et al., 2009). By
this method, we have identified where tissue volume and shape
changes are deviating from the global trajectory between 20 and
28 weeks GA. We have detected the emergence of sulci and gyri by
differentiating between the changes in the cortical plate and the
underlying cerebral mantle. Extension of this type of analysis to
later fetal ages or postnatally may characterize further cortical
folding and myelination that is associated with anatomical
changes in T1w, T2w, and diffusion-weighted MRL
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