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Natural stimuli often have time-varying first-order (i.e., mean) and second-order (i.e., variance) attributes that each carry critical
information for perception and can vary independently over orders of magnitude. Experiments have shown that sensory systems con-
tinuously adapt their responses based on changes in each of these attributes. This adaptation creates ambiguity in the neural code as
multiple stimuli may elicit the same neural response. While parallel processing of first- and second-order attributes by separate neural
pathways is sufficient to remove this ambiguity, the existence of such pathways and the neural circuits that mediate their emergence have
not been uncovered to date. We recorded the responses of midbrain electrosensory neurons in the weakly electric fish Apteronotus
leptorhynchus to stimuli with first- and second-order attributes that varied independently in time. We found three distinct groups of
midbrain neurons: the first group responded to both first- and second-order attributes, the second group responded selectively to
first-order attributes, and the last group responded selectively to second-order attributes. In contrast, all afferent hindbrain neurons
responded to both first- and second-order attributes. Using computational analyses, we show how inputs from a heterogeneous popula-
tion of ON- and OFF-type afferent neurons are combined to give rise to response selectivity to either first- or second-order stimulus
attributes in midbrain neurons. Our study thus uncovers, for the first time, generic and widely applicable mechanisms by which parallel

processing of first- and second-order stimulus attributes emerges in the brain.

Introduction

Natural sensory stimuli often have rich spatiotemporal structure
characterized by first- and second-order attributes that vary in-
dependently of one another (Attias and Schreiner, 1997; Simon-
celli and Olshausen, 2001; Lewicki, 2002; Heil, 2003; Joris et al.,
2004; Mante et al., 2005; de Kock and Sakmann, 2009). For audi-
tory stimuli, first- and second-order attributes would correspond
to acoustic pressure and amplitude, respectively.

Although second-order attributes are critical for perception
(Shannon et al., 1995, 1998; Bertoncini et al., 2009), their neural
processing continues to pose a challenge to investigators. This is
in part because sensory neurons adapt their response properties
in response to changes in both first- and second-order attributes
(Brenner et al., 2000; Fairhall et al., 2001; Nagel and Doupe, 2006;
Maravall et al., 2007; Lundstrom et al., 2008, 2010). This process
optimizes coding (Barlow, 1961; Laughlin, 1989; Wark et al.,
2007) but also creates ambiguity as the same neural response
(e.g., firing rate) can then be elicited by multiple stimuli with
different attributes (Fairhall et al., 2001; Wark et al., 2007).
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One solution to this problem is to have independent coding of
first- and second-order attributes by separate and parallel neural
pathways (Baker, 1999). Parallel processing of sensory informa-
tion is a common strategy used across modalities including audi-
tory (Takahashi et al., 1984; Oertel, 1999; Gelfand, 2004), visual
(Marr, 1982; Livingstone and Hubel, 1987; Merigan and Maun-
sell, 1993), and electrosensory (Carr and Maler, 1986; Bell and
Maler, 2005; Kawasaki, 2005), to code for different stimulus at-
tributes. However, the pathways that encode first- and second-
order stimulus attributes and their associated neural circuitry
remain poorly understood to this day.

Weakly electric fish are a well suited model system for under-
standing the coding of first- and second-order stimulus attributes
because of well characterized natural stimuli and neural pathways
devoted to their processing (Chacron et al., 2011). Peripheral
electroreceptor neurons project onto pyramidal cells within the
hindbrain electrosensory lateral line lobe (ELL), which in turn
project to the midbrain torus semicircularis (TS) (Carr and
Maler, 1985; Bastian et al., 2004). In general, TS neurons display
more response selectivity than ELL neurons (Chacron etal., 2009;
Chacron and Fortune, 2010; Khosravi-Hashemi et al., 2011;
Vonderschen and Chacron, 2011), which is consistent with the
emergence of a sparse neural code (Chacron etal., 2011). While it
was previously found that electroreceptors and ELL pyramidal
cells respond to both first- and second-order attributes of elec-
trosensory stimuli (Middleton et al., 2006; Savard et al., 2011),
the responses of TS neurons to second-order attributes have not
been previously described. We found that a distinct subpopula-
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tion of TS neurons selectively responds to second-order attri-
butes while another subpopulation selectively responds to first-
order attributes and thus provide the first experimental evidence
for the emergence of parallel processing of first- and second-
order stimulus attributes by distinct neural pathways. Through a
combination of computational analysis and mathematical mod-
eling, we reveal simple physiological neural circuits that can im-
plement such parallel coding.

Materials and Methods

Animal housing and surgery. The weakly electric fish species Apteronotus
leptorhynchus was used in this study. Animals of either sex were obtained
from tropical fish suppliers and acclimated to the laboratory according to
published guidelines (Hitschfeld et al., 2009). For experiments, animals
were immobilized by intramuscular injection of Tubocurarine chloride
hydrate (1 ug/g body weight; Sigma) and respirated via a mouth tube
with aerated tank water at a flow rate of ~10 ml/min. The fish was
submerged in water except for the top of the head. To expose the brain for
recording, we first locally anesthetized the skin on the skull by applying
2% Lidocaine. Then we removed ~6 mm? of skin to expose the skull to
which a metal post was glued for stabilization. By drilling a hole of ~2
mm? through the skull, we gained access to the area of the tectum over-
lying the TS, or to the eminentia granularis posterior overlying the ELL.
The surface of the brain was kept covered by saline (Bastian, 1974)
throughout the experiment. Details have been described previously
(Bastian et al., 2002; Chacron et al., 2005¢, 2007; Chacron and Bas-
tian, 2008; Krahe et al., 2008; Toporikova and Chacron, 2009; Savard
etal., 2011). McGill University’s animal care and use committee ap-
proved all procedures.

Recording. Extracellular recordings were obtained from both the ELL
and TS brain regions of Apteronotus leptorhynchus using either glass mi-
cropipettes or Woods metal electrodes (Rose and Fortune, 1996; Cha-
cron et al., 2009; Chacron and Fortune, 2010; Khosravi-Hashemi et al.,
2011; Vonderschen and Chacron, 2011). Histological analysis of record-
ing sites has shown that our TS recordings were obtained from most
layers (Vonderschen and Chacron, 2011). Recordings from ELL pyrami-
dal neurons were obtained from the centromedial, centrolateral, and
lateral segments. Pyramidal cells within all three segments can be distin-
guished based on the mediolateral and rostrocaudal positions of the
recording electrode with respect to surface landmarks such as the “T0”
vein and its afferent veins (Maler et al., 1991), the depth at which record-
ings are obtained, as well as their responses to sensory input as previously
described (Krahe et al., 2008). As pyramidal cells within all three seg-
ments did not differ in their responses to the noise stimuli used in this
study when using the measures described below, the data from all three
ELL segments were pooled. The electrode signal was amplified (Axoc-
lamp 2B, Axon Instruments or Model 1000 amplifier, A-M Systems) and
digitized at 10 kHz using a CED Power1401 with Spike2 software.

Stimulation. Because Apteronotus leptorhynchus has a neurogenic elec-
tric organ, the electric organ discharge (EOD) persists after curare injec-
tion. All stimuli used in this study consisted of amplitude modulations
(AMs) of the animal’s own EOD. These were delivered using standard
techniques (Chacron et al., 2003; Krahe et al., 2008). The fish’s EOD was
recorded with chloridized silver wire electrodes positioned at the head
and at the tail. The zero crossings of the amplified EOD signal (DAM50,
World Precision Instruments; bandpass filter between 300 Hz and 3 kHz)
were detected by a window discriminator, which then triggered a func-
tion generator to output a single-cycle sinusoid of slightly higher fre-
quency than the fish’s EOD. This created a train of single-cycle sinusoids
that were phase-locked to the EOD. The train was then multiplied (MT3
multiplier, Tucker Davis Technologies) with an AM waveform. The re-
sulting signal was attenuated (LAT45 attenuator, Leader Electronics) and
fed into the experimental tank via a stimulus isolator (A395 linear stim-
ulus isolator, World Precision Instruments) and was delivered by a set of
two electrodes located ~20 cm on each side of the fish. Note that this
stimulation geometry is referred to as “global” in previous studies, as the
AM:s of the EOD will impinge upon a large portion of the animal’s elec-
trosensory epithelium (Krahe et al., 2008). Note that, as the signal is
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added to the animal’s own EOD, the signal led to an increase or a decrease
in amplitude of the EOD depending on its polarity compared with that of
the EOD.

It is essential to recognize that the EOD waveform itself, which is
nearly sinusoidal, can be considered as a carrier signal and that the mean-
ingful stimulus here is the AM of this carrier signal. For this reason, we
will henceforth refer to the AM waveform as the stimulus S(¢). We will be
considering first- and second-order attributes of the stimulus S(#) itself as
described below. We note that these correspond to the second- and third-
order attributes of the full signal that is received by the animal (i.e., the
AM multiplied with the EOD waveform mimic), respectively.

The stimuli used in this study consisted of (1) sinusoidal waveforms
with frequency 4 Hz, (2) low-pass filtered zero-mean broadband (eighth-
order Butterworth filter, 120 Hz cutoff) and, (3) bandpass filtered
zero-mean narrowband (fourth-order Butterworth, 40—60 Hz band)
Gaussian white noise. The noise stimuli mimic the sensory input from
two or more neighboring fish (Middleton et al., 2006, 2011; Stamper et
al., 2010). The mean stimulus contrast (i.e., the ratio of the SD of the AM
caused by the stimulus divided by the EOD baseline amplitude) were
10-20%, which is similar to what was used in previous studies (Bastian et
al.,, 2002, 2004; Chacron et al., 2005b; Toporikova and Chacron, 2009).
The 40—60 Hz and 0-120 Hz noise stimuli each lasted 20 s and were each
presented 5 times (Chacron, 2006; Krahe et al., 2008; Avila-Akerberg et
al,, 2010) to quantify response variability as described below. The 4 Hz
sinusoidal AM was presented only once and lasted for at least 20 s.

Data analysis. All data analysis was performed using MATLAB (The
MathWorks). The recordings were first high-pass filtered using an
eighth-order Butterworth filter with a 300 Hz cutoff and the spike times
were obtained as the times at which the signal crosses a suitably chosen
threshold from below. A binary sequence with binwidth dt = 0.5 ms was
then created using the following rule: the content of bin 7 was set to 1 if
there is an action potential at time #; where i*dt < t; = (i + 1)*dtand to
0 otherwise. Note that, as dt is smaller than the absolute refractory period
of ELL and TS neurons (typically 1-2 ms), there can be at most one spike
occurring during any given bin. We subsequently refer to this binary
sequence as the response R(t).

Firing rate. The firing rate was computed during baseline (i.e., in the
absence of stimulation or S(t) = 0) activity that lasted at least 20 s.

Phase histogram in response to 4 Hz sinusoidal stimulation. The spike
times f; accumulated in response to sinusoidal stimulation were con-
verted into phases ®; with phase 0 defined to be at the maximum of the
sinusoidal stimulus. We then built phase histograms with binwidth 0.25
radians. We then computed the bimodality index in the following man-
ner. First, we performed a circular permutation of the phase histogram
such that the bin with maximum content is now located at 0 (note that
this is equivalent to subtracting the phase at which the bin count is
maximum from the phase sequence ®; and then recomputing the phase
histogram from this new sequence). The bimodality index was then ob-
tained by dividing the bin count at phase 7 by the bin count at phase 0. As
such, neurons that tend to respond more or less equally near two phases
of the stimulus separated by 7r radians are characterized by a bimodality
index near 1 whereas neurons that respond preferentially near a given
phase of the sinusoidal stimulus are instead characterized by bimodality
indices near 0.

Coherence. We used the coherence measure to characterize ELL and TS
neurons’ responses to first-order attributes of the 40—60 Hz and 0-120
Hz noise stimuli used in this study. The responses to the 5 repeated
presentations of the stimulus waveform S(t) were labeled R, (). . .R4(t).
We computed the stimulus-response coherence using:
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R(H) = D R{1),
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where Px,s( f) is the cross-spectrum between R,(t) and S(¢), Py, R,-( f)isthe
power spectrum of R,(), and Pg( f) is the power spectrum of S(z).

We also computed the response—response coherence between the re-
sponses to repeated presentations of the same stimulus as (Chacron,
2006):
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Unlike the stimulus—response coherence, the response-response coher-
ence is only limited by the trial-to-trial variability in the neural response
to repeated presentations of the same stimulus and we always have
Crs(f) = [Crr( N]"* (Roddey et al., 2000). Thus, to compare the two
measures, we always plotted the square root of the response-response
coherence but refer to it simply as the response—response coherence for
brevity. Since the response—response coherence gives an upper bound on
the amount of information that can be transmitted (Roddey et al., 2000),
the normalized first-order response was computed as the average of the
maximum value of the stimulus—response coherence divided by the max-
imum value of the response-response coherence for 0-120 Hz and
40-60 Hz noise stimuli. Note that the response-response coherence can
be non-zero at frequencies outside those found in the stimulus. We note
that an analysis of our data using the integral of the coherence over the
range 0—300 Hz rather than the maximum value yielded similar results
(data not shown).

Envelopes. We also quantified whether our neurons in our data were
also responsive to the second-order attributes of the stimulus S(#).
Thus, we computed the envelope E(f) of the stimulus S(¢). Simply
speaking, the envelope E(#) can be thought of as the instantaneous
amplitude of the stimulus S(#) and is thus a second-order attribute of
the stimulus waveform S(¢) as it is related to variance. In the case of
the narrowband 40-60 Hz noise stimulus, it corresponds to the
smooth line that connects successive maxima in the stimulus wave-
form. In general, the envelope E(t) can be obtained from the stimulus
S(t) by the following nonlinear transformation:

E(t) = {S(1)* + 8(1)%, (3)

where 8(¢) is the Hilbert transform of S(¢) (Myers et al., 2003; Middleton
et al., 2006; Savard et al., 2011). It is given by:

+o0

5(1) =%c f S(_T)TdT , (4)

t

—o

where C is the Cauchy principal value. We note that the time-varying
envelope of 40—60 Hz and 0—120 Hz noise stimuli is a consequence of the
filtering process. This is because unfiltered Gaussian white noise is char-
acterized by a flat (i.e., constant) envelope,

We quantified responses to the envelope by computing the coherence
between the envelope E(¢) and the response R(#), the envelope-response
coherence Cpi( f), given by:

Cenlf) =" (5)
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where Pp.( f) is the power spectrum of E(t) and Pp.( f) is the cross-
spectrum between R,(¢) and E(¢). The normalized second-order response
was computed as the average between the maximum value of the envelo-
pe-response coherence divided by the maximum value of the response—
response coherence for 0—120 Hz and 40—-60 Hz noise stimuli.

Second-order selectivity index. The second-order selectivity index was
obtained for each neuron by dividing the normalized second-order re-
sponse by the normalized first-order response and by taking the loga-
rithm in base 10 of that ratio. As such, negative values imply that the
normalized first-order response is greater than the normalized second
response while positive values imply the opposite.

Phase histograms and rectification in response to noise stimulation. Phase
histograms in response to either 40—60 Hz or 0—-120 Hz noise stimuli
were computed by extracting the instantaneous phase of the stimulus
which is given by:

B NG
o(t) = arctan[%}. (6)

We then built a histogram of the sequence of phases [¢(t;)] that corre-
spond to the spike times [¢;] with binwidth 0.1 radians.

We considered a neuron to display phase locking only when the onset
of action potential firing occurred reliably at a given phase (Keener et al.,
1981; Trussell, 1999; Chacron et al., 2004). As such, neurons that reliably
display nonlinear rectification (i.e., are driven into cessation of firing) at
some stimulus phases must then reliably fire action potentials at other
stimulus phases and thus also display phase locking (Savard et al., 2011).
Phase locking is thus a nonlinear phenomenon that gives rise to peaks in
the spike train power spectrum at integer multiples (i.e., higher harmon-
ics) of the frequencies contained in the stimulus waveform (i.e., the fun-
damental frequencies) (Ewert et al., 2008; Savard etal., 2011; Schneider et
al,, 2011). We therefore quantified phase locking by computing the ratio
of the power at the second harmonic (i.e., 3 times the fundamental fre-
quencies) to that at the fundamental frequencies as done previously (Sch-
neider et al., 2011). Specifically, for 40—60 Hz noise stimulation, we
obtained a phase locking index by dividing the value of the spike train
power spectrum at 150 Hz by its value at 50 Hz. For 0-120 Hz noise
stimulation, the value of the spike train power spectrum at 300 Hz was
divided by the value at 100 Hz to obtain the phase locking index. The
average of both values was then taken for each neuron. Finally, the set of
phase locking index values obtained for our dataset was normalized by its
maximum value.

We note that other measures that can be used to quantify phase
locking such as vector strength (Mardia and Jupp, 1999) can be non-
zero even when the relationship between the stimulus waveform and
the neuronal output firing rate is linear in nature (Schneider et al.,
2011), a situation that does not give rise either to phase locking as
defined above or nonlinear rectification, and are thus not appropriate
in this case.

Ascertaining whether a neuron responded to the stimuli. A given neuron
was deemed to respond to the stimuli presented in this study if the
maximum value of the response-response coherence was >0.1.

Spike-triggered average. Spike-triggered averages (STAs) were obtained
by averaging the stimulus waveform within a 50 ms time window sur-
rounding recording spikes. The STA is defined by:

STA(t) = %Es(t + 1), 7)

i=1

where the average is performed over the N spike times [¢;].
E- vs I-type responses in ELL and TS. We quantified the phase between
the neural response R(#) and the stimulus waveform S(t) as:

imag Pys(f )])
real[Ps(f)] )
where imag(. ..) and real(. . .) are the imaginary and real parts, re-

spectively, and Pyg( f) is the cross-spectrum between R(t) and S(¢). A
neuron was deemed to be E type (i.e., excited by an increase in the

o(f) = arctan( (8)
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stimulus waveform S(t)) if —7/4 = ¢(0) = m/4 and I type (i.e.,
inhibited by an increase in the stimulus waveform S(t)) if 37/4 =
$(0) = mor —m = ¢(0) =—37/4. We also found that the mean value
of the STA, (STA(t)), was negative for I-type neurons and positive for
E-type neurons.

Spike-triggered covariance. STA analysis focuses on the ensemble of all
stimulus segments directly preceding each spike to estimate which stim-
ulus feature, on average, is most likely to elicit a spike. In contrast, spike-
triggered covariance (STC) analysis focuses on the variability within the
ensemble of stimulus segments preceding each spike and is used to gain a
more detailed picture of the (potentially) multiple stimulus features that
give rise to spiking activity (Brenner et al., 2000; Agiiera y Arcas et al.,
2003; Slee et al., 2005; Fairhall et al., 2006; Gussin et al., 2007; Gollisch
and Meister, 2008).

We accumulated stimulus segments up to 50 ms before each spike time
t,. Since the stimulus was sampled at dt = 0.5 ms, each segment contained
100 elements. We then computed the covariance matrix C whose element
jk (1 = j,k = 100) is given by:

Cy = %E[S(—jdt +t;) — STA(—jdt)][S(—kdt + ;)

— STA(—kdt)], (9)

where t; are the spike times. Because we are interested in the stimulus
features that cause spiking, we subtracted the prior distribution of stim-
uli, CP°" (which is Gaussian along all stimulus dimensions, independent
of the response), from the covariance matrix C, to obtain a matrix rep-
resenting the covariance differences (Brenner et al., 2000; Fairhall et al.,
2006):

Cjk = C])\ - C});ior. (10)

The covariance matrix of the prior CP"°" is simply the covariance matrix
of the stimulus waveform S() itself and represents the variability that is
due to the stimulus waveform alone:

M
) 1
Cir = MZ[S(— jdt + idf) — STA(—jd) |[S(— kdt + idy)

— STA(=kdp], (11)

where the stimulus S(t) is assumed to startat t = 0 and end att = M
dt. We estimated CP"°" by taking random 50 ms long segments of S()
without reference to spiking as done previously (Brenner et al., 2000).

We diagonalized C to find its eigenvalues A; and corresponding
eigenvectors v; = (7,(—50 dt). . .7,(0)) (1 =i = 100). The eigenvalues
were sorted in ascending order (i.e., A; = A, ,). Because the prior
stimulus distribution was subtracted from the covariance matrix, an
eigenvalue of zero corresponds to the prior variance and indicates
that the corresponding stimulus feature was not relevant to cell spik-
ing. As such, we needed to only keep the eigenvalues that were signif-
icantly different from zero. A methodology has been proposed to
assess whether a given eigenvalue differs significantly from zero
(Agtieray Arcas et al., 2003; Fairhall et al., 2006; Gollisch and Meister,
2008). It is based on the fact that the eigenvalues of the matrix C
depend on the number of spikes that are used in the analysis. Indeed,
the eigenvalues that are not associated with spiking will decay to zero
as a power law while those that are will remain stable when increasing
number of spikes are used (Agtiera y Arcas and Fairhall, 2003; Fairhall
etal., 2006). However, to see this effect, large numbers (i.e., ~ 10°) of
spikes are needed, which makes such a methodology applicable only
in modeling studies where it is possible to obtain arbitrarily large
number of spikes (Agiiera y Arcas et al., 2003) or in experimental
studies with very long (>12 h) recording times (Fairhall et al., 2006).

Because it is not currently feasible to obtain such a large number of
spikes from ELL and TS neurons experimentally, we could not use
Agiiera y Arcas et al.’s (2003) methodology here. Instead, we used a
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criterion is based on the fact that neurons typically have a finite
integration time window (i.e., that only the stimulus waveform up to
a certain time in the past can influence spiking at present). Since the
stimulus waveform at times outside of the integration time window
cannot influence spiking, the stimulus features associated with spik-
ing will show high variability within the neuron’s integration window
and low variability elsewhere. As such, the variability in the stimulus
segments from — T, to 0 was compared with the variability from —2
T,,to —T,,, where T, is the integration time window. If the variabil-
ity within —T;, to 0 is comparable to that within —2T;, to —T,,, then
the corresponding stimulus feature is most likely not associated with
spiking. In contrast, if the variability within — T} to 0 is much greater
than that within —27T;, to —T;,, then the corresponding stimulus
feature is most likely associated with spiking.

The integration time window T}, can be estimated from the STA as the
maximum time before the action potential for which the STA is approx-
imately equal to the mean value of the stimulus (zero in our case) (Agiiera
y Arcas et al., 2003; Svirskis et al., 2003; Bair and Movshon, 2004). We
found empirically that the STAs for neurons in our dataset were all ap-
proximately constant up to 25 ms before the spike (see below). Thus, we
took T}, = 25 ms. To determine which eigenvalues A, of C were signif-
icantly different from 0, we computed the set of projections of each
stimulus segment on the eigenvector 7,, associated with the eigenvalue
A, as:

P, =[9,(=50dt) ... 9,(=25dD)] - [S(—=50dt + t;) ... S(—25dt + ;)]
(12)
P}, = [0,(=25d0) ...9,(0)]-[S(=25dt + t) ... S(5)],

« »

where is the dot product and [#;] are the spike times. We then com-
puted the ratio:

STD(P},)
RAm = 2 b
STD(P2,)

i,m

(13)

where STD(...) is the SD computed over the spike times [f;].We
found that in most (95%) of cases, one eigenvalue f\h was associated
with a ratio RA,, that was much larger (at least twice) than all others
which were ~1 in value. We found empirically that the eigenvalue A,
was always the eigenvalue that was greatest in magnitude. Thus, we
assumed that the corresponding stimulus feature was the primary
stimulus feature that was associated with spiking in neurons in our
dataset and was retained for further analysis. A negative value for A,
indicates an associated stimulus direction with decreased variability
compared with the variability of the stimulus. This reduced variability
indicates that stimuli eliciting a spike are well stereotyped along this
direction. A positive eigenvalue is associated with a stimulus direction
with greater variability than expected from the stimulus alone and
indicates that multiple stimulus features cause spiking activity. We
thus quantified the relative contributions of each feature by comput-
ing the projections:

Py = [0,,(=50dt + 1;) ... 9,,(0)]- [S(=50dt + 1;) ... S(t)].
(14)

The fraction of spike times f; for which P;; was positive was then
determined and a bias index was then computed as 2 f — 1. A negative
value for the bias index implies that the stimulus segments that elicit
spiking are negative on average. A positive value of the bias index
implies the opposite. A bias index near zero indicates that approxi-
mately half of the stimulus segments that elicit spiking are positive
while the other halfis negative. The E and I filters were then computed
as the weighted averages of the spike-triggered stimulus segments
over the indices k for which P, ;, was positive and negative, with
weights given by f; and 1 — f;, respectively.

Modeling convergent E- and I-type input unto TS neurons. We built a
model of convergent inputs from both E- and I-type ELL pyramidal
neurons unto a single TS neuron. Both E- and I-type ELL pyramidal
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neurons were modeled using the linear leaky integrate-and-fire neuron
(Lapicque, 1907) and were described by the following set of differential
equations:

v, Vv

T + Lyagr + S(t) + &x(0)

v, v

T + Tyiasy — S(t) + &(1) (15)

V()= 0, — V(") =0
Vi) =6, — Vi(t*) =0,

where V, V; are the membrane voltages of the E- and I-type model
neurons, respectively. 7; and 7, are the membrane time constants. Iy ;, &
and I,;,, ; are bias currents, S(t) is the stimulus, and &;(#), &(t) are inde-
pendent and identically distributed Gaussian white noise processes with
zero mean and SDs o7; and o7, respectively. Since previous studies have
found that E- and I-type ELL pyramidal neurons are excited and inhib-
ited by the stimulus, respectively (Saunders and Bastian, 1984), we as-
sumed that our model E- and I-type pyramidal cell receive stimulation
waveforms that have opposite polarities, respectively, which is consistent
with experimental results showing that their activities are out of phase
with one another (Bastian et al., 2002). When Vi(t) is greater than or
equal to the threshold 0; (j =E]J), Vi is immediately reset to 0 and
maintained there for the duration of the absolute refractory period Ty ;
and a spike is said to have occurred at time . As in the experimental data,
the stimulus S(#) was either 0—-120 Hz low-pass filtered (eighth-order
Butterworth) or 40—60 Hz bandpass filtered (fourth-order Butterworth)
white noise with zero mean and SD 0.2.

The TS neuron is also modeled using a linear leaky integrate-and-fire
model:

av \4
T = D ED + Ap 200 — 1 alt — 1))
k

+ A1 = pp) 2.0t — 1 )alt — 1))

1
Vi) =0 —> V(") =0, (16)

where V'is the membrane voltage, 7is the membrane time constant, I ;,
is a bias current, &(t) is a Gaussian white noise process with zero mean
and SD o, A is a constant, 0 = pp = 1 is the fraction of E-type input
received by the model TS neuron, and [t;] and [#;,] are the spike times
of the model E- and I-type ELL pyramidal neurons, respectively. Here
O (t) is the Heaviside function (®(t) = 1ift = 0 and O () = 0 otherwise),
while () is the a function with time constant 7, given by:

t t
a(t) =?exp[—?], (17)

when V(1) is greater or equal than the threshold 6, V'is immediately reset
to 0 and maintained there during the duration of the absolute refractory
period Ty and a spike is said to have occurred at time ¢. The model was
simulated numerically using an Euler-Maruyama integration algorithm
(Kloeden and Platen, 1999) with integration time step 0.025 ms. The
spike times of the model TS neuron [t]-] were accumulated and were then
analyzed in the same manner as the experimental data as described
above. Parameter values used for the simulations were 7, = 7, = 1 ms,
Tsaor = lpiaes = 0.92, 0, = 0y = 0.15,0, = 0, = 1.4, Ty y = Ty ;= Ty =
2ms, 7= 10ms, I,;,, = 0.8,0 = 0.8, 7, = 15ms, 6 = 15.5,and A = 1.2.
These parameter values were chosen based on available experimental
data (membrane and EPSP time constants, absolute refractory periods)
(Fortune and Rose, 1997a; Toporikova and Chacron, 2009) or were ad-
justed such as to give firing rates and responses to the stimulus that were
comparable to those seen experimentally (bias currents, noise and stim-
ulus SDs, thresholds). In some simulations, I;,, r and I;,, ; were both
systematically covaried (i.e., I,;,s r = Ipias ;) Detween 0.82 and 1.25 to vary
the firing rates of the model ELL pyramidal neurons.
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Results

We made extracellular recordings from 66 ELL pyramidal neu-
rons and from 125 TS neurons (Fig. 1 A). The mean baseline (i.e.,
no stimulus) firing rate of ELL neurons was 19.48 = 1.56 Hz,
which is comparable to that obtained in previous studies using
both intracellular and extracellular recordings (Bastian et al.,
2002; Chacron et al., 2005b; Chacron, 2006; Krahe et al., 2008;
Toporikova and Chacron, 2009; Avila-Akerberg et al., 2010) and
much lower than the mean baseline firing rate of electroreceptor
afferents: 199 = 8.1 Hz (Chacron et al., 2005a; Gussin et al.,
2007). Further, the mean baseline firing rate of TS neurons was
5.45 * 0.71 Hz, which is comparable to that obtained from in-
tracellular recordings in previous studies (Vonderschen and Cha-
cron, 2011) and is furthermore significantly lower than that of
ELL neurons (p < 10 >, Wilcoxon rank sum test, df = 190).

We used two categories of sensory stimuli: broadband (0-120
Hz) (Fig. 1B, top) or narrowband (40—60 Hz) (Fig. 1B, bottom)
noise. Both categories are behavioral relevant, as they are similar to
naturally occurring signals generated by groups of conspecifics in the
wild (Stamper et al., 2010). In particular, when two fish come into
contact (i.e., are within 1 m of one another), each animal will expe-
rience an amplitude modulation of its own electric signal (i.e., a beat)
that oscillates at the difference between the electric signal frequencies
(Benda et al., 2005; Hupé and Lewis, 2008). We will henceforth refer
to this amplitude modulation as the stimulus as it is directly encoded
by electroreceptor afferents located on the fish’s skin (Scheich et al.,
1973; Bastian, 1981). However, the depth of modulation of the EOD,
which is a second-order attribute as it is related to variance, can also
vary dynamically in time when the distance between the two fish
changes or when 3 or more fish are in close proximity (Middleton et
al., 2006; Stamper et al., 2010). The depth of modulation is also
known as the “envelope.” Electrosensory envelopes are generally re-
stricted to a low temporal frequency range, below ~50 Hz (Stamper
et al., 2010), whereas the stimulus typically contains temporal fre-
quencies between 0 and 400 Hz.

Both categories of sensory input differ dramatically in the rela-
tionship between the stimulus waveform (a first-order attribute) and
its envelope (a second-order attribute), which is a result of the filter-
ing process. For narrowband 40—60 Hz noise, the stimulus wave-
form and its envelope contain power in different frequency ranges:
40-60 Hz and 0-20 Hz, respectively (Fig. 1 B, blue, green). In other
words, their spectral frequency contents are nonoverlapping (Fig.
1C). The situation is quite different for the broadband 0-120 Hz
noise, as the envelope’s frequency content largely overlaps with that
of the stimulus waveform (Fig. 1B, C). Also note that the stimulus
waveform and its envelope are not correlated, that is to say that they
are independent of each other, for both categories of sensory input.

We characterized both ELL and TS neural responses using three
coherence measures. First, we computed the coherence between the
stimulus waveform and the response (Fig. 1 D). The coherence is a
number between 0 and 1 that quantifies how linearly correlated the
stimulus and response are at a given frequency, and thus provides a
measure of the response to first-order stimulus attributes such as its
time-varying value. Second, we computed the coherence between
the envelope of the stimulus and the response, which provides a
measure of the response to second-order stimulus attributes (Fig.
1 D). Third, we computed the coherence between responses to re-
peated presentations of the stimulus, which provides a measure of
response reliability at different frequencies (Fig. 1 D). Since the re-
sponse—response coherence is always greater than or equal to either
the stimulus-response or the envelope-response coherence
(Roddey et al., 2000), we divided the stimulus-response and envelo-
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but not to first-order attributes (Fig. 2A,
A second order only). As these neurons did
not respond to the stimulus waveform it-
self, they cannot be segregated into E or I
type. All other TS neurons did not re-

spond to the stimuli used here.
These three different response profiles
were seen using both narrowband 40-60
Hz and broadband noise 0-120 Hz input.
This is important because for the 40—60
B C Hz noise input, the frequencies contained

= 4r 60 . . .
2 n in the stimulus waveform and its envelope
S < — stimulus are nonoverlapping, whereas for the 0-120
g ol £ sl — envelope Hz noise input, they overlap almost com-
3 g pletely (Fig. 1C). The first order-only and
2 2 second order-only neurons responded al-
B4 . i most exclusively to the stimulus waveform
o 4 10 and its envelope, respectively, even when
§ g they had almost complete frequency overlap
P 2 with one another such as for the broadband
S 0 5 5 noise stimulus. Therefore the differences
_§ a;', between the responses of first order-only
£ g and second order-only neurons are not due
® 4 5 5 o 0 0 7'5 - to some simple form of frequency filtering.
time (s) frequency (H2) Further, these three groups of neurons
D can be distinguished based on their re-
~— T g sponses to first- and second-order stimulus
Envelope Response [ g attributes (Fig. 2B): three distinct clusters

v
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Figure1.

A, Schematic depicting the experimental paradigm. The animal was stimulated with either broadband 0 —120 Hz or narrow-
band 40— 60 Hz noise stimuli, while recordings were made from both ELL neurons and their postsynaptic target neurons within the TS. B,
Top, Segment of the 40— 60 Hz narrowband noise (blue) and its low-frequency envelope (green). Bottom, Segment of the 0—120 Hz
narrowband noise (blue) andits low-frequency envelope (green). C, Top, Power spectra of the 40 — 60 Hz noise (blue) and its low-frequency
envelope (green). The stimulus power spectrum contains power between 40 and 60 Hz, while the envelope contains power between 0 and
20 Hz. Bottom, Power spectra of the 0 —120 Hz noise (blue) and its low-frequency envelope (green). Both the stimulus waveform and its
envelope contain power at frequencies between 0 and 120 Hz. D, Summary of the methodologies used. The response to the stimulus

are seen in a plot of the normalized second-
order response as a function of the normal-
ized first-order response. The neurons that
responded to both first and second order
formed a cluster near the identity line, indi-
cating similar response magnitude to both.
In contrast, second order-only neurons
formed a cluster above the identity line
while first order-only neurons formed a
cluster below the identity line. The distribu-
tions of normalized first- and second-order
responses were both bimodal (p = 0.001
and 0.002, respectively, Hartigan’s dip test).
These results strongly suggest that these
three neuron groups correspond to distinct
subpopulations within the TS.

Coherence

Coherence
o =

0 75 150
frequency (Hz)

waveform is quantified as the stimulus—response coherence. The envelope is obtained from the stimulus waveform via the Hilbert trans-

form and the response to the envelope is quantified as the envelope—response coherence. Finally, we computed the coherence between
the responses to repeated presentations of the same stimulus, the response—response coherence, which gives an upper bound on the
amount ofinformation that can be transmitted by the neuron. Note that the response—response coherence can be non-zero for frequencies

outside of those contained in the stimulus waveform itself.

pe—response coherences by the response-response coherence for
each neuron to quantify the response to first- and second-order
attributes, respectively.

Segregation of responses to first- and second-order attributes
in TS neurons

We found 20 TS neurons that responded to both first- and
second-order attributes (Fig. 2A, first and second order). Of
these neurons, 15 were excited by increases in the stimulus wave-
form (E-type) while the remaining 5 were inhibited (I-type).
Eight TS neurons responded to first- but not to second-order
attributes (Fig. 2A, first order only). These neurons were all
E-type. Finally, we found 7 TS neurons that responded to second-

ELL neurons respond to both first- and
second-order

attributes

Perhaps the simplest explanation of our
observed TS neuronal responses is that
they are inherited from their afferent ELL pyramidal neurons.
Interestingly, there are two types of pyramidal cells: E-type pyra-
midal cells receive direct synaptic excitation from afferents and
respond to increases in EOD amplitude whereas I-type pyramidal
cells receive synaptic inhibition from local interneurons and thus
respond to decreases in EOD amplitude (Maler, 1979, 1981;
Saunders and Bastian, 1984). E- and I-type pyramidal cells cor-
respond to the ON- and OFF-type cells found in other systems,
respectively.

We therefore characterized the responses of ELL neurons to
the same 40— 60 Hz narrowband and 0—120 Hz broadband noise
inputs. All ELL neurons responded to both first- and second-
order attributes of these stimuli. Further, our results show that
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both E-type (N = 29) and I-type (N = 37)
ELL neurons responded to both the stim-

>

first and second order
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response for ELL neurons gave rise to one o 2
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the identity line (Fig. 3B). The distribu- % 75 150 0 75 120 % 75 150
tions of normalized first- and second- 04 05 o5
order responses were both unimodal (p = N o
0.95 and 0.79, Hartigan’s dip test, respec- - o=
tively). Finally, E- and I-type ELL pyrami- 8 % 0.2 0.25 0.15
dal neurons did not differ significantly in T
their tendencies to respond to either first- o v o 0 0
or second-order stimulus attributes, re- 0 75 150 0 75 150 0 75 150
spectively (Fig. 3C,D), and thus were frequency (Hz) frequency (Hz) frequency (Hz)
pooled in subsequent analysis. B

Previous studies have shown that ELL r PY L. 2
neurons display large heterogeneities in Py »"..
their responses to sensory input that are o ‘ .. PY .90
correlated with their baseline firing rates S o ,'“ J
(Bastian et al., 2002, 2004; Chacron et al., 2 5 second order only L’ ’ ® ®
2005¢, 2007; Chacron, 2006; Toporikova ° o1l .+*"" firstand second order
and Chacron, 2009; Avila-Akerberg et al., % g o ‘
2010). Therefore, we next looked at €T e ,‘
whether ELL pyramidal neurons might = ° ',"
respond differentially to first- and L’ O
second-order attributes depending on Lo first order only PS
their baseline firing rates. We plotted the 0.01 : !

0.01 0.1 1

normalized first-order response as a func-
tion of the baseline firing rate (Fig. 4A)
and found a significant positive correla-
tion (r = 0.57, p < 0.01, N = 66). In con-
trast, we found a negative correlation
between the normalized second-order re-
sponse and the baseline firing rate (Fig.
4B) (r=—0.40,p < 0.01, N = 66). These
data show that ELL neurons with the
highest firing rates tend to respond prefer-
entially to first-order attributes while ELL
neurons with the lowest firing rates tend to respond preferentially
to second-order attributes. Thus, one possible explanation for the
presence of first order-only neurons in TS is that they receive
input preferentially from ELL pyramidal neurons with high firing
rates. We shall return to this point below.

What causes ELL neurons to respond preferentially to either
first- or second-order stimulus attributes? Examination of ELL
neuron responses revealed that those with the lower firing rates
tended to be reliably driven into cessation of firing for some
portions of the stimulus (i.e., rectification) (Fig. 4C). Such recti-
fication is accompanied by phase locking since the onset of action
potential firing must then occur reliably at other portions of the
stimulus (Savard et al., 2011; Schneider et al., 2011). In contrast,
ELL neurons with higher firing rates tended to fire action poten-
tials throughout the stimulus and, as such, tended to display less
phase locking (Fig. 4 D). We then quantified phase locking in ELL
pyramidal neurons as a function of their baseline firing rates and
found a significant negative correlation between both quantities
(r=—0.66, p << 10 >, N = 66) (Fig. 4E). Together with our
result that the normalized second-order response was negatively
correlated with the baseline firing rate, this shows that it is the
pyramidal cells with the lowest baseline firing rates that tend to

Figure 2.

Normalized first order response

Segregation of first- and second-order stimulus attributes by TS neurons. A, Responses of TS neurons as quantified by
the coherence function for 40— 60 Hz noise stimuli (top) and for 0—120 Hz noise stimuli (bottom). Most (57%) TS neurons
responded to both first- and second-order attributes (left) and were labeled first and second order. However, some TS neurons
(20%) responded only to second-order attributes (center) and were thus labeled second order only. The remaining TS neu-
rons (23%) responded only to first-order attributes (right) and were labeled first order only. Most interestingly, second order only
and first order only neurons responded almost exclusively to the second and first-order attributes, respectively, under both 40 — 60
Hz and 0—120 Hz noise stimulation. B, Normalized second-order response as a function of the normalized first-order response for
our TS dataset. First and second order, first order only, and second order only neurons form distinct clusters.

display the most phase locking as well as the strongest second-
order responses.

Balanced input from E- and I-type sources determines
envelope selectivity

What makes TS neurons respond selectively to second-order at-
tributes? An important clue came from STC analysis. In contrast
to the STA, which gives the average stimulus feature that triggers
an action potential, STC analysis focuses on the variability
around the STA. The idea is that the structure of this variability
can reveal whether a neuron receives input from multiple sources
(Agtiera y Arcas et al., 2003; Slee et al., 2005; Fairhall et al., 2006;
Gollisch and Meister, 2008).

STC analysis revealed that the TS neurons that responded to
both first- and second-order attributes displayed little variability
around the STA (Fig. 5A). Plotting the covariance matrix revealed
that the variability around the STA was less than that expected
from the stimulus alone just before the spike, implying that stim-
ulus features resembling the STA reliably elicit spiking activity
(Fig. 5C). In contrast, neurons that responded selectively to
second-order attributes displayed significant variability around
the STA (Fig. 5B), and the covariance matrix revealed a large
increase in variability that was greater than that expected from
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Figure 3.  ELL neurons respond to both first- and second-order stimulus attributes. A, Re-
sponses of ELL neurons as quantified by the coherence function for 40 — 60 Hz noise stimuli (top)
and for 0—120 Hz noise stimuli (bottom). Both E-type (left) and I-type (right) ELL neurons
responded to both first- and second-order attributes in a manner reminiscent of that seen for
first- and second-order TS neurons. B, Normalized second-order response as a function of the
normalized first-order response for our ELL dataset. In contrast to TS neurons, ELL neurons
formed one distinct cluster and the responses of E- and I-type ELL neurons largely overlapped. (,
Whisker-box plots of the normalized first-order responses of E- and I-type ELL neurons. D,
Whisker-box plots of the normalized second responses of E- and I-type ELL neurons. The nor-
malized first- and second-order responses were not significantly different from one another
across E- and I-type ELL neurons (p > 0.05, one-way ANOVA).

the stimulus alone. This result suggests that multiple stimulus
features elicit spiking activity in these neurons and that these
features correspond to different sources of input (Fig. 5D). We
examined this possibility by obtaining E and I filters from the STC
analysis. These E and I filters quantify the tendency of the neuron to
spike in response to increases and decreases in the stimulus wave-
form and are thought to reflect the inputs received from E- and
I-type sources, respectively. For first- and second-order TS neurons,
one filter (either E or I) primarily gave rise to spiking activity (Fig.
5E). In contrast, for second order-only TS neurons, both E and I
filters were balanced in strength but opposite in sign (Fig. 5F). Fur-
ther, the times before the spike at which the E and I filters reached
their maximum and minimum values, respectively, were not signif-
icantly different from one another across our population of second
order-only neurons (E filter: —10.28 = 0.57 ms, I filter: —10.21 =
0.60 ms, p = 0.89, pairwise t test, N = 7).
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We computed a bias index that ranges between —1 and 1 for
our dataset that indicates the relative contributions of the E and I
filters to spiking. This index is positive when the E filter makes the
greatest contribution and negative when the I filter makes the
greatest contribution. In contrast, this index is 0 when both filters
make equal contributions. E-type TS neurons that responded to
both first- and second-order attributes displayed bias indices
near 1, while I-type TS neurons that responded to both first- and
second-order attributes displayed bias indices near —1 (Fig. 5G).
In contrast, TS neurons that responded only to second-order
attributes displayed bias indices near 0 (Fig. 5G).

We note that no significant differences in firing rates were
observed between the three groups of TS neurons (p > 0.1, one-
way ANOVAs). Further, E- and I-type TS neurons did not differ
significantly in their firing rates or responses to first- and second-
order stimulus attributes (p > 0.1 in all cases, Wilcoxon rank
sum tests). Finally, no significant correlations were observed for
TS neurons between firing rate and either of normalized first (r =
0.34, p = 0.068, N = 35)- or second (r = 0.09, p = 0.64, N =
35)-order response. Together, these results are consistent with
the hypothesis that TS neurons combine E- and I-type inputs
differentially to respond selectively to either first- or second-
order stimulus attributes.

Modeling convergent ELL inputs onto TS neurons

To further explore the hypothesis that the relative balance between
E- and I-type inputs onto TS neurons determines whether a neuron
can respond selectively to second-order attributes, we built a model
in which we could vary the relative strengths of inputs from E- and
I-type ELL pyramidal cells onto a TS neuron (Fig. 6 A). We system-
atically varied the fraction of E-type input py, received by our model
TS neuron: when pg; = 0, the model TS neuron receives input only
from the I-type ELL pyramidal neuron while, when p; = 1, the
model TS neuron receives input only from the E-type ELL pyramidal
neuron. The case where both inputs are balanced in strength thus
corresponds to pp = 0.5.

This relatively simple model does a good job of reproducing
the responses of TS neurons to both 40—60 Hz and 0-120 Hz
noise stimuli. For p; = 0.9 and py = 0.1, the model reproduces
the responses of E- and I-type first- and second-order TS neu-
rons, respectively (compare Figs. 6B and 2A). Moreover, when
pe = 0.5, our model TS neuron displayed a strong response to
second-order attributes and almost no response to first-order
attributes, which is comparable to data from second order-only
TS neurons (compare Figs. 6 Band 2A).

We applied the STC analysis to our model TS neuron in the same
manner as for the experimental data. For p; = 0.9 and p; = 0.1, the
spike-triggered covariance matrices displayed significantly less vari-
ance than that expected from the stimulus just before the spike and
resembled that obtained from TS neurons that responded to both
first- and second-order attributes (compare Figs. 6C and 5C). In
contrast, for p; = 0.5, the spike-triggered covariance matrix dis-
played greater variance than that expected from the stimulus just
before the spike and resembled that obtained from second order-
only TS neurons (compare Figs. 6C and 5D). We also computed the
Eand I filters from our model neuron. When py; = 0.1, the I filter was
much stronger in magnitude than the E filter (Fig. 6 D). In contrast,
when pg = 0.9, the E filter was much stronger in magnitude than the
I filter (Fig. 6 D). Moreover, the E and I filter obtained resembled
those of neurons that responded to both first- and second-order
attributes (compare Figs. 6 D and 5E). When pg = 0.5, the E and I
filters were opposite in sign and were approximately equal in mag-
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Figure 4.  Heterogeneities among ELL neurons influence first- and second-order coding. 4,
Normalized first-order response as a function of baseline firing rate for ELL neurons. A signifi-
cant positive correlation was observed (r = 0.53, p << 10 —3, N = 48). B, Normalized second-
order response as a function of baseline firing rate for ELL neurons. A significant negative
correlation was observed (r = —0.35,p = 0.01, N = 48). C, Response of an example |-type ELL
neuron with low firing rate (16 Hz) to the 40 — 60 Hz stimulus waveform (black) and its envelope
(gray). The vertical bars indicate the spike times. This neuron exhibited phase locking to the
stimulus as the spikes occurred preferentially near a local minimum of the stimulus waveform.
The phase histogram (bottom) shows that this neuron was rectifying as the probability of firing
was zero for phases lesser than 7/2 in magnitude. This neuron also tended to fire action poten-
tial when the envelope was higher. Similar results were seen for E-type ELL neurons with low
firing rates except that these tended to fire action potentials near a local maximum of the
stimulus (data not shown). D, Response of an example I-type ELL neuron with high firing rate
(34 Hz) to the 40— 60 Hz stimulus waveform (black) and its envelope (gray). The vertical bars
indicate the spike times. Although the action potentials occurred near a local minimum, this
neuron displayed less phase locking and did not display as much rectification as seen from its
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order response selectivity. A, STA (black) from a typical first- and second-order TS neuron. The gray
band shows the SD around the STA that was relatively small for this neuron. B, Spike-triggered aver-
age (black) from a typical second order only TS neuron. The gray band shows the SD around the STA
that was, in contrast, quite large. C, The covariance matrix with prior subtracted from the same first-
and second-order TS neuron shows a large negative value just before the spike at time 0 indicating
that stimulus features that resemble the STA reliably elicit spiking in this neuron. D, The covariance
matrix with prior subtracted from the same second order only TS neuron shows a large positive value
just before the spike at time 0 indicating that multiple stimulus features that differ significantly from
the STA elicit spiking in this neuron. £, E and I filters from the same first- and second-order TS neuron.
The Efilter (red) was large and resembled the STA in shape while the [ filter (blue) was close to 0. F, E
and | filters from the same second order only TS neuron were opposite in sign and matched in mag-
nitude. G, The bias index, measuring the relative proportion of I-input to E-input for a given neuronin
TS, is near 1 for E-type neurons that respond to first- and second-order stimulus features, near —1for
I-type neurons that respond to first- and second-order stimulus features, and near 0 for second order
only neurons.

nitude, which is similar to what is observed for second order-only
neurons (compare Figs. 6 D and 5F).

We next systematically varied the parameter py in our model
and found that the envelope-response was maximal and the stim-
ulus—response was minimal for p; = 0.5 (Fig. 7A). Moreover, the
bias index had a sigmoidal dependency on py (Fig. 7B), which
might explain the strong magnitude of the bias index observed

<«

phase histogram (bottom). Note that similar responses were observed for E-type pyramidal neurons
except that these tended to respond preferentially near a local maximum of the waveform (data not
shown). E, Phase locking index as a function of baseline firing rate for ELL neurons. Both quantities
were significantly negatively correlated (r = —0.66,p <10 3, N = 66).
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Finally, we return to the hypothesis
that first order-only TS neurons receive
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input exclusively from ELL pyramidal
neurons with the highest firing rates.
Since all first order-only TS neurons were
E-type, we assumed that they received in-
put only from E-type ELL pyramidal neu-
rons and set p, = 1 in our model. We next
systematically varied the baseline firing
rate of the input E-type ELL pyramidal
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neuron over the physiological range. In-
creasing the baseline firing rate of the ELL
model neuron tended to decrease its re-
sponse to second-order attributes and
increase its response to first-order attri-
butes (Fig. 7C), which is consistent with
experimental data (compare Figs. 7C and
4 A, B). Moreover, we found that such a ma-
nipulation did also lead to an increased first-
order and decreased second-order response
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in the model TS neuron (Fig. 7D).

Verifying the model’s prediction

If second order-only TS neurons receive
balanced excitatory input from E- and
I-type ELL neurons, then we would ex-

150 o
frequency (Hz)

150 o
frequency (Hz)

@)

-25 -25 -25

-50 -50 -50
-50 -25 0 -50 25 0 -50
time (ms) time (ms)

D = E filter
= | filter

stimulus
L o
o
o

'
w
'
w
'
w

frequency (Hz)

time (ms)

pect that these neurons would respond
in a biphasic manner to sinusoidal stim-
uli. This is because E- and I-type ELL
neurons respond to such stimuli with
spike trains that are out of phase with
respect to one another (Bastian et al,,
2002).

Thus, we next recorded the responses
of TS neurons to 4 Hz sinusoidal stim-
uli. First- and second-order TS neurons
responded to such stimuli by firing near
a preferred phase of the input (Fig. 8A)
as confirmed by a phase histogram that
was unimodal (Fig. 8B). In contrast,
second order-only TS neurons instead
responded by firing near two distinct
phases of the stimuli that were separated
by 7 radians (Fig. 6C), and had a bi-

o
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Figure 6.  Modeling convergent excitatory E- and I-type input from ELL onto TS neurons. A, Model schematic showing inputs
from E-and I-type ELL neurons exciting our model TS neuron. The parameter py is the fraction of E-type input received by the model
TS neuron. B, Responses as quantified by the coherence function of our model TS neuron to 40— 60 Hz (top) and 0120 Hz
(bottom) noise stimulation for p; = 0.1 (left), p. = 0.5 (center), and p; = 0.9 (right). €, Covariance matrices with prior
subtracted from our model TS neuron for p; = 0.1 (left), py = 0.5 (center), and p, = 0.9 (right). D, E (blue) and | (red) filters from

our model TS neuron for p; = 0.1 (left), p; = 0.5 (center), and pg = 0.9 (right).

for E- and I-type neurons that responded to both first- and
second-order attributes (Fig. 5G). This sigmoidal dependency
results from the fact that the output bias depends solely on the
spiking, which is a nonlinear mechanism, whereas the input bias
does not. As such, the output bias does not take into account
subthreshold membrane potential fluctuations that do not give
rise to spiking and can thus be greater in magnitude than the
input bias.

time (ms)

modal phase histogram (Fig. 8 D). We
further found a strong positive correla-
tion between the bimodality and
second-order response selectivity as the
first- and second-order and second
order-only TS neurons formed distinct
clusters (r = 0.94, p K 10 %, N = 20)
(Fig. 8 E). Indeed, both the distributions
of bimodality and second-order re-
sponse selectivity were significantly bi-
modal (Hartigan’s dip test, p < 10 > in
both cases, N = 20). Further, a strong and significant correla-
tion between bimodality and second-order response selectivity
was also observed when we only considered second order-only TS
neurons (r = 0.78, p = 0.04, N = 7). These results confirm our
model’s prediction that the relative balance between the E and I
inputs unto TS neurons determine their response selectivity to
second-order stimulus attributes.

-25 0
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Figure 7.  Explaining the emergence of selectivity to first- and second-order stimulus attri-
butes in TS neurons. A, Normalized first-order (black) and second-order (gray) responses of our
model TS neuron as a function of p;. B, Bias index as a function of p. ¢, Normalized first-order
(black) and second-order (gray) responses of our model ELL neuron as a function of the ELL
baseline firing rate. D, First-order (black) and second-order (gray) responses of our model TS
neuron as a function of the ELL baseline firing rate.

Understanding the nature of the neural circuits by which
stimulus and envelope selectivity emerges in TS

How does combining E- and I-type inputs in a balanced fashion
lead to a response that is selective to the second-order attributes
as quantified by the envelope? Our results show that both E- and
I-type ELL neurons that respond to second-order attributes also
tend to display rectification: the responses of E- and I-type neu-
rons are illustrated in Figure 9A. Both neurons are phase locked
to the stimulus waveform and tend to fire at different phases:
E-type neurons tend to fire near a local maximum, while I-type
neurons tend to fire near alocal minimum. As such, the responses
of each neuron tend to be 180° out of phase with respect to the
fine structure of the stimulus waveform (i.e., first-order attri-
butes). The situation is different in relation to the envelope as
both E- and I-type pyramidal neurons tend to fire more action
potentials when the envelope increases (Fig. 9A). Both responses
are more in phase with one another with respect to the envelope.
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Figure8. Testingthe model’s prediction that second order-only TS neurons receive balanced

input from both E- and I-type sources. 4, Response (bottom) of an example first- and second-
order TS neuron to 4 Hz sinusoidal stimulation (top). Spikes tend to occur on the rising phase of
the stimulus. B, Unimodal phase histogram from this same neuron confirming that spikes
preferentially occur on the rising phase of the stimulus. One cycle of the stimulus is shown on
top. C, Response (bottom) of an example second order-only TS neuron to 4 Hz sinusoidal stim-
ulation (top). This neuron responds preferentially at two phases of the input. D, Bimodal phase
histogram from this same neuron confirming that spikes preferentially occur at two different
phases of the stimulus that are separated by 7r radians. One cycle of the stimulus is shown on
top. E, Second-order response selectivity as a function of bimodality index for second order-only
TS neurons (black dots) as well as first- and second-order TS neurons (gray dots). A significant
positive correlation is observed between both quantities when all the data are considered (r =
0.94, p<<<10 3, N = 20) as well as when second order-only TS neurons were considered
exclusively (r = 0.78,p = 0.04, N = 7).

(i.e., second-order attributes). Adding the spike trains of E- and
I-type neurons results in a response that is not correlated with
first-order stimulus attributes because of destructive interfer-
ence, but is correlated with second-order attributes because of
constructive interference.

Together, our results suggest that: (1) E-type ELL pyramidal
neurons with the highest baseline firing rates project preferen-
tially to first order-only TS neurons, (2) second order-only TS
neurons receive balanced excitatory input from both E- and
I-type ELL neurons, and (3) TS neurons that respond to both
first- and second-order attributes receive excitatory input from
both E- and I-type ELL neurons but in an unbalanced fashion.
This proposed circuit is shown in Figure 9B and is further dis-
cussed below.



McGillivray et al. o Parallel Coding by Midbrain Neurons

A

second order only ||
TS neuron

envelope

E-type
ELL neuron

stimulus

I-type
ELL neuron

B first order
only

second order
only

first and second order

J. Neurosci., April 18,2012 - 32(16):5510-5524 + 5521

order attributes because they displayed
the least phase locking. A combination of
spike-triggered covariance analysis and
mathematical modeling revealed that the
relative balance between the E- and I-type
inputs received by TS neurons determines
whether they respond to both first- and
second-order attributes, first-order attri-
butes only, or second-order attributes
only. Interestingly, when both E- and
I-type inputs to a model TS neuron were
matched in strength, the neuronal spiking
activity closely resembled that seen exper-
imentally in second order-only TS neu-

TS

rons. We then varied the firing rate of our
model ELL neurons and showed that this
could make our model TS neuron re-
spond more selectively to first-order attri-
butes as observed experimentally in
first order-only TS neurons. Finally, we

confirmed our model’s prediction that
second order-only TS neurons receive
balanced input from E and I sources by
recording their responses to sinusoidal
stimuli and showing that they display a
biphasic response.

Processing of second-order stimulus
attributes in the electrosensory system

afferents

Figure9.

both sources of ELL input are matched in strength for second-order-only TS neurons.

Discussion

Summary of results

We recorded the responses of TS and ELL neurons to narrow-
band (40-60 Hz) and broadband (0-120 Hz) noise stimuli and
investigated their responses to first- and second-order stimulus
attributes. We found three distinct TS neuron groups: one re-
sponded both to first- and second-order attributes, one re-
sponded only to first-order attributes, and one responded only to
second-order attributes. In contrast, afferent ELL neurons always
responded to both first- and second-order attributes. However,
ELL neurons with the highest baseline firing rates tended to re-
spond the most to first-order attributes and the least to second-

Summary of the proposed neural circuit that mediates parallel coding of first- and second-order stimulus attributes in
TS. A, Example spike trains (vertical bars) with the stimulus waveform of E-type (blue) and I-type (red) ELL neurons. E-type neurons
respond near local maxima of the stimulus waveform but their probability of firing increases with the envelope (black). In contrast,
I-type neurons respond near local minima of the stimulus waveform but their probability of firing also increases with the envelope.
Adding their spike trains (black vertical bars) results in a response that is correlated with the envelope (second order) but not the
stimulus waveform (first order). B, Electrosensory afferents excite E-type and inhibit I-type ELL pyramidal neurons. However,
E-type pyramidal neurons with the highest firing rates (dE) tend to respond more to first-order attributes and less to second-order
attributes and are assumed to excite first order-only TS neurons since these neurons were all found to be E-type. E- and I-type first-
and second-order TS neurons receive input from both E- and I-type pyramidal cells but in an unbalanced fashion such that the
proportion of E-type and I-type ELL input is greatest for E- and I-type first- and second-order TS neurons, respectively. In contrast,

Recent field studies show that electrosen-
sory stimuli that are encountered by
weakly electric fish in the wild are charac-
terized by time-varying second-order at-
tributes as quantified by the envelope
(Stamper et al., 2010). These results were
obtained subsequent to electrophysiolog-
ical studies showing that electrosensory
neurons respond to these envelopes
(Middleton et al., 2006; Savard et al.,
2011). Thus, our results showing that TS
neurons can respond to second-order at-
tributes add to a growing body of litera-
ture suggesting that these stimuli are
behaviorally relevant and are processed by
electrosensory neurons. In particular, we
have described a category of TS neurons
that selectively extracts second-order in-
formation while another category selec-
tively extracts first-order information.
Our results thus give rise to the interesting
hypothesis that parallel processing of
first- and second-order attributes begins at the level of the TS and
is further refined in higher-order brain areas.

This parallel processing of the first- and second-order attri-
butes of electrosensory input is likely to be of behavioral impor-
tance. Indeed, when two fish engage in agonistic or courtship
behavior, first-order attributes will provide information as to the
frequency difference between the two fish while second-order
attributes instead gives information about the distance between
and perhaps the orientation of the two fish. There is no reason to
expect a correlation between both signals and previous studies
have found a significant overlap between the frequency ranges of
beats and envelopes (beat frequency range: 0—400 Hz; envelope
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frequency range: 0-50 Hz) (Stamper et al., 2010). We note that
the first- and second-order attributes of the noise stimuli used in
this study both had frequency content within the range of those
that are experienced in the natural environment. Therefore, our
results suggest that weakly electric fish could distinguish between
first- and second-order attributes of such sensory input even
when they overlap in their frequency content by using first and
second order-only TS neurons, respectively.

The TS neurons that responded selectively to second-order
attributes received balanced input from E- and I-type pathways.
As such, they most likely correspond to the previously described
E-Ineurons that are excited by both increases and decreases in the
stimulus (Partridge et al., 1981; Rose and Call, 1993). The most
parsimonious explanation for their properties is that they receive
balanced excitation from E- and I-type ELL neurons. Of course, it
is possible that such inputs could come from E- and I-type neu-
rons within the TS itself. This scenario is possible but unlikely
because I-type neurons are relatively rare within the TS. Another
possibility is that E-I neurons would receive synaptic excitation
from E-type TS neurons and synaptic inhibition from another
group of E-type TS neurons. This scenario is also possible but
unlikely because a delay would then have to be introduced for the
inhibition, which is inconsistent with our experimental observa-
tions that the E- and I-type inputs were not significantly delayed
with respect to one another.

Our results showed that the responses of ELL pyramidal neu-
rons to second-order attributes and their tendency to display
phase locking are both negatively correlated with their baseline
firing rates. Phase locking in ELL pyramidal cells is most likely
due in part to the amount of inhibition that they receive from
interneurons (Middleton et al., 2006). Further, while all pyrami-
dal cells project to TS, there is evidence that pyramidal cells with
the highest firing rates constitute a distinct class as they project
exclusively to some areas (Bastian and Courtright, 1991; Bastian
et al., 2004). Thus, our results suggest that it is these pyramidal
cells with the highest firing rates that project preferentially to
stimulus-only TS neurons. Further, they suggest that pyramidal
cells with the lowest firing rates would tend to project to second
order-only and first- and second-order TS neurons as they
tended to show strong responses to both first- and second-order
stimulus attributes. As such, our results provide new insight as to
how different pyramidal cell classes have different functional
roles.

All three neuron types that were found in TS formed distinct
clusters when we plotted their second-order responses as a func-
tion of their first-order responses (Fig. 2 B), suggesting that they
correspond to specific groups of cells within TS. While the anat-
omy of the different cell classes within TS have been thoroughly
characterized (Carr and Maler, 1985), the only correlations be-
tween anatomy and physiology that have been investigated to
date are between position in the different layers of the TS and
between the density of spines (Rose and Call, 1992, 1993; Fortune
and Rose, 1997a,b). Further studies using intracellular recordings
and quantitative analysis of neuronal morphologies are needed to
verify our data and are beyond the scope of this paper.

Finally, our model shows that integration of afferent ELL in-
putby TS neurons is sufficient to give rise to parallel processing of
first- and second-order stimulus attributes. This is surprising
given that anatomical studies have reported significant connec-
tions between TS neurons (Carr and Maler, 1985). Based on pre-
vious studies (Mehaffey et al., 2007; George et al., 2011), it is
conceivable that such connections could further refine parallel
processing of first- and second-order stimulus attributes in TS
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neurons. Further experiments are however required to test this
hypothesis.

Parallel processing of first- and second-order stimulus
attributes in other systems

Our results also have important consequences for the processing
of first- and second-order stimulus attributes in other systems.
Indeed, time-varying second-order attributes occur in natural
stimuli in the form of low-frequency envelopes and often contain
behaviorally relevant information (Ahissar et al., 2000; Joris et al.,
2004; Curtis and Kleinfeld, 2009). Our results suggest a general
strategy for designing brain circuits that selectively extract enve-
lope information. Specifically, we showed that neurons that re-
ceive balanced input from E- and I-type afferent neurons (i.e., E-I
neurons) respond selectively to these envelopes. Neurons with
response profiles similar to those of E-I neurons have previously
been described in other systems. In particular, ON-OFF retinal
ganglion cells receive input from both ON and OFF-type bipolar
cells and respond reliably to changes in contrast (Greschner et al.,
2006). In the visual system, selective lesions of the ON pathway
gives rise to a large loss in contrast sensitivity (Schiller et al.,
1986), which is consistent with the hypothesis that contrast sen-
sitivity requires integration of the ON and OFF pathways. More-
over, type 3 neurons respond with excitation to both ipsi and
contralateral rotations (Duensing and Schaefer, 1958) and have
been found in several brain areas including the posterior parietal
cortex (Klam and Graf, 2003). However, our spike-triggered co-
variance analysis revealed that E-I neurons did not respond to
first-order stimulus attributes because they received balanced in-
put from E- and I-type pathways. We suggest that these neurons
might have been previously ignored because of their lack of re-
sponses to first-order stimulus attributes and that they might be
found more commonly in sensory systems.

Finally, we have shown that first and second order-only neu-
rons were not responsive to second and first-order attributes,
respectively, even when the signals corresponding to both attri-
butes strongly overlapped in their frequency contents. This
strongly suggests that these neurons each encode their preferred
attribute independently of the value of the other. As such, our
results our provide the first experimental evidence suggesting
that the CNS can remove ambiguity that is inherent in adaptive
neural codes through parallel encoding of first- and second-order
attributes. Further studies are however needed to test whether
first and second order-only neurons actually encode first- and
second-order attributes regardless of second and first-order at-
tributes, respectively. Moreover, integration of these parallel
streams of information is then required. The mechanisms that
mediate such integration are currently unknown and should be
the focus of subsequent investigations.

Conclusions

We have shown the first experimental evidence for parallel
processing of first- and second-order stimulus attributes by electro-
sensory midbrain neurons. Through a combination of computa-
tional analysis and mathematical modeling, we have suggested
generic neural circuitry that mediates such processing. Such circuitry
will most likely be found in other systems.
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