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Conceptual processing is a crucial brain function for humans. Past research using neuropsychological and task-based functional brain-
imaging paradigms indicates that widely distributed brain regions are related to conceptual processing. Here, we explore the potential
contribution of intrinsic or spontaneous brain activity to conceptual processing by examining whether resting-state functional magnetic
resonance imaging (rs-fMRI) signals can account for individual differences in the conceptual processing efficiencies of healthy individ-
uals. We acquired rs-fMRI and behavioral data on object conceptual processing tasks. We found that the regional amplitude of sponta-
neous low-frequency fluctuations in the blood oxygen level-dependent signal in the left (posterior) middle temporal gyrus (LMTG) was
highly correlated with participants’ semantic processing efficiency. Furthermore, the strength of the functional connectivity between the
LMTG and a series of brain regions—the left inferior frontal gyrus, bilateral anterior temporal lobe, bilateral medial temporal lobe,
posterior cingulate gyrus, and ventromedial and dorsomedial prefrontal cortices—also significantly predicted conceptual behavior. The
regional amplitude of low-frequency fluctuations and functionally relevant connectivity strengths of LMTG together accounted for 74%
of individual variance in object conceptual performance. This semantic network, with the LMTG as its core component, largely overlaps
with the regions reported in previous conceptual/semantic task-based fMRI studies. We conclude that the intrinsic or spontaneous
activity of the human brain reflects the processing efficiency of the semantic system.

Introduction
Semantic memory is a system for the storage, retention, and recall of
general conceptual knowledge about objects, people, facts, and be-
liefs that are unrelated to specific experiences (Tulving, 1972). This
system serves as a foundation for various cognitive processes includ-
ing language, object recognition and use, reasoning, and problem
solving. Evidence from neuropsychological and task-based func-
tional brain-imaging studies has shown that performing semantic/
conceptual tasks (we do not intend to distinguish between semantics
and conceptual knowledge here, and use these two terms inter-
changeably) implicates multiple areas in the temporal, frontal, and
frontoparietal regions (Dronkers et al., 2004; Binder et al., 2009).

To identify how conceptual knowledge is maintained at rest in
the absence of specific inputs or outputs, the current study ex-
plores the role of spontaneous brain activity in semantic memory

using resting-state functional magnetic resonance imaging (rs-
fMRI). We focus on object conceptual processing in relation to
low-frequency (�0.08 Hz) fluctuations (LFFs) in the blood oxy-
gen level-dependent (BOLD) signal at rest, given that these fluc-
tuations are related to spontaneous neuronal activity (Logothetis
et al., 2001; Raichle, 2006).

Previous investigations of the regional amplitude of the LFFs
(ALFF) have found that the ALFF reflects physiological signals:
the ALFF of gray matter is higher than that of the white matter
(Biswal et al., 1995), the ALFF of the so-called “default mode
network” (regions that are activate during resting state and deac-
tivated during task performance) is higher than that of other
regions (Zang et al., 2007), and individuals with cognitive brain
disorders show abnormal ALFF in the regions critical for the
corresponding cognitive processes (Zang et al., 2007; Hoptman et
al., 2010). Healthy individuals’ resting-state ALFFs correlate with
task-evoked BOLD responses and with participants’ behavioral
measures (Mennes et al., 2011). Furthermore, high synchroniza-
tion of LFFs between areas within the same neuroanatomical
and/or functional systems has been reported (Biswal et al., 1995;
Fox et al., 2005; Koyama et al., 2010). Significantly, the degree of
such synchronization is associated with variability in healthy in-
dividuals’ cognitive processing ability (e.g., reading ability)
(Hampson et al., 2006), performance improvements (e.g., visual-
detection performance) (Lewisa et al., 2009), and personality
traits (e.g., autistic traits) (Di Martino et al., 2009). Thus, it ap-
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pears that regional activity amplitude and connectivity patterns
of the LFFs are associated with aspects of cognitive functioning.

In this study, we examined the extent to which intrinsic brain
activity (both regional activity and functional connectivity pat-
terns) at rest predicts individual variation in semantic processing
capacity: (1) we performed a correlation analysis between partic-
ipants’ performance on conceptual tasks and their regional ALFF
to uncover potential core regions that could account for individ-
ual variation in semantic processing efficiency; (2) we defined
such core regions as seeds and computed the functional connec-
tivity strength between each seed and other voxels to reconstruct
the brain network associated with the core regions, and then we
assessed the predictive power of these connectivity strengths for
subjects’ semantic performance. We found that regional ALFF in
the left (posterior) middle temporal gyrus (LMTG) and its func-
tional connectivity with a set of other regions strongly predicted
individual variation in conceptual processing capacity.

Materials and Methods
Participants
Thirty-four healthy, right-handed college students (20 females; 22.5 �
1.3 years old; range, 20 - 26 years old) with no history of neurological or
psychiatric disorders were recruited from the campus of Beijing Normal
University as paid participants, and written informed consents were ob-
tained. This study was approved by the Institutional Review Board of the
State Key Laboratory of Cognitive Neuroscience and Learning of Beijing
Normal University.

Image acquisition
Images were acquired using a Siemens TRIO 3-Tesla scanner at the Beijing
Normal University Imaging Center for Brain Research. The participants lay
supine with their heads snugly fixed with straps and foam pads to minimize
head movement. Functional images were obtained using an echoplanar im-
aging sequence with the following parameters: 33 axial slices; slice thickness,
3 mm; gap, 0.6 mm; repetition time (TR), 2000 ms; echo time (TE), 30 ms;
voxel size, 3.1 � 3.1 � 3.5 mm; flip angle, 90°; field of view (FOV),
200 � 200 mm; and 240 volumes. In addition, a T1-weighted sagittal
three-dimensional magnetization-prepared rapid gradient echo se-
quence was acquired: 128 slices; TR, 2530 ms; TE, 3.39 ms; slice thickness,
1.33 mm; voxel size, 1.3 � 1.0 � 1.3 mm; flip angle, 7°; inversion time,
1100 ms; FOV, 256 � 256 mm; and in-plane resolution, 256 � 256.
During rs-fMRI scanning, participants were instructed to close their eyes,
keep still, and not think about anything systematically or fall asleep.

Behavioral tests
To assess semantic processing ability, we focused on two commonly
studied object categories: animals and artifacts. We selected three classi-
cal tasks that share semantic processing components but vary in the
modalities of input and output: object picture naming, picture associa-
tive matching, and object sound naming. By considering these tasks both
jointly and separately, we attempted to approximate the function of a
shared semantic component and not just those of any specific input (e.g.,
visual) or output (e.g., oral naming) process. We further administered a
series of other tasks to better establish that any potential results were
indeed relevant to the semantic component in those tasks. Two baseline
control tasks were used to regress out potential individual variation in
peripheral motor and perceptual processing: a cued articulation task for
the naming tasks and a shape-matching task for picture associative
matching. We also performed a number judgment task to test whether
the regions/networks were specific for semantic processing or general
cognitive processing. The DMDX program (Forster and Forster, 2003)
was used to present the stimuli and to record response latencies. The
behavioral data were acquired about one year after image acquisition.

Object picture-naming task. Sixty color photographs of common ob-
jects (30 tools and 30 animals) were used. Participants were instructed to
name the pictures as quickly as possible without making errors. Each trial
began with the appearance of a fixation point (“�”) on the center of the
screen for 500 ms, which was then replaced by a target picture. The

picture disappeared when the participant produced a vocal response or
when a 3 s deadline was reached. The next trial started 1 s later. Pictures
from different categories were randomized, with no consecutive trials
being semantically related.

Object picture associative-matching task. This task is a derivation of the
Pyramid and Palm Trees Test (Howard and Patterson, 1992). Each trial
consisted of a picture triplet with a reference picture (e.g., a hammer)
displayed above a target (e.g., a nail) and a distracter picture (e.g., an axe).
Participants needed to select the bottom picture that was more semanti-
cally related to the top picture. Seventy-two picture triplets were used,
including 36 tool triplets and 36 animal triplets. The trial structure was as
follows: A fixation point (“�”) was presented for 500 ms, followed by a
stimulus triplet. Participants responded by pressing a button box with
two left-right aligned keys corresponding to the two alternative pictures.
The triplets disappeared upon the response or after a 4 s deadline. The
next trial started 1 s later.

Object sound-naming task. In this task, participants were required to name
the object that produces the target sound (e.g., “dog” for a barking sound).
Typical sounds of 20 tools and 20 animals were selected. Each trial started
with a one s fixation point (“�”), followed by a sound stimulus. The mean
duration of the sound stimuli was 3.38 s (range, 0.73–12.02 s). The response
deadline was 15 s. The next trial was initiated by the experimenter manually
upon hearing the participants’ complete response.

Control tasks. Two nonsemantic control tasks that had similar task
structures to the semantic tasks were used to regress out effects arising
from general response latency differences. A cued articulation task con-
sisting of 20 trials was the control task for the naming tasks (i.e., object
picture naming and sound naming). Participants were asked to pro-
nounce the sound “ah” as soon as they saw the fixation point (“�”). To
discourage adoption of response strategies, we used three randomized
trial intervals: 500, 1000, or 2000 ms. A shape-matching task was the
control task for the picture associative-matching task. The procedure was
the same as for the picture associative-matching task, except that geomet-
ric shapes were presented, and the participants judged which of the two
shapes in the bottom was identical to the top target shape by pressing the
corresponding key. There were 36 trials.

Number judgment task. We administrated this task to assess the speci-
ficity of the results obtained for the object conceptual tasks. Each trial
contained a reference number (e.g., 23) displayed above two other num-
bers (e.g., 21 and 29), and participants were required to choose which of
the latter two numbers was closer in magnitude to the reference number.
There were 50 trials, and all items were two-digit numbers.

Data analysis procedures
Behavioral data analyses. To correct for speed-accuracy trade-off effects,
we used an inverse efficiency (IE) measure—the average response time of
correct trials divided by accuracy—in the analyses of behavioral data
(Townsend and Ashby, 1983). For normalization purposes, we com-
puted the z scores of each participant’s IE; that is, we computed the mean
IE for each participant and scaled each participant’s mean IE using the SD
of the mean IEs across participants. Then we reversed the sign of the IE z
scores so that higher scores would correspond to more efficient perfor-
mance. This negated IE z score was used as the index for behavioral
capacity/efficiency throughout the analyses and is referred to as “effi-
ciency score” below.

Functional imaging data preprocessing. Preprocessing was performed using
Statistical Parametric Mapping software (SPM8; http://www.fil.ion.ucl.ac.
uk/spm) and Data Processing Assistant for Resting-State fMRI (Yan and
Zang, 2010). The first 10 volumes of the functional images were discarded for
signal equilibrium and adaptation of the participants to the scanning noise.
Next, slice timing and head motion correction were performed, and a mean
functional image was obtained for each participant. No participant exhibited
head motion of �2 mm maximum translation or 2.5° rotation throughout
the course of scans. To normalize functional images, each participant’s struc-
tural brain image was coregistered to the mean functional image and was
subsequently segmented. The parameters obtained in segmentation were
used to normalize each participant’s functional image onto the Montreal
Neurological Institute space (resampling voxel size was 3 � 3 � 3
mm). After the linear trend of the time courses was removed, a band-
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pass filter (0.01– 0.08 Hz) was applied to reduce low-frequency drift and
high-frequency noise. Finally, spatial smoothing (4 mm FWHM Gauss-
ian kernel) was conducted to decrease spatial noise.

Because LFF is sensitive to signals in the gray matter, additional anal-
yses were conducted on the gray matter mask generated using the follow-
ing procedure. We included the voxels with a probability higher than 0.4
in the SPM5 template onto the gray matter mask. Given the signal dis-
tortion in cerebellum, we also excluded the cerebellar regions (#91–#116)
in the Automated Anatomical Labeling template (Tzourio-Mazoyer et
al., 2002). In total, there were 36,272 voxels in the gray matter mask.

Regional analysis: ALFF calculation and ALFF-behavior analysis proce-
dures. Following Zang et al. (2007), the ALFF value of each voxel in the
brain was extracted as the sum of amplitudes within the low-frequency
range (0.01– 0.08 Hz). Specifically, a filtered time series was transformed
to the frequency domain to obtain a power spectrum for each voxel.
Next, the square root was calculated at each frequency of the power
spectrum. The averaged square root across 0.01– 0.08 Hz at each voxel
was taken as the ALFF. We scaled the ALFF values for each participant for
standardization purposes: the mean ALFF value within the gray matter
mask of the participant was computed, and then the ALFF of each voxel
was divided by this mean ALFF value.

We used two methods to approximate the semantic behavioral perfor-
mance from the three semantic tasks. We examined whether regional
spontaneous activity was related to semantic processing capacity using
measures derived from both methods. The first approach (Method 1)
was to obtain a composite score using the three semantic tasks and to
conduct correlation analyses between this composite semantic score and
the ALFF (for a similar rationale, see Schwartz et al., 2009). The second
approach (Method 2) was to consider the three semantic tasks separately
and then to explore areas shared by these tasks.

In Method 1, we averaged the efficiency scores for the three semantic
tasks to generate a semantic composite score for each participant, which
was taken as an index of the participant’s semantic processing capacity.
We performed a regression analysis to reveal the relationship between
ALFF and semantic performance while partialling out the contribution
of general response latency differences. Specifically, we regressed out the
efficiency scores on the cued articulation and shape-matching control
tasks from the semantic composite efficiency score and then computed
the correlation coefficient between the ALFF and the residualized seman-
tic composite score. In Method 2, we explored any potential overlap
among the areas associated with different semantic tasks to identify the
common region(s) for all three semantic tasks. To obtain a correlation
map for a specific semantic task, we calculated the correlations between
the ALFF and the residualized efficiency score in this specific task after
regressing out the efficiency scores in the corresponding control task. For
the two naming tasks, the correlation map was obtained through a cor-
relation between the ALFF and residualized efficiency scores in the nam-
ing task after regressing out the efficiency scores in the cued articulation
task. Similarly, the correlation map for picture associative matching was
obtained through a correlation between the ALFF and residualized effi-
ciency scores in the picture associative-matching task after regressing out
the efficiency scores in the shape-matching task. We then checked for the
common regions for the three semantic tasks.

Network analysis: functional connectivity analysis and connectivity-behavior
analysis procedures. On the basis of the results of regional ALFF analyses, we
further explored whether any observed core region works in concert with
other regions as a network for semantic processing. Our rationale was to first
use the observed region(s) as seed(s) to perform functional connectivity
analyses, mapping out the regions that function with the seeds as a network.
Next, we examined whether or not any specific connections within this net-
work were able to predict semantic behavior.

Before conducting functional connectivity analyses, six head motion
parameters, white matter, and cerebrospinal signal were first regressed
out. Functional connectivity analysis was performed using the Resting-
State fMRI Data Analysis Toolkit (REST; http://www.restfmri.net). A
spherical seed ROI (radius, 6 mm) was created, centering on the coordi-
nates of each peak point identified in the regional ALFF-behavior corre-
lation analysis. To obtain the functional connectivity map for each
participant, we considered both of the two relevant measures: regression

coefficient (�) and correlation coefficient (r). First, we calculated the
mean time series of the seed ROI for each participant. For the same gray
matter mask applied in the above regional analysis, we calculated the
regression coefficients (�) and correlation coefficients (r) between the
seed time series and other voxels to obtain a � map and an r map for each
participant. Fisher z score transformations were conducted for the corre-
lation coefficients (r) to generate a z-functional connectivity (FC) map for
each participant. To identify the regions showing significant functional con-
nectivity with the seed(s), we did one-sample t tests on these individual �
maps or z-FC maps to see whether they were significantly different from zero
(t � 6.43; corrected p � 0.01; Bonferroni correction). For these regions, we
performed correlation analyses between participants’ semantic performance
and � values or Fisher z scores while regressing out the peripheral response
components reflected in the performance of the control tasks.

Validating the functional roles of the semantic network. To examine
whether the regions found in the ALFF- and FC-behavior analyses are
specific to (object) conceptual processing or are more generally involved
in other cognitive processes, we conducted the following ROI analyses.
First, these regions and/or networks were defined as ROIs, and the cor-
responding ALFF/FC values within each ROI were averaged. Then cor-
relation analyses were performed between averaged ALFF/FC values and
participants’ behavioral indexes in the number judgment task.

Reconstructing the default mode network. We compared the obtained
resting-state semantic network with the default mode network, which is
active during the resting state, is deactivated by most cognitive tasks but not
by semantic tasks (Raichle et al., 2001), and overlaps in part with semantic
networks derived from task-based fMRI research (Binder et al., 2009). To
identify the default mode network in our participant group, we performed
functional connectivity analyses (both correlation coefficient and regression
coefficient measures) based on one previously identified seed region located
in posterior cingulate gyrus (PCG; radius, 6 mm; central coordinates, �5,
�49, 40) (Fox et al., 2005). Then, individuals’ correlation coefficients were
transformed into z-FC maps by the Fisher z score transformation. One-
sample t tests were then performed on these individual � maps and z-FC
maps (t � 6.43; corrected p � 0.01; Bonferroni correction).

Statistical analysis. AlphaSim was used to correct for multiple compar-
isons (originally in AFNI software and implemented in REST), and the
corrected threshold was set at p � 0.05. More specifically, the threshold
of regional ALFF-behavior analysis was the combination of a voxelwise p
value of �0.05 and a cluster size of �58 voxels (1566 mm3). Because
connectivity-behavior analyses were conducted on brain areas showing
significant functional connectivity with the seeds, the threshold was a
combination of a voxelwise p value of �0.05 and a cluster size of �45
voxels (1215 mm3) (small volume correction).

Results
Regional ALFF analysis and ALFF-behavior analysis
Participants’ mean response times, accuracies, and inverse effi-
ciency values on the behavioral tasks are shown in Table 1.

To explore the association between semantic behavior and
regional resting-state activity, we first correlated the averaged
efficiency scores of the three semantic tasks (Method 1) with the
ALFF value of each voxel across the whole brain. The ALFF of one
region, the LMTG [peak, �60, �48, �3; 3564 mm 3 (132 voxels);
Fig. 1A], was positively correlated with participants’ semantic
performance (rpeak � 0.68; rcluster � 0.81; p values �0.001; rpeak,
correlation coefficient between the ALFF in the peak coordinate
and behavioral scores; rcluster, correlation coefficient between the
averaged ALFF within the significant region and the behavioral
scores; Fig. 1B). Thus, the regional ALFF variance of LMTG ac-
counted for 66% (R 2) of the variation in semantic task perfor-
mance across individuals.

When we conducted separate analyses on the three semantic
tasks (Method 2), the LMTG was the only brain region in which
the ALFF was significantly positively correlated with (1) picture-
naming performance with cued articulation performance re-
gressed out [peak, �60, �48, �3; 2268 mm3 (84 voxels); rpeak �
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0.71; rcluster � 0.73; p values �0.001] and (2) picture associative-
matching performance with shape-matching performance
regressed out [peak, �66, �45, �3; 3375 mm3 (125 voxels); rpeak �
0.81; rcluster � 0.59; p values � 0.001]. In the object sound-
naming task, we found positive correlations in right superior
temporal and inferior parietal lobes [peak, 54, �36, 24; 2511
mm 3 (93 voxels); rpeak � 0.67; rcluster � 0.67; p values �0.001]. It
should be noted that the particularly low levels of accuracy and
large variance in performance in this task may have originated in
part at the object sound perceptual/recognition phase. Since we
did not include a control task for this phase of the object sound-
naming task, we lowered the threshold to corrected p � 0.1 [a
combination of a voxelwise p value of �0.05 and a cluster size of
�1377 mm 3 (51 voxels)]. We found that,
with cued articulation regressed out,
LMTG showed association with object
sound-naming performance [peak, �66,
�42, �6; 1431 mm 3 (53 voxels); rpeak �
0.59; rcluster � 0.64; p values �0.001].

Together, the findings obtained with
the two methods converge in showing that
the LMTG is relevant for semantic pro-
cessing regardless of stimulus input and
output modality.

Functional connectivity analysis and
connectivity-behavior analysis
To explore whether LMTG functions in
concert with other brain regions for se-
mantic processing, we performed a seed
voxel correlation analysis between the
LMTG region found with the semantic
composite score (Method 1) and all other
voxels in the brain. As seen in Figure 2, A
and B, we found similar functional connectivity patterns using
the regression coefficient and correlation coefficient measures. A
wide range of brain regions showed significant functional con-
nectivity with LMTG, including the bilateral temporal gyri, infe-
rior occipital gyri, middle and inferior frontal gyri, precentral
cortices, ventromedial and dorsomedial frontal cortices, angular
gyri, and posterior cingulate gyri. We defined these regions as a
large ROI mask and correlated each voxel value within this ROI
with semantic composite scores across participants. For the re-
gression coefficient approach, the strength of functional con-
nectivity between LMTG and the following regions
significantly predicted participants’ semantic performance:
left inferior frontal gyrus (LIFG), bilateral lateral temporal
lobe including anterior temporal lobe (ATL), left medial tem-
poral lobe (LMTL), PCG, dorsomedial prefrontal cortex
(DMPFC), and ventromedial prefrontal cortex (VMPFC)
(Fig. 3; Table 2). When the correlation coefficients were con-
sidered, significant correlations were also observed between
functional connectivity in most of these regions and LMTG
and participants’ semantic performance (Table 2).

We performed ROI analyses to further examine whether the
regional activity of these regions (in the regression coefficient
results) correlated with semantic processing performance. First,
the averaged ALFF value within each region was obtained. Then
correlation analyses between participants’ semantic composite
scores and averaged ALFF values for each region were per-
formed. No region showed significant effects in these ROI
analyses (r values �0.27; p values �0.12).

Combining regional- and connectivity-behavior analyses
To assess the joint contributions of the regional activity and con-
nectivity of LMTG in predicting semantic behavior, we per-
formed a multiple linear regression analysis. The dependent
variable was participants’ semantic composite scores after re-
gressing out the efficiency scores on the cued articulation and
shape-matching control tasks. Independent variables included
the ALFF values of LMTG and seven functional connectivity vari-
ables. The ALFF variable was obtained by averaging ALFF values
within the LMTG region that was significant in the regional anal-
ysis (Method 1). The functional connectivity variables were ex-
tracted by averaging the regression coefficients within each
observed region in the functional connectivity-behavior analyses.
When all independent variables were simultaneously entered
into the regression, the regression model explained 74% of the
variation in participants’ semantic processing performance (R2 �
0.74; F(8,25) � 8.96; p � 0.001). We also used a forward method
to test how much independent contribution each of the two
types of variables provided. When the ALFF variable was en-
tered first and the 10 functional connectivity variables were
entered in the second step, we found that the inclusion of the
functional connectivity variables yielded a trend of improve-
ment for the explanatory power of the regression model (R 2 �
0.663 0.74), but the effect was not significant (F(7,25) � 1.18;
p � 0.35). When the functional connectivity variables were
entered first, the addition of ALFF into the model yielded
significant R 2 change (R 2 � 0.493 0.74; F(1,25) � 24.18; p �
0.001). These results further highlight the central role of
LMTG’s regional activity in predicting semantic performance.

Figure 1. Regional ALFF-behavior correlation analyses using composite semantic scores. A, Statistical map for the correlation
between ALFF and semantic scores. The correlation value is indicated using the color scale to the top. B, Scatter plot shows the
positive correlation between semantic performance and averaged ALFF in the region plotted in A, while the efficiency scores on the
cued articulation and shape-matching control tasks were regressed out from the semantic composite efficiency score. Each dot
represents data from one participant.

Table 1. Participants’ performance on behavioral tasks

Tasks

Response time
(ms) Accuracy

Inverse
efficiency

Mean SD Mean SD Mean SD

Semantic tasks
Object picture-naming 1082 152 94% 4% 1149 187
Object picture associative-

matching 1608 243 91% 6% 1781 292
Object sound-naming 2857 506 76% 10% 3832 968

Other tasks
Cued articulation 376 91 100% 0% 376 91
Shape matching 487 72 96% 4% 506 64
Number judgment 1316 310 93% 4% 1409 317
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The functional specificity of the observed semantic network
The results of ROI analyses for the number judgment task are
shown in Table 3.a Within the LMTG network we obtained for
the semantic tasks, we observed that the intrinsic brain activity
(i.e., both regional activity and functional connectivity) was not
significantly associated with the number-processing task. These

results indicate that different domains of conceptual processing
(object vs numbers) can be distinguished.

Default mode network and semantic network
As shown in Figure 4A, bilateral inferior parietal lobe, medial
prefrontal cortex, superior frontal cortex, medial temporal lobe,
and lateral temporal cortex had strong functional connectivity
with PCG, and these regions constitute the default mode net-
work. Figure 4B replots the data presented in Figures 3 and 4A,
showing that the semantic network largely overlaps with the de-
fault mode network.

aWe also performed whole-brain correlation analyses between the regional activity and efficiency scores in the
number judgment task. We observed a significant association between participants’ behavior and intrinsic activity
in left inferior and superior parietal lobule encompassing the left intraparietal sulcus [peak coordinates (range),
�51 (�52��17), �48 (�59��38), 54 (47�67); 57 voxels; corrected p � 0.05], close to the number
regions reported in previous studies (Dehaene et al., 2003).

Figure 2. A, B, Statistical maps of functional connectivity of LMTG with the regression coefficient (A) and correlation coefficient (B) measures: voxels for which the time series showed a significant
association with the seed ROI in LMTG.

Figure 3. Clusters for which functional connectivity strength (�) with LMTG significantly predicted semantic composite scores. Scatter plots show positive correlations between participants’
semantic performance and functional connectivity strength between LMTG and the clusters in the blue circles, while the efficiency scores on the cued articulation and shape-matching control tasks
were regressed out from the semantic composite efficiency score. Each dot represents data from one participant.
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Discussion
We observed that the amplitude of resting-state LFF activity in
LMTG accounted for 66% of individual variance in object con-
ceptual processing efficiency. This region functions together with
six other regions in a semantic memory network: we found that
the strength of functional connectivity between LMTG and these
regions (LIFG, bilateral ATL, PCG, bilateral MTL, VMPFC, and
DMPFC) also significantly predicted participants’ semantic pro-
cessing efficiency. Regression analysis revealed that this network,
with LMTG as its core component, accounted for 74% of seman-
tic processing performance variation, but did not correlate with
participants’ performance on a non-object-conceptual task (i.e.,
number processing).

The LMTG network identified here largely overlaps with re-
gions that have been previously implicated in semantic process-
ing tasks in the functional brain-imaging literature. LMTG has
long been observed to be important for semantic processing, and
all seven regions obtained in the network analysis overlap with
the regions that were reported in a previous meta-analysis of
task-based fMRI and positron emission tomography studies of
semantic processing (Binder et al., 2009). The only difference is
that the meta-analysis reported a significant role for the angular
gyrus, while this area was not found in our analysis.

LMTG as a core semantic region
The LMTG region identified here corresponds to the middle part
of Brodmann’s area (BA) 21, extending to BA 37. In brain-
imaging studies, the LMTG has been found to be activated by
tasks that probe semantic processing through various modalities,
including visual words and pictures (Vandenberghe et al., 1996),
auditory words (Hickok and Poeppel, 2004), and tactile inputs
(Stoeckel et al., 2003). Task-induced activity in the LMTG has

also been observed for semantic information acquisition relative
to baseline (Maguire and Frith, 2004). The essential role of the
LMTG in word-level comprehension is also indicated by lesion-
symptom mapping analysis on stroke patients (Bates et al., 2003;
Dronkers et al., 2004; Schwartz et al., 2009) and voxel-based mor-
phometric analyses on semantic dementia patients (Mum-
mery et al., 2000). Turken and Dronkers (2011) showed
previously that the LMTG has rich structural and spontaneous
functional connectivity with other regions relevant for lan-
guage comprehension, and they proposed that it plays a cen-
tral role in comprehension.

In some task-based fMRI and lesion studies (Damasio et al.,
1996; Martin et al., 1996), the LMTG has been shown to be more
sensitive to certain semantic categories such as tools, while other
studies have observed effects for a wide range of semantic catego-
ries (Rudrauf et al., 2008; Simmons et al., 2010), including verbs
(Willms et al., 2011), suggesting that the effect reported here is
not likely to be driven only by tool items. We nevertheless ana-
lyzed tool and animal items separately in our study, and found
similar LMTG effects for the two categories [for tools, peak, �63,
�45, �3; 3024 mm 3 (112 voxels); rpeak � 0.64; rcluster � 0.77; p
values �0.001; for animals, peak, �60, �48, �3; 3186 mm 3 (118
voxels); rpeak � 0.63; rcluster � 0.74; p values �0.001]. It is possible
that the tool-specific effects reported in the literature originated
from an LMTG region that was close to but different from ours
(Simmons et al., 2010). We did show, however, that number
judgment performance did not correlate with the observed object
semantic LMTG network, but with parietal regions close to the
classical number regions (Footnote a), suggesting that our
technique has the potential to distinguish between conceptual
domains.

Together, these findings constitute clear evidence for a critical
role of the LMTG in semantic processing, at least for single object
concepts (Lau et al., 2008). The present study further strengthens
this view by showing the robust effect of the spontaneous activity
of this region in predicting individual participants’ variation in
semantic processing behavior.

Regions for which connectivity with LMTG predicted
semantic processing behavior
Among the brain regions showing resting-state synchronization
with the LMTG, a subset of these regions further predicted vari-
ation in semantic processing behavior, although their contribu-
tion beyond the regional ALFF effect of the LMTG was not
significant. Among these regions, the LIFG and left ATL have
consistently been observed to have white matter fiber pathways

Table 2. Clusters for which functional connectivity strength with LMTG can predict semantic performance

Brain regions

Regression coefficient Correlation coefficient

Peak MNI coordinates Peak MNI coordinates

BA x y z r ( p) (peak) Volumes (mm 3) BA x y z r ( p) (peak) Volumes (mm 3)

LIFG 11, 47 �30 54 �12 0.78 (�0.001) 2943 11, 47 �30 54 �12 0.62 (�0.001) 1593
Left MTG 38, 37, 21, 20 �54 �54 3 0.71 (�0.001) 16038 20, 21 �54 �39 �6 0.46 (�0.01) 1593
Right MTG 38, 37, 21, 20 51 18 �21 0.67 (�0.001) 11475 38, 21 45 3 �33 0.57 (�0.001) 2646
Left MTL 20, 37 �30 �9 �18 0.64 (�0.001) 2565 20 �28 �20 �11 0.44 (�0.01) 324a

PCG 23 �3 �42 30 0.59 (�0.001) 1593 23 1 �41 30 0.40 (�0.05) 270a

DMPFC 8, 9, 10 15 63 21 0.65 (�0.001) 9936 9 6 51 45 0.53 (�0.01) 1647
VMPFC 11 3 48 �15 0.58 (�0.001) 1755 11 18 60 �15 0.50 (�0.01) 1296

For the regression coefficients (�) results, a � map was generated for each participant by calculating the regression efficient between the seed time series and other voxels; then one sample t test on these individual � maps to see whether
they were significantly different from zero (t � 6.43, corrected p � 0.01, Bonferroni correction); then for the significant regions, correlation analyses between participants’ semantic performance and � values were conducted while
regressing out the peripheral response components reflected in the performance of the control tasks. The correlation coefficient (r) results were obtained using the same procedure except that correlation efficient between the seed time series
and other voxels were considered and that Fisher z-score transformation was performed on these r values.
aThe peak voxel of these clusters reached the threshold of p � 0.05, but they did not survive multiple comparison correction 	cluster size �38 voxels (1026 mm 3)
.

Table 3. The results of ROI analysis for the number judgment task

ROI regions Correlation r ( p)

Regional activity
LMTG 0.04 (0.82)

functional connectivity
LIFG 0.03 (0.87)
LMTG (including ATL) �0.03 (0.37)
Right MTG (including ATL) �0.07 (0.69)
LMTL �0.18 (0.30)
PCG �0.08 (0.65)
DMPFC 0.02 (0.91)
VMPFC �0.11 (0.54)
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(i.e., anatomical connectivity) projecting to the LMTG in diffu-
sion tensor imaging (DTI) and anatomical dissection studies
(Catani et al., 2005; Catani and Mesulam, 2008; Papagno et al.,
2011; Turken and Dronkers, 2011). Importantly, these fiber bun-
dles seem to be specifically engaged in semantic and not phono-
logical tasks (Saur et al., 2008, 2010). Furthermore, LIFG,
especially the specific region implicated in the current study (BA
47), is activated by a variety of semantic tasks (Fiez, 1997; Pol-
drack et al., 1999; Friederici et al., 2003). The involvement of the
ATL in semantic processing is most strongly suggested by seman-
tic dementia patients, who suffer from atrophy of the ATL ac-
companied by progressive semantic impairment (for review, see
Patterson et al., 2007).

Using DTI, Gong et al. (2009) reported that white matter fiber
bundles exist between the LMTG and PCG. PCG has been shown
to be associated with various cognitive functions, including epi-
sodic retrieval (Wagner et al., 2005), self-monitoring (Vogt and
Laureys, 2005), self-reflection (Johnson et al., 2002), and aware-
ness (Vogt and Laureys, 2005). We speculate that semantic pro-
cessing might induce episodic encoding and thus can lead to PCG
engagement.

The anatomical connections between the other three regions
(MTL, VMPFC, and DMPFC) and LMTG are far from clear.
Neurophysiological, neuroimaging, and neuropsychological
studies provide converging evidence that the MTL is critical for
semantic processing, especially the acquisition and retrieval of
semantic memory (for review, see Squire et al., 2004). VMPFC
has been strongly linked to social cognition. Specifically, it has
been ascribed a crucial role for the encoding of enduring social
dispositions and interpersonal knowledge through the integra-
tion of social information over long stretches of time in multiple
circumstances (Van Overwalle, 2009). Such processes may be
shared by semantic memory, which also implicates the abstrac-
tion of consistent information from disparate instances of an
object or event and the decontextualization of individual mem-
ories (Takashima et al., 2006). The role of DMPFC is less clear,

but, as speculated by Binder et al. (2009), it might be involved in
“self-guided retrieval” aspects of semantic processing. Lesions to
this region have been found to induce symptoms of very little
spontaneous speech or action despite the preserved ability to
speak or act when prompted (Nagaratnam et al., 2004).

Finally, the resting-state semantic network observed here
largely overlaps with the default mode network (Shulman et al.,
1997; Raichle et al., 2001). It has been proposed that during its
conscious resting state, this network reflects ongoing semantic
processing, such as semantic knowledge retrieval and manipula-
tion of represented knowledge for problem solving (Binder et al.,
2009). Other researchers have linked the network’s activity to
internally generated thought processes related to self-reflection
(Gusnard et al., 2001) or mind wandering (Mason et al., 2007)—
processes that implicate a critical role for semantics. Our results
further reinforce the notion that the function of the default mode
network involves semantic processing.

Potential mechanisms for the rs-fMRI– behavior correlation
The neuronal origin of rs-fMRI activity has been supported by
many types of findings, including its correlation with electro-
physiological recordings of neuronal firing (Nir et al., 2008),
structural connectivity, slow cortical potentials, and the band-
limited power of fast electrical activity (for review, see Zhang and
Raichle, 2010). The correlation between rs-fMRI and behavioral
efficiency reported here might be driven by either genetic and/or
environmental variables. The influence of genetic factors on spe-
cific rs-fMRI patterns has been demonstrated (Glahn et al., 2010),
and it is not implausible to assume that variation in genetic dis-
position may optimize brain regions/networks to acquire and
process semantic knowledge most efficiently. On the other hand,
training has also been shown to affect rs-fMRI patterns (Lewisa et
al., 2009), and it is possible that the richness of semantic experi-
ence shapes the rs-fMRI patterns in relevant regions. Future stud-
ies should consider the relative contribution of these variables in
determining rs-fMRI patterns.

Figure 4. Default mode network and its comparison with the observed semantic network. A, Default mode network results. The bilateral inferior parietal lobe, medial prefrontal cortex, superior
frontal cortex, medial temporal lobe, and lateral temporal cortex had strong functional connectivity with PCG, and these regions constitute the default mode network. B, Overlay of Figure 3 and A,
showing that the semantic network lies within the default mode network.
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In conclusion, we observed a network, with the LMTG as its
core component, in which the resting-state activity predicts
healthy individuals’ conceptual processing efficiency. This find-
ing has multifaceted theoretical implications: (1) it further con-
firms the roles of these regions, especially the central role of
LMTG, in object conceptual processing; (2) it reveals a potential
new mechanism for the representation and “maintenance” of
semantic memory (i.e., through resting-state fluctuations); and
(3) the extensive overlap between the resting state of the semantic
network and the default mode network reinforces previous
claims that the function of the default mode network may involve
semantic processing. Finally, our findings have important clinical
implications, providing potential biomarkers for the early detec-
tion of conceptual knowledge deterioration.
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