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An organism’s behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the
reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive
behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to
complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans’ motiva-
tional processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects
performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment,
reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corre-
sponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed
that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational
state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motiva-
tional processes and provide a translational validity for the RST.

Introduction
Many animal studies suggest that an organism’s behavior is mod-
ulated by their individual sensitivity to different reinforcers (for
review, see Cardinal et al., 2002). Gray and McNaughton (2000)
formulated these animal findings into a single comprehensive
and influential model: the reinforcement sensitivity theory (RST),
which attempts to account for the observed variability in an organ-
ism’s behavior. This model includes three major motivational sys-
tems mediating behavioral responses to environmental stimuli: (1)
the fight-flight-freeze system (FFFS), which mediates sensitivity to
aversive stimuli such as punishment, to yield defensive approach
(fight) or defensive avoidance (flight, freeze) behaviors; (2) the
behavioral activation system (BAS), which mediates sensitivity to
appetitive stimuli such as reward to facilitate approach behavior;
and (3) the behavioral inhibition system (BIS), which is sensitive
to goal-conflict situations such as stimuli of mixed or ambiguous
values, and produces adaptive behavioral selection while inhibit-
ing alternative plans.

Findings from animal studies have also identified three sepa-
rate neural networks underlying the proposed motivational sys-

tems. Specifically, the FFFS, mediating response to aversive
stimuli, is thought to involve activation of the pery aquaductal
gray, medial hypothalamus, central amygdala, and subgenual an-
terior cingulate cortex (sgACC). The BAS, mediating response to
appetitive stimuli, is suggested to involve activation of the ventral
tegmental area (VTA), nucleus accumbens (NAcc) and dorsome-
dial prefrontal cortex (dmPFC). Finally, the BIS is thought to rely
on activations in the septohippocampal system and the ventro-
medial prefrontal cortex (vmPFC).

Although the RST model is appealing as a theoretical frame-
work, and is supported by extensive empirical findings, it was
established solely on evidence from animal studies, and thus its
generalization to humans is not obvious (Smillie et al., 2007).
Recent findings from functional MRI (fMRI) studies suggest that
several functions assigned by the RST to specific brain regions are
relevant in humans as well, especially the amygdala in response to
aversive stimuli and the VTA and NAcc in response to appetitive
stimuli (O’Doherty et al., 2002; Phelps, 2006; Haber and Knut-
son, 2010). Nevertheless, the translation of reinforcement para-
digms to human study remains incomplete (Avila et al., 2008).

The aim of the current study was to simultaneously probe the
neural networks that underlie human motivational processes as
they function in real-life situations and to examine whether they
correspond to those proposed by the RST model. To achieve this
aim, we used an interactive game that included distinct expres-
sions of relevant motivational states and that has been previously
shown to elicit increased amygdala response to punishment and
NAcc response to reward (Kahn et al., 2002; Assaf et al., 2009;
Admon et al., 2012). We analyzed the individual pattern of neural
responses to these stimuli with dynamic causal modeling (DCM)
(Friston et al., 2003). This analysis allowed us to estimate the
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strength of coupling within each neuronal network or subgraph
corresponding to a motivational system and, crucially, how these
connection strengths were modulated by the different motiva-
tional states of punishment, reward, and goal-conflict.

Materials and Methods
Participants. We studied 24 healthy 18-year-old participants (12 males).
All were right-handed, had no reported history of psychiatric or neuro-
logical disorders, no current use of psychoactive drugs, and no family
history of major psychiatric disorders. The protocol was approved by the
Tel Aviv Sourasky Medical Center Ethics Committee. All participants
provided written informed consent before participation.

fMRI paradigm. Participants played a two-player competitive domino
game where the opponent’s responses were randomly generated by a
computer in a predetermined pattern to allow a balanced design. Players,
however, were told that the opponent was the experimenter and that
their choices could increase their chances of winning. At the beginning of
each game, 12 random domino chips were assigned to the player and
were shown on the bottom part of the board, while one master domino
chip, which remained constant throughout the game, appeared on the
top left corner of the board. Players won the game if they were able to
successfully dispose of all 12 chips within 4 min. Each assigned chip could
either match the master chip (have one of the master chip’s numbers) or
not. In each round of the game, players had to choose one chip (i.e.,
decision making), place it face down adjacent to the master chip (i.e.,
execution), and then wait for the opponent’s response (i.e., anticipation)
to see whether the opponent challenged this choice by uncovering the
chosen chip or not (i.e., outcome). Since the master chip remained con-

stant throughout the game, it was only possible to win by choosing both
matching and nonmatching chips. In the game context, matching chips are
considered safe moves, since they are associated with rewards if uncovered
and nonmatching chips are considered risky moves, since they are associated
with punishments if uncovered. Specifically, based on the player’s choice
and opponent’s response, there are four possible consequences per game
round (i.e., outcome possibilities): (1) show of a nonmatch chip: the choice
of a nonmatch chip is exposed and the player is punished by being given the
selected chip back, plus two additional chips from the deck; (2) no show of a
nonmatch chip: the choice of a nonmatch chip remains unexposed and only
the selected chip is disposed of, so the player is not punished; (3) show of
match chip: the choice of a match chip is exposed and the player is rewarded
by disposal of the selected chip and one additional random chip from the
game board; and (4) no show of a match chip: the choice of a match chip is
not exposed and only the selected match chip is disposed of, so the player is
not rewarded. Overall, player’s choices and opponent’s responses are inter-
actively determined by the flow of the game round after round, creating a
natural progression of the game situation that lasts 4 min or until the player
wins. Each player played consecutively for 14 min (average number of
games � SEM: 4.23 � 0.06). For more details of the game, see Figure 1, as
well as Kahn et al. (2002).

Motivational states. To probe the neural representation of FFFS, we
contrasted the brain’s response to punishment (and non-reward) out-
comes to the response to reward (and non-punishment) outcomes in the
game (i.e., opponent’s “show” following a player’s nonmatch choice or
“no-show” following a match choice vs opponent’s “show” following
player’s match choice or “no-show” following a nonmatch choice). To
probe the neural representation of BAS, we contrasted the opposite re-

Figure 1. Domino game paradigm. Each round of the game was composed of four intervals: the player chose which chip to play next (first interval: “Choose”; 4 s), moved the cursor to the chosen
chip, and placed it face down adjacent to the master chip (second interval: “Ready” and “Go”; 4 s). The player then waited for the opponent’s response (third interval: “Anticipation”; jittered randomly
to 3.4, 5.4, or 7.4 s), and saw whether the opponent challenged this choice by uncovering the chosen chip or not (fourth interval: “Outcome”; jittered randomly to 3.4, 5.4, or 7.4 s). The player’s choices
and opponent’s responses were interactively determined by the flow of the game round after round, creating a natural and unpredictable progression of a game situation that lasted 4 min or until
the player won. Each player played consecutively for 14 min (average number of games � SEM: 4.23 � 0.06).
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sponses of reward versus punishment (with reward and punishment de-
noting the same events as in FFFS). The goal-conflict during the
“Choose” time interval, in which players were required to decide between
the safe, possibly rewarding chip, and the risky, possibly punishing one,
was used to probe the neuronal representation entailed by the BIS. Events
in which there was no real conflict are rare yet possible (i.e., if only
matching chips or only nonmatching chips remained to choose from).
When such events occurred, we excluded them by adding a regressor to
the general linear model (�2% of our data).

Notably, despite the known theoretical difference between reward and
non-punishment, a previous study has shown that in this game, subjects
perceive the two states as similarly rewarding; this was also the case for
the punishing value of punishment and non-reward (Assaf et al., 2009).
To test for differences in the activation level between the different states,
we conducted paired t tests comparing the BOLD percentage signal
change (PS) of the two states in each relevant region of interest (ROI; i.e.,
ROI’s defined in the DCM model as receiving input from each state).
These t tests indeed revealed no difference in PS for any of the chosen
ROIs in their relevant states: for the amygdala there was no difference in
PS between punishment and non-reward states (t(23) � 0.17, p � 0.86)
and for the NAcc there was no difference in PS between reward and
non-punishment states (t(23) � 0.90, p � 0.37). These findings suggest
that, at the neural level, the two different states within reward or punish-
ment elicited similar activation during this paradigm.

fMRI data acquisition. MRI scans were acquired on a 3.0T MRI scanner
(Signa EXCITE; GE Healthcare) with a standard eight-channel head coil
using gradient echo-planar imaging sequence of functional T2*-
weighted images (TR, 2500 ms; TE, 35 ms; flip angle, 90°; FOV, 20 � 20
cm; matrix size, 64 � 64) divided into 44 axial slices (thickness, 3 mm
with no gap) covering the entire brain.

fMRI data analysis. Statistical Parametric Mapping (SPM5; Welcome
Department of Imaging Neuroscience, London, UK) and Marsbar tool-
box were used with Matlab 7.6 (MathWork). Preprocessing of functional
scans included slice timing and head-movement correction, normalizing
the images to MNI space, and finally spatially smoothing the data
(FWHM, 6 mm). In addition, a set of harmonics was used to account for
low-frequency noise in the data (1/128 Hz), and the first six images of
each functional scan were rejected to allow for T2* equilibration effects.
SPM8 was used with Matlab 7.6.0.324 for the DCM analysis.

Functional identification of regions of interest. The size of the effect for
each state for each participant was computed using a general linear model
(GLM). We included four regressors in the design matrix that corre-
sponded to four stimulus functions convolved with a canonical hemo-
dynamic response function. Three of the GLM regressors encoded our

predetermined motivation estates (i.e., punishment, reward, and con-
flict), while a fourth model encoded nonspecific effects common to all
trials (i.e., common effects). Individual statistical parametric maps were
calculated for contrasts of interest testing for the effect of punishment,
reward, and conflict. These individual statistical parametric maps were
used primarily to identify subject-specific ROI for subsequent effective
connectivity analyses using DCM. Specifically, functional time series of
the BOLD signal were extracted from each ROI in a subject-specific
fashion by placing a sphere of 15 voxels around the individual peak
activation of each subject within a group ROI.

DCM analysis. For general information regarding DCM methods, see
Friston et al. (2003). In our analyses, we defined four networks (i.e., sub-
graphs) corresponding to the motivational systems suggested by RST.
Within each subgraph, the coupling architecture was the same but differed in
terms of which motivational effects changed connection strengths and di-
rectly drove regional responses. We identified a significant modulation or
enabling of each and every connection by motivational state (punishment,
reward, conflict, or common effects) using Bayesian model comparison.
Specifically, for the FFFS, we defined bidirectional effective connectivity be-
tween the amygdala, hypothalamus, and sgACC with modulatory effects on
all connections and direct input to the hypothalamus and amygdala (see Fig.
3B.I). For the BAS, we defined bidirectional effective connectivity between
the NAcc and dmPFC, with modulatory effects on the NAcc–dmPFC con-
nection and direct input to NAcc (see Fig. 3B.II). For the BIS, we defined
bidirectional effective connectivity between the hippocampus and vmPFC,
with modulatory effects on both connections and direct input to the hip-
pocampus (see Fig. 3B.III). Model comparison was performed separately for
each motivational subgraph with a fixed effects Bayesian model selection
procedure (Penny et al., 2010). Model selection was based on a free energy
approximation to model log evidence (Kass and Raftery, 1995), which was
used to compute log Bayes factors or log evidence differences. Following
Stephan et al. (2010), we considered the evidence for one model over another
to be significant when the log evidence exceeded three. This corresponds to a
Bayes factor or evidence ratio of exp(3) � 20, or a p value of 0.05. Finally,
posterior densities were estimated over models to report the winning model
in terms of the one with the highest posterior probability. The parameters of
this winning model were averaged over subjects using a Bayesian model
averaging procedure (Stephan et al., 2010).

Results
Activations of proposed motivational systems
Figure 2 presents an overlay map of activations elicited by our
three predetermined independent whole-brain contrasts of inter-

Figure 2. Whole-brain analysis. Each of our three contrasts of interest elicited a differential pattern of distributed brain activations that highly corresponded to the motivational neural systems
as proposed by the RST model. During response to punishment, activations were observed in the amygdala (1), hypothalamus (2), and sgACC (3), corresponding to the FFFS (red). During response
to reward, activations were observed in the NAcc (4) and dmPFC (5), corresponding to BAS (green). Finally, during periods of goal-conflict, activations were observed in the hippocampus (6) and
vmPFC (7), corresponding to BIS (blue). n � 24.
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est. As expected, each contrast elicited a differential pattern of
distributed brain activations (Table 1). Importantly for our a
priori brain hypothesis, the amygdala, hypothalamus, and sgACC
responded only to punishment (Fig. 2, red), while the NAcc and
dmPFC responded only to reward (Fig. 2, green), and the hip-
pocampus and vmPFC responded during goal-conflict only (Fig.
2, blue). Notably, although our regions of interest were theoret-
ically predefined by the RST model, these regions also function-
ally emerged independently from our whole-brain analysis.
These results may represent initial evidence that brain responses
to each motivational state indeed correspond to the motivational
neural systems proposed by the RST model.

Modeling subgraphs of proposed motivational systems
The brain regions of each motivational system that are relevant
according to the RST model, and that increased their activations
in our whole-brain contrasts, were aggregated into three specific
supgraphs. Figure 3 shows the winning models according to
Bayesian model selection (Fig. 3A). As expected, for each sub-
graph, the winning model was the one modulated by its assigned
RST motivational state. Specifically, for the FFFS, the coupling
between the amygdala, hypothalamus, and sgACC was selectively
modulated during punishment but not during reward or conflict
states. Punishment had a significant input to the amygdala and
hypothalamus and also modulated their effective connectivity
(Fig. 3B.I). Similarly, for the BAS, the effective connectivity be-

tween the NAcc and dmPFC was selectively modulated while
receiving reward, and not while receiving punishment or during
goal-conflict. The reward state drove the NAcc and was the only
one to modulate these connections (Fig. 3B.II). Finally, for the
BIS, the effective connectivity between the hippocampus and
vmPFC was selectively modulated when participants were facing
a goal-conflict state but not during punishing or rewarding out-
comes. Goal-conflict state showed significant input to the hip-
pocampus and modulated the connections between these regions
(Fig. 3B.III).

Discussion
By manipulating both aversive and appetitive drives, as well as the
process of choosing between them under goal-conflict, we were
able to probe the neural substrate of distinct motivational pro-
cesses in humans. Further, simultaneous manipulation of all
these states in an unpredictable manner better simulated a real-
life situation. Finally, by using a model-driven analysis, we were
able to test in humans a well established neural theory of motiva-
tion whose construction was based on extensive animal findings.
Together, our results display a remarkable correspondence to the
proposed RST motivational networks, while highlighting specific
regions as core elements in the operation of the FFFS, BAS, and
BIS. Furthermore, DCM analyses confirmed that connectivity
strength between neural components of each motivational sys-
tem increased under the relevant state. As defined by Friston

Figure 3. DCM results. A, Model comparison. Each comparison refers to one subgraph, consisting of four models with the same architecture (i.e., effective and modulatory connections), defined
by different motivational states as inputs: (1) common effects, (2) conflict, (3) punishment, and (4) reward. B, Winning models. I, Effective connections were found to be significant among amygdala,
hypothalamus, and sgACC during punishment interval, all suspected to be part of the FFFS. Punishment state had significant input to the amygdala and hypothalamus and modulatory effects on all
connections between regions. II, Effective connections were found to be significant between NAcc and dmPFC under reward state, as proposed for BAS. Reward state had significant input to NAcc
and modulatory effects on the NAcc– dmPFC connection. III, Effective connections were significant between the hippocampus and vmPFC during goal-conflict, as proposed for BIS. Goal-conflict state
had significant input to the hippocampus and modulatory effects on all connections between regions. Tables display averaged parameter estimates (in Hz). n � 24.

Gonen, Admon et al. • Dynamic Causal Modeling of Motivational Systems J. Neurosci., May 23, 2012 • 32(21):7218 –7224 • 7221



Table 1. Peak of activations elicited by our three predetermined independent whole-brain contrasts of interest (i.e., motivational states)

Region Cluster (no. of voxels) Peak voxel (x, y, z) Z value (df � 23) p � (uncorrected)

Response to punishment outcome
R hypothalamus 22 6, �6., �12 3.54 0.000
L hypothalamus 20 �6, �6, �9 3.49 0.000
Midbrain 18 0, �13, �21 2.36 0.009
R insula 12 41, �19, 24 3.19 0.001
R amygdala 6 25, �3, �27 3.18 0.001
R inferior temporal gyrus 10 47, 3, �42 2.86 0.002
L fusiform gyrus 10 �28, �53, �12 2.83 0.002
R anterior cingulate cortex (BA 24) 12 0, 25, 9 2.74 0.003
R temporal pole (STG) 7 44, 9, �21 2.72 0.003
L precuneus 10 6, �63, 30 2.62 0.004
R posterior cingulated cortex 7 13, �6, 30 2.52 0.006
L parahippocampal gyrus 11 �28, �34, �12 2.51 0.006
L superior temporal gyrus 6 �47, �16, �6 2.47 0.007
R pons 6 6, �19, �27 2.46 0.007
L cerebellum 21 �6, �41, �18 2.44 0.007
R cerebellum 9 13, �31, �21 2.37 0.009
L temporal pole (STG, BA 38) 12 �50, 6, �15 2.13 0.017
R sgACC (BA25) 8 3, 26, �4 2.06 0.02
L anterior cingulated cortex (BA 32) 6 �9, 47, �3 1.96 0.025

Response to reward outcome
R inferior frontal gyrus (BA 44) 55 59, 9, 18 4.1 0.000
R supra marginal gyrus 16 63, �22, 30 3.91 0.000
L inferior parietal lobule (BA40) 6 �53, �53, 48 3.89 0.000
L precentral gyrus (BA 6) 28 �63, �13, 36 3.87 0.000
L putamen 6 �31, �16, �3 3.79 0.000
L SMA 28 0, 0, 66 3.69 0.000
L NAcc 61 �16, 16, �3 3.64 0.000
R lingual gyrus 8 9, �78, 0 3.58 0.000
R insula 11 41, �3, 9 3.52 0.000
L insula 8 �34, �3, �3 3.50 0.000
R cerebellum 11 28, �66, �30 3.49 0.000
L thalamus 9 �16, �19, 9 3.49 0.000
R precuneus 7 9, �59, 54 3.44 0.000
R caudate nucleus 9 16, 19, 6 3.39 0.000
L caudate nucleus 6 �22, 0, 21 3.36 0.000
R NAcc 28 9, 16, �3 3.35 0.000
R middle occipital gyrus 6 41, �81, 0 3.27 0.001
R precentral gyrus 7 74, �13, 51 3.23 0.001
L precuneus (BA 7) 14 �19, �56, 39 3.23 0.001
L middle frontal gyrus (BA 8) 9 �34, 22, 36 3.23 0.001
R dorsomedial PFC (BA 10) 8 22, 56, 15 3.13 0.001

Response to goal-conflict
L inferior frontal gyrus 350 �47, 19, 24 5.09 0.000
L hippocampus 40 �22, �34, �6 4.79 0.000
L occipital inferior and middle gyri (BA 17, 18) 707 �16, �91, �15 4.79 0.000
L occipital inferior gyrus (BA 17) 180 13, �97, �3 4.73 0.000
R inferior frontal gyrus 125 41, 22, 27 4.34 0.000
R ventromedial PFC (BA 11) 7 19, 38, �9 3.95 0.000
L ventromedial PFC (BA 11) 40 19, 38, �9 3.93 0.000
L SMA (BA 8) 36 �13, 16, 48 3.8 0.000
R fusiform gyrus 5 38, �63, �15 3.78 0.000
R middle frontal gyrus 5 31, 16, 57 3.74 0.000
R caudate nucleus 29 13, 16, 12 3.62 0.000
L caudate nucleus 64 �13, 22, 6 3.57 0.000
L posterior cingulated cortex (BA 23) 27 �3, �34, 24 3.53 0.000
L precuneus (BA 7) 9 �9, �72, �51 3.42 0.000
R precuneus (BA 7) 9 19, �66, 24 3.34 0.000
R superior frontal gyrus (BA 10) 9 19, 64, 3 3.63 0.001
L anterior cingulated cortex (BA 33) 5 �3, 13, 27 3.15 0.001
R hippocampus 4 38, �28, �15 3.04 0.001
R posterior cingulated cortex (BA 23) 6 6, �34, 24 3.03 0.001
R superior parietal lobule 7 28, �63, 57 2.96 0.002
R SMA 5 13, 19, 45 2.86 0.002

Localization is based on Montreal Neurological Institute (MNI) criteria. Estimated level of activation is described by Z score and P values. Minimal p � 0.05, uncorrected, random effect, minimum cluster size 135 mm 3 (i.e., 5 voxels). L, Left;
R, right; BA, Brodmann area; SMA, supplementary motor area; STG, stomatogastric ganglion. n � 24.
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(2011), the effective connectivity analysis performed by DCM
allows inferences to be made regarding the influence that one
neuronal component exerts on another in the network under a
specific experimental state. Our findings thus imply that the neu-
ral operation of each motivational system in the appropriate con-
text is associated with increased effective connectivity between
separate components, a mechanism that may allow the coexis-
tence of different motivational systems within the brain. This is
somewhat similar to other suggested neural networks that were
shown to increase functional coupling when their function was
called on, for example, in the case of the hippocampus–vmPFC
circuit in relation to fear extinction (Milad et al., 2007), as well as
in the difference in neural coupling during emotion regulation,
where downregulation versus upregulation of negative feelings
recruited different neural networks (Ochsner et al., 2004).

Few studies have examined the neural networks that underlie
motivational processes in humans. For example, Camara et al.
(2008) investigated functional connectivity during gains and
losses in a gambling task, using the NAcc as a seed region for
correlation detection. They found similar networks for both
states, including the orbitofrontal cortex, amygdala, insular cor-
tex, and the hippocampus. However, such connectivity analyses
could not account for a temporal or causal relationship between
regions. DCM analyses have been previously used for investiga-
tions of complex processes such as retrieval of emotional memo-
ries (Smith et al., 2006) or the process of affective prosody
(Ethofer et al., 2006). More relevant to our case, Alexander and
Brown (2010) applied DCM analysis to investigate the role of the
anterior cingulate cortex (ACC) in signaling perception of risk
and predicted reward. They found that computation of reward
magnitude and error likelihood is independent (i.e., one is not
modulated by the other) and that this computation is intrinsic to
the ACC and not received from elsewhere. The authors attribute
these findings to the role of the ACC in evaluation of risk versus
rewards, a function that the RST relates to BIS. Nonetheless, since
their DCM models did not include any of the RST-proposed BIS
components, and given the RST prediction that the BIS receives
information from the ACC during goal conflict, these results may
represent one operational node of the BIS network. Notably, this
highlights the importance of comprehensive model hypothesis
when applying DCM analysis.

To the best of our knowledge, our study is the first compre-
hensive investigation of the neural networks that underlie mo-
tivational processes in humans using sophisticated causal
modeling. It should be noted that our whole-brain analysis
results were obtained at a relatively liberal (uncorrected) sta-
tistical threshold and thus further investigation of motiva-
tional networks in humans is still needed to validate our
findings. However, given that our study was driven by a model
with a clear a priori hypothesis, the whole-brain analyses per-
formed here were not crucial to the identification of the critical
nodes of each motivational network but rather aimed to explore
other regions involved in the networks. Indeed, some regions
within the distributed activations that were elicited in our whole
brain analyses are not mentioned in the RST (e.g., the insula and
dorsolateral prefrontal cortex in response to reward and goal-
conflict states, respectively). On the contrary, some brain regions
that were assigned by the RST to the motivational networks were
not revealed in our whole-brain analyses (e.g., the VTA and septal
area in response to reward and goal-conflict states, respectively).
This signifies that the RST neural model is a simplification of the
complex response to motivational signals, especially in humans,
which probably involves multiple interacting brain regions.

Thus, the subgraphs analyzed in this paper are clearly part of
larger networks. This, however, does not represent a problem for
our interpretation in the sense that effective connectivity in dy-
namic causal modeling can be polysynaptic; in other words, it can
be mediated vicariously by regions not included in the model.
Finally, it should also be noted that individual differences in the
sensitivity to different reinforcements constitute an integral part
of the RST that is not addressed in this study. Future investiga-
tions should include appropriate psychometric measurements of
motivational traits to validate the suggested association between
neural activation and RST motivational systems at the individual
level.

Despite certain limitations, the remarkable resemblance be-
tween our findings in humans and the animal-based RST model
strengthens the validity of psychological findings in animal re-
search and the feasibility of its translation to human processes.
Furthermore, considering the fact that dysfunctional motiva-
tional processes have been implicated in several psychopatholo-
gies such as anxiety (McNaughton and Corr, 2008), mood
(Depue and Iacono, 1989; Johnson, 2005) and personality disor-
ders (Pastor et al., 2007; Völlm et al., 2007), further exploration of
animal models of motivational processes and their parallels in the
human brain may promote our ability to understand the neural
impairments underlying such pathologies.
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