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Deciding When to Decide: Time-Variant Sequential
Sampling Models Explain the Emergence of Value-Based
Decisions in the Human Brain
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The cognitive and neuronal mechanisms of perceptual decision making have been successfully linked to sequential sampling models.
These models describe the decision process as a gradual accumulation of sensory evidence over time. The temporal evolution of economic
choices, however, remains largely unexplored. We tested whether sequential sampling models help to understand the formation of
value-based decisions in terms of behavior and brain responses. We used functional magnetic resonance imaging (fMRI) to measure
brain activity while human participants performed a buying task in which they freely decided upon how and when to choose. Behavior was
accurately predicted by a time-variant sequential sampling model that uses a decreasing rather than fixed decision threshold to estimate
the time point of the decision. Presupplementary motor area, caudate nucleus, and anterior insula activation was associated with the
accumulation of evidence over time. Furthermore, at the beginning of the decision process the fMRI signal in these regions accounted for
trial-by-trial deviations from behavioral model predictions: relatively high activation preceded relatively early responses. The updating
of value information was correlated with signals in the ventromedial prefrontal cortex, left and right orbitofrontal cortex, and ventral
striatum but also in the primary motor cortex well before the response itself. Our results support a view of value-based decisions as
emerging from sequential sampling of evidence and suggest a close link between the accumulation process and activity in the motor

system when people are free to respond at any time.

Introduction

A value-based decision is a deliberative process that requires the
ability and the time to evaluate the attractiveness of a particular
choice option (Gold and Shadlen, 2007; Rangel et al., 2008). Con-
sider an everyday situation such as booking a hotel room via the
Internet. The hotel you are evaluating at the moment is very
appealing, the location good, and the price low. You are already
tempted to go for it, but then you decide to also check the reviews
from previous customers. You read that the personnel is un-
friendly, the breakfast poor, and the bathrooms unbearable.
Many reviewers do not recommend the hotel. Your initial con-
viction has disappeared.

The described decision process can be characterized as a time-
consuming evidence accumulation process, which constitutes the
framework for sequential sampling models (SSMs) of decision
making (Ratcliff, 1978; Busemeyer and Townsend, 1993; Usher
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and McClelland, 2001). Information about choice options is re-
peatedly sampled over time and accumulated into a preference
state. If this preference state exceeds a decision threshold, a deci-
sion is made (e.g., to book the hotel). SSMs have advanced our
knowledge on the neuronal mechanism of perceptual decisions
in humans and nonhuman primates (Gold and Shadlen, 2007;
Heekeren et al., 2008). Neurons in the lateral intraparietal area of
the monkey brain apparently encode the decision variable (DV),
as it evolves during the decision process (Platt and Glimcher,
1999; Roitman and Shadlen, 2002). Neuroimaging studies sug-
gest a corticostriatal circuit to mediate the speed—accuracy trade-
off in perceptual decisions by adjusting the decision threshold at
the onset of the accumulation process (Bogacz et al., 2010). The
temporal characteristics of value-based decisions are, however,
less understood.

The purpose of the present study was to employ SSMs for
describing the emergence of value-based decisions over time
and to elucidate the neuronal basis underlying the cognitive
mechanism. We thereto designed a task (Fig. 1A), in which
participants could either buy or reject stock offers of unknown
value. Rating companies provided probabilistic information
about the stock’s value, but sampling this information was
coupled with a fixed cost. Contrary to previous sequential
decision-making tasks (Yang and Shadlen, 2007; de Lange et al.,
2010; Stern et al., 2010), participants were free to respond at any
time. This design allowed us to conceptualize and test computa-
tional models against each other in predicting how and when
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Experimental design and computational modeling. 4, In each trial, participants could buy or reject a stock of unknown value. Six rating companies provided probabilistic information.

Ratings followed each other sequentially with presentation time varying between 2 and 4s. Participants could respond at any time (decision pointin the exampleis t = 5) and lost points for awaiting
further ratings (upper left corner). The feedback slide (in brackets) was only shown during training. B, lllustration of SSMs for the current task design. The log-evidence for buying the stock is updated
at each rating presentation and used as decision variable for the random walk, which starts at 0. Two boundaries for the choice options (buy, reject) delimit the process. Note that the distance

between starting point and boundary can differ between 6, and 6 ;e

The time-variant SSM assumes decreasing rather than fixed boundaries (see Materials and Methods). C, The sequence of

ratings determines how the probability of a good offer evolves over time (left). In the context of model fitting, subject- and trial-specific probabilities of buying and rejecting at each time point are
obtained (middle). The CSP (right) gives the probability that a decision has been made until a specific time point and is used to assess trial-by-trial variations in response tendencies (Fig. 7(). Note
that the graphs shown in Crefer to the specific combination of ratings shown in A. Response probabilities and CSP vary from trial to trial and between participants.

participants made their choices. Model parameters of the best
model were then used to inform our functional magnetic reso-
nance imaging (fMRI) analyses. We hypothesized that ventral
striatum (VS) and ventromedial prefrontal cortex (vmPFC) track
the updated value information (O’Doherty et al., 2004; Kable and
Glimcher, 2007; Wallis, 2007). This information should be im-
mediately accessible for motor preparation and output regions
such that the gradual buildup of DVs will be reflected in the
motor system (Donner et al., 2009; Cisek and Kalaska, 2010).
Furthermore, based on findings from perceptual decision mak-
ing, we hypothesized that trial-by-trial fluctuations in the deci-
sion threshold are related to fMRI signal variations in the caudate

nucleus and the presupplementary motor area (pre-SMA; Bogacz
et al., 2010; van Maanen et al., 2011).

Materials and Methods

Participants. Participants were 29 right-handed healthy persons with
normal or corrected-to-normal vision. Three participants were excluded
from the analysis, because for two participants fMRI data could not be
analyzed due to severe MR artifacts and one participant did not work on
the task with sufficient commitment (the participant reported that she
tried to finish the study as quickly as possible). Thus, the final sample
included 26 participants (mean age = 25.4 years, 3.6 SD, 21-36 years;
12 females). The study was approved by the local ethics committee and all
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participants gave written informed consent.
Participants were reimbursed for participation
and could earn additional money by winning
points in the task.

Experimental design. In each trial, partici-
pants were offered a stock and had to decide
whether to buy or reject the offer (Fig. 1A). A
gray frame enclosing the heading “offering”
and the names of six fictitious rating compa-
nies were presented on the screen throughout
the entire fMRI experiment. In addition, a
counter at the upper left side of the frame de-
picted the costs for awaiting rating information
and was set to a white-colored “0” between tri-
als. A trial commenced with the rating of the
first company appearing next to the first com-
pany’s name. Positive ratings were colored
green; negative ratings were colored red. At the
same time, the counter turned to a red-colored “—2” (each rating cost 2
points). After a variable delay (2, 2.5, 3, 3.5, or 4 s) the second rating was
displayed next to the second company’s name, the counter turned to
“—4,” and the previous rating disappeared. This procedure continued
until the last rating was presented (again for at least 2 s) or a response was
made, which terminated the trial (i.e., the current rating disappeared and
the counter was set back to “0”; feedback was only provided during
prescan training). Trials were separated by a variable interval of 2-9 s.
The order of rating companies was fixed from top to bottom.

Participants were told that stocks were either good (value: +80 points)
or bad (value: —80 points) and buying a stock would lead to the payment
of its value. Participants were instructed to respond whenever they
wanted during the trial, but that a response had to be given after disclo-
sure of the sixth rating at the latest (otherwise they would receive —92
points). They were further informed about the possible ratings (“— —,”
“= “+,” or “+ +7), the costs for each rating, the independence of
ratings of different companies from each other, that all companies were
equally important, and that the ratings contained probabilistic informa-
tion about stock values. They were instructed that the probability of
being offered a good stock is increased to 60% given a “+” and decreased
to 40% given a “—,” that “+ +” (“— —”) ratings are equivalent to two
separate “+” (“—7”) ratings, and that in general the more +’s and the
less —’s presented, the higher the probability is of a good stock. In fact,
the probability of a good stock given the entire accumulated evidence e at
time point ¢is updated with every new rating according to Bayes’ theorem
(compare Busemeyer and Pleskac, 2009) as in the following:
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3 P(good | ), X P(rating | good),
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(1)

where P(good | e), , is the prior probability of a good stock given the
previous evidence [note that P(bad | e),, = 1 — P(good | e),,] and
P(rating| good), is the likelihood of the current rating (“— —,” “—,” “+,”
or “+ +”) given that the stock is good. Note that P(e | good = P(good |
e),, when all six cues are known (i.e., at t = 6) (Yang and Shadlen, 2007;
Philiastides et al., 2010). Since the prior probability for good and bad
stocks is equal and since P(good | “+7) =1 — “—7)=1— P(bad

“+7) = P(bad | “~”) = 60%, Equation 1 can be simplified to:
P(good | “+7)"
P(good | e)t - P(good | “ »)gl ¥ [1 — gOOd ‘ ((_,’_)))]S‘
_ 0.6% 5
GRS
with
t
S, = Emting,- (3)
=

Offering

| e), given a selected combination of ratings (left). Results (right) show that participants are able to approximate P(good | e),
a tendency to overestimate low and underestimate high probabilities. The black line is the average logistic regression curve fitted
to the probability estimates (black circles with SEM bars) for each participant, which are close to the objective values (blue line with
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where rating, is the rating of the company i (i.e., rating = —2 for “— —,
= —1for “—,” = 1for “+,” and = 2 for “+ +7); therefore S, is the sum
of all ratings presented until . Equations 2 and 3 can be used to calculate
the posterior probability when all cues are known. Calculating partial
evidence given only 1-5 cues is more complex due to conditional depen-
dencies (Yangand Shadlen, 2007). We followed Yang and Shadlen (2007)
in deriving partial P(good | e), directly from the set of all possible rating
combinations. Although we do not think that people can exactly deter-
mine P(good | e), after each rating, we assume that people can at least
approximate it. To confirm this assumption we performed a probability
estimation judgment task, described below, after the scanning session in
which the participants had to estimate P(good | e), for exemplary rating
configurations (Fig. 2). Further note that we tested various SSMs, de-
scribed below, employing different DVs including a model that simply
relies on the sum of ratings as specified in Equation 3 (see Fig. 4 B).

Overall, 120 stocks were offered during the fMRI experiment. Rating
configurations for these stocks were generated randomly for each partic-
ipant with the restriction that each of the four possible ratings of the first
company was presented in exactly 25% of the trials. The length of the
experiment depended on the amount of awaited ratings but did not
exceed 40 min. Participants knew that the number of stocks was fixed and
that faster play would not lead to getting more offers. Two practice ses-
sions of 32 trials each preceded the fMRI experiment: in the first session,
feedback was given after each trial to familiarize participants with the
probabilistic nature of rating information and in the second practice
session and the scanning session no feedback was provided.

Probability estimation task and questionnaire. After scanning, partici-
pants worked on a second task that examined their ability to estimate
P(good | e),. In every trial, participants saw a selected combination of
ratings on a computer screen and were asked to indicate the probability
that the current offer was good given the presented ratings by typing in
their estimate in percentages (integers from 0 to 100) (Fig. 2). The num-
ber of presented ratings per combinations varied from 1 to 6 and the sum
of all ratings varied from —12 to —2 and from 2 to 12. Within these
ranges, combinations for all possible sums for all time points were pre-
sented, resulting in 72 trials. At r = 1, there are two possible sums (—2
and 2) and thus two trials; at t = 2, there are six possible sums (—4, —3,
—2, 2,3, and 4) and thus six trials, etc. There was no time limit for this
task. At the end of the study, participants completed a computerized
version of the Temperament Character Inventory (TCI) questionnaire
(Cloninger, 1994) including only a selected number of items: 21 novelty-
seeking items (11 of subscale exploratory excitability, 10 of subscale im-
pulsiveness), 18 harm avoidance items (11 of subscale anticipatory
worry, 7 of subscale fear of uncertainty), and 15 cooperativeness items (8
of subscale social acceptance, 7 of subscale empathy).

Computational models (I). In the following, we describe the computa-
tional models that were applied for predicting behavior. Except for the
optimal solution, the different models can be expressed by means of the
SSM approach and we therefore outline this approach first. As illustrated
in Figure 1B, a DV evolves during each trial and is linked to the consec-
utive presentation of ratings. Importantly, we assume that the accumu-
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lation process is affected by Gaussian noise and hence is probabilistic
rather than deterministic. It follows that the DV is not a point estimate
but specifies the mean of a normal distribution of possible values for this
DV with variance o->X t (Cox and Miller, 1965), where o is a free param-
eter. A stock is bought as soon as the DV crosses an upper boundary or
threshold 6,,,,, and rejected as soon as it crosses a lower boundary 0,
where 0, and 0, are two free parameters. An even simpler version
could assume 6o = — 0y, reducing the number of free parameters by
one. However, our modeling results indicated that all models perform
better when using asymmetric rather than symmetric boundaries for the
two choice options even after punishing for the additional free parame-
ter. For parameter estimation we identified the model’s predicted prob-
ability of the specific responses (buy vs reject) at any of the six rating
presentations. This probability is determined by the probability that the
DV crosses one of the boundaries at :

(4)

- Ob“y + DV,
P(buy | t) = P(DV, > 6,,,) = ®

o X\t

erejcct - DVZ) (5)

P(reject | t) = P(DV, < 0,4pe)) = P
(rejec |) (DV, ]t) ( (rX\/;

where ®(x) refers to the standard normal cumulative density function at
x. The last rating forms a special case, because participants knew that they
were punished for not responding at all (in fact, only one participant
failed to respond in only one trial). Therefore we normalized the proba-
bility of either buying or rejecting at t = 6, so that the normalized prob-
abilities P(buy | t = 6) and P(reject | t = 6) add up to 1, while the ratio
between the probabilities of buying and rejecting remained unaltered.
Importantly, Equations 4 and 5 still do not define the probability of a
response at f, as the probability that a response could have been made
earlier than tis ignored. That is, P(buy | t) is the conditional probability of
buying at ¢ given that a response had not been made earlier. Taking this
conditionality into account, we arrive at:

P(choice), = P(choice| 1) X 1:_[[1 — P(buy | i) + Plreject|i)] (6)

where choice refers to either buy or reject.

The general SSM approach described so far is equivalent to our first
computational model, the standard SSM. To specify the DV for this
model we followed previous work (Yang and Shadlen, 2007; Philiastides
etal., 2010) and calculated the log-likelihood ratio that the current offer
is good (based on P(good | e),; see Equation 1), which we refer to as the
log-evidence for buying the stock:

P(good | ),

SSM _ T T ood | o).
DV{ = LE(bu}/)L In 1— P(g00d| e)r

(7)
To test whether participants were indeed updating information we tested
this model against a second model that used only the current log-
evidence as DV, the current evidence model:

P(rating | good),

Dwurrent evidence _ 1 (8)

ny = P(rating | good),
This model thus uses rating information for making predictions but
disregards the sequential nature of the task. Alternatively, participants
might integrate rating information over time but tend to forget about
previous ratings. We tested such an SSM with forgetting by introducing
an additional free parameter w (0 < w < 1; see also Busemeyer and
Townsend, 1993) when defining the DV:

P(rating | good);

t
DV;SSM with forgetting _ z In X (1 _ w)r*i
i=1

1 — P(rating | good);
9)

such that evidence is accumulated (as indicated by the 3 sign) but is
weighted less, the more it dates back in time (i.e., the larger t — 7). As
another alternative to the SSM approach, one could assume that there is
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not a single continuous decision process during a trial but that each
presentation of a new rating induces a new decision process. Effectively,
such a model is very similar to the standard SSM except that it would
suggest a fixed rather than increasing variance in the estimation of the
DV. We therefore denoted this model as fix variance and realized it by
taking out \ﬁ from the denominator in Equations 4 and 5.

The four models described so far assume fixed decision boundaries
throughout a trial. Previous work, however, suggested that boundaries
might decrease over time to ensure that the random walk will eventually
cross one of the boundaries and the decision process does not continue
for an unreasonable amount of time (Ditterich, 2006a,b; Churchland et
al., 2008; Cisek et al., 2009). Accordingly, we also tested a time-variant
SSM with linearly decreasing boundaries (“decreasing” means that the
distance to 0 is reduced):

(10)

(11)

where A is an additional free parameter controlling the strength of de-
crease. Note that this parameter has also been interpreted as an increasing
urgency signal (Cisek et al., 2009).

Finally, we tested a model that arrives at the optimal solution. To
perform optimally in the task, one would have to realize that there are
three choice options at each point of time (i.e., to buy, to reject, or to wait
for further ratings) to calculate their respective expected values (EV; the
information given to participants is sufficient to estimate all of them) and
to strictly select the option with the highest EV (Busemeyer and Pleskac,
2009). Note that by coupling the disclosure of ratings with a fixed cost, we
were able to set the average optimal decision point in the middle (instead
of at the end) of the sequence of ratings. A stock should be bought as soon
as its EV is higher than the EVs for rejecting and waiting and rejected as
soon as the EV for rejecting (equivalent to the information costs) exceeds
the other two EVs. The EV for buying is:

Glmy,t = Bbuy —AXt

ereject,t = Breject +AXt

EV(buy), = P(good | e), X G+ [1 — P(good | e), ] X L+ C Xt
(12)

where G is the value gained for buying a good stock (G = 80), L is the
value lost for buying a bad stock (L = —80), and Cis the rating cost (C =
—2). The EV for rejecting is:

EV(reject),= C X t (13)
Following Busemeyer and Pleskac (2009) the EV for waiting is:
J Qi
EV(wait), = >, > P(q);1 X O(S; + ¢))j1 (14)
j=t q=1

where ] is the total number of time points (J = 6), Q is the total number
of possible ratings at each time point (Q = 4), P(q) is the probability of
the occurrence of rating g (P(q) = 0.25), S is the sum of ratings, and c is
the value of rating q (¢ = +2, +1, —1, or —2). O(x)]-+1 refers to the EV of
following the optimal policy (to choose the option with the highest EV) at
the next step (j + 1) given state x. Essentially, Equation 14 requires
looking ahead to what states (x = S;+¢,) could occur next, how likely
they are going to occur (P(g)), and to infer the optimal action at each state
and then to recursively evaluate the optimal action at the current state.
This procedure has to be repeated for all remaining points of time (from
j = tto]) and is therefore most complex at the beginning of each trial.

To fit the model to behavioral data, we used an exponential choice
function comparing the EVs of the three choice options:

e\/X(EV(chuit‘E),+ Schoice)

P(choice | t) = (15)

eyX(EV(choicc),+ Bchoice)
choice
where 7 is a free parameter controlling for the stochasticity of a partici-
pant’s choices, and 8. refers to two free parameters for the choice
options buy and reject (8,0ice—wait 1S fixed to 0) allowing overweighting
and underweighting of the corresponding choice option (in analogy to
asymmetric boundaries for buying and rejecting in SSMs). The exponen-
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tial choice rule relates the EVs of the three options (buy, reject, wait) to
the probability of buying and rejecting by an S-shaped sigmoid function
(i.e., the higher the value for buying compared with the values for reject-
ing and waiting, the higher the probability of a buy response) and is a
standard choice rule for predicting value-based choices (Sutton and
Barto, 1998). Note that the optimal solution is a special case of this
implementation with y = @, §,,, = 0, and 8, = 0 (setting y to =
transforms the S-shaped function to a step function so that the option
with the highest EV is always chosen, setting §,,,,, and e, to 0 omits any
biases in the valuation). Hence, fitting the model to participants’ deci-
sions by estimating these free parameters allows accounting for nonop-
timal behavior in terms of stochastic choices and of overweighting and
underweighting of EV(buy) and/or EV(reject) (we were interested in
whether participants follow the rationale of the optimal solution in prin-
ciple, not in whether they solve the task optimally in a strict sense). Note
that the probabilities derived from Equation 15 are conditional choice
probabilities given ¢ (equivalent to Equations 4 and 5) and have to be
implemented in Equation 6 to obtain the actual model predictions.

Model fit and model comparison. We applied maximum likelihood
techniques to estimate the model’s parameters. The log-likelihood of the
data given a model with parameter set O for a single participant is:

N
LLysoaa = 2, In[p(buy | ©);, X I, + Plreject | ©);, X (1 — 1,)]
n=1

(16)

where N is the number of trials (N = 120), j refers to the decision point at
trial n, and I,, is an indicator function representing whether the partici-
pant bought (I, = 1) or rejected (I, = 0) the offer at trial n. The log-
likelihood term is used to estimate the deviance G* = —2 X LLy;,qa
(Lewandowsky and Farrell, 2011), which is minimized by finding opti-
mal values for ©. For optimization procedures, we used the SIMPLEX
search method as implemented in the fminsearch algorithm in MATLAB
(MathWorks). For model comparison the deviance is used for calculat-
ing the difference of the Bayesian Information Criterion (BIC) values
between a specific model and a reference model as follows:

ABIC‘ModeI =2X (LLMudcl - LLBaseline) — kX lOgN (17)

where k is the number of free parameters of the specific model. The
Baseline model predicts the decision point j at chance level. A priori,
chance level is the product of 1 divided by the number of possible deci-
sions (2) and 1 divided by the number of possible decision points (6) (i.e.,
chance = 1/2 X 1/6 = 8.3%). However, participants did not distribute
their responses equally across all choice options and time points; re-
sponses at t = 1, for instance, were extremely rare (<1%). To provide a
more competitive baseline model we related the chance level to the actual
frequency of decisions and decision points N(choice),, which leads to a
stronger model comparison test. The actual chance level for each partic-
ipant was thus determined by the following:

i ; 2
chance = Y, >, [N(chozce)t] (18)

t=1 choice N

where ] refers to the number of possible decision points (i.e., ] = 6). Our
approach yielded an average chance level of 14.2% across all participants
(range: 11.4 — 20.2%). Using the individual chancel level to calculate
LLg,seline> We estimated ABIC values for each model in each participant.
Note that positive ABIC values indicate that the model performs better
than the Baseline model (while taking the number of free parameters into
account).

Computational models (II). The models and model comparison proce-
dures described above were used to test whether the SSM approach was
indeed most suitable to explain participants’ choice behavior. As out-
lined in Results (see Fig. 4 A), the time-variant SSM provided by far the
closest fit to the data. A separate question, however, refers to the exact
nature of the DV, that is, whether people really track the log-evidence or
use another quantity. Hence, we set up three additional versions of the
time-variant SSM that only differed with respect to the used DV and
tested them against the time-variant SSM using the log-evidence (Fig.
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4B). The first alternative (objective P(good | ¢)) used the updated proba-
bility of a good stock offer P(good | ¢), as specified in Equation 1 (more
precisely: DV = P(good | ), — 0.5, such that the DV is negative, if the
probability of a bad stock is higher than for a good stock). For the second
alternative (subjective P(good | e)), we estimated individual, subjective
analogues of P(good | ¢), based on the probability estimates from the
postscan probability estimation task: in each participant, we used a logis-
tic regression to regress the sum of ratings against the probability estimates
and used the resulting regression parameters for specifying subjective prob-
abilities in the fMRI task based on the sum of ratings at each time point (Fig.
2, the average regression curve). The third alternative (sum of ratings) simply
used the sum of ratings S, as specified in Equation 3. The models were com-
pared by means of their BIC values.

Statistical analysis of behavioral data. The influence of decision point
onreaction times (RTs) and required evidence was examined by one-way
repeated-measures ANOVA using only decision points 3, 4, 5, and 6, for
which we had data from 25 of 26 participants; decision points 1 and 2
were excluded, as for these we had only data from 6 and 19 participants,
respectively. Differences in RTs and required evidence with respect to
buy and reject choices were tested by paired-sample ¢ tests separately for
each decision point. In addition, we used a 4 X 2 repeated-measures
ANOVA to examine the combined effect of decision point and required
evidence on RTs. The factor required evidence was created by median-
splits of trials with low and high evidence for each decision point in each
subject separately. Greenhouse—Geisser correction was used if assump-
tions of sphericity were violated.

fMRI data acquisition and preprocessing. Whole-brain fMRI data were
collected on a 3 T Siemens Trio scanner using a 32-channel head coil.
Echo-planar T2*-weighted images (TR 2460 ms, TE 26 ms, FOV 220 X
220, flip angle 90°) were acquired using 40 axial slices with a voxel size of
2 X 2 X 2mm plusa 1 mm gap between slices. Slice orientation was tilted
—30° to the anteroposterior commissure axis to reduce signal drop in
regions of orbitofrontal cortex (OFC; Deichmann etal., 2003). Addition-
ally, a high-resolution T1-weighted MPRAGE image (voxel size 1 X 1 X
1 mm) was acquired for each subject to improve spatial preprocessing.
Preprocessing of fMRI data was performed using SPM8 (Wellcome Trust
Center for Neuroimaging, University College London) and commenced
with slice timing correction to the middle slice of each volume followed
by spatial realignment and unwarping to account for movement artifacts.
The individual T1-weighted image was then coregistered to the mean
functional image generated during realignment. The coregistered image
was segmented into gray matter, white matter, and CSF by the “New
Segment” algorithm in SPM8 and the obtained tissue-class images were
used to generate individual flow fields and a structural template of all
participants by the DARTEL toolbox. Flow fields were used for spatial
normalization of functional images to Montreal Neurological Institute
space. Images were smoothed by a Gaussian kernel of 6 mm full-width at
half-maximum and highpass filtered at 128 s.

Statistical analysis of fMRI data. Statistical analysis comprised four
first-level analyses, which were based on the general linear model (GLM)
approach as implemented in SPM8. The first GLM examined effects for
entire trial durations and therefore included an onset vector for each
rating presentation (note that presentation time was at least 2 s to prevent
potential nonlinearity in the accumulation of the blood oxygen level-
dependent [BOLD] signal that occurs at presentation intervals <2 s)
(Friston et al., 2000). To investigate signals tracking accumulated value,
the onset vector was accompanied by the parametric modulator P(good |
e),, that is, the updated probability of a good offer (parametric modula-
tors are additional regressors in the GLM temporally linked to onset
vectors but encoding the modulation of the BOLD signal by a variable of
interest like EV or accumulated evidence). To investigate signals tracking
accumulated evidence, the onset vector was also accompanied by the
parametric modulator |LE(buy),, that is, the unsigned log-evidence for
buying or rejecting. In addition, we included the time point  (increasing
from 1 up to 6 within each trial) as a parametric modulator in this
analysis: since evidence tends to increase with time, we ensured that the
observed effects cannot be accounted for by a simple linear increase in
activity but are specific to the development of evidence. Note that we
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omitted the automatic, stepwise orthogonalization of parametric modu-
lators in SPM.

The second and third first-level analyses were set up to further ensure
that the accumulation of evidence can be dissociated from a simple linear
increase of activity in the brain: the second analysis investigated evidence
effects at every time point. Thereto median-splits for each rating presen-
tation (from 1 to 6) into high and low evidence states were conducted.
This resulted in up to 12 separate event-related onset vectors (two evi-
dence states, six time points) depending on the choice profile of each
participant (two participants did not have enough trials with a decision at
t = 6 to create the respective regressors). These onset vectors were en-
tered into a new GLM. Contrast estimates for each regressor were ex-
tracted for the peak coordinates of brain regions reported in Figure 7A.
The third analysis contrasted specific trials against each other that dif-
fered with respect to accumulated evidence. We categorized trials de-
pending on whether the log-evidence (Equation 7) was always positive or
always negative throughout the trial (unambiguous) or returning back to
zero and/or even switching signs (ambiguous). The rationale of this anal-
ysis is that the average unsigned log-evidence |LE(buy),| is higher in un-
ambiguous trials, which should induce an earlier onset and higher
increase of activation in brain regions that track this log-evidence (Heek-
eren et al., 2004; Ploran et al., 2007; Ho et al., 2009). Since the decision
point tended to be earlier in unambiguous trials, we only took a sub-
sample of all unambiguous and ambiguous trials such that the decision
point was exactly matched within each participant (e.g., if there were 10
unambiguous and 20 ambiguous trials with decision point t = 5, the 10
unambiguous trials and 10 randomly selected ambiguous trials were se-
lected for the analysis). This ensured that the average trial length did not
differ between trial types (unambiguous: 9.79 s, = 2.00 SD; ambiguous:
9.77, = 2.00; p = 0.64). This procedure resulted in 59 trials per partici-
pant on average (£12 SD) that could be analyzed. Two separate onset
vectors for the two trial types were created and entered into a new first-
level analysis. Time courses were extracted for the peak coordinates of
brain regions reported in Figure 7A using the toolbox rfxplot (Gléscher,
2009) for SPM8. Because of the random selection of trials, we repeated
this analysis several times with new trial selections to ensure that the
selection of specific trials had no substantial influence on the results.

The third GLM examined BOLD responses only at presentation of the
first rating. The corresponding onset vector was accompanied by para-
metric modulators for P(good | ),, |[LE(buy),|, and for the cumulative sum
of the probability (CSP) to respond until the real decision point, j, as
given by:

CSP = EP(buy),- + P(reject); (19)
=

according to the best performing model (the time-variant SSM). CSP
represents the probability that a response has been made at the decision
point or earlier. If this value is low in a specific trial, then the response was
made relatively early (compared with what the behavioral model pre-
dicted based on the average choice profile of a participant). If this value is
high, then the response was made relatively late. In other words, CSP
quantifies the difference between behavior in a specific trial and the
average behavior of a participant (as captured by the behavioral model).
We used this regressor to track for regions in the brain that predict (at
trial start) trial-by-trial fluctuations in the tendency to respond earlier
than on average (Fig. 1C). The other two parametric modulators were
used to exclude confounding effects when looking at the third modulator
(CSP). Importantly, we excluded trials with decision point 1 for this
analysis. All GLM analyses also included an onset vector for the response
together with a parametric modulator coding for the specific response
(buy vs reject) that was also used to create response-related regions of
interest (ROI, see below).

At the group-level, we used the full factorial design as implemented in
SPM8 (controlling for nonsphericity of the error term) to test for effects
related to accumulated value, accumulated evidence, and trial-by-trial
deviations (CSP). To test for the functional criterion of creating
response-related ROIs, first-level contrast images of the specific response
(buy vs reject) were entered into a regression analysis: the regression
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contrasted participants, who bought with their right and rejected with
their left index finger with those participants who bought with their left
and rejected with their right index finger. The statistical threshold for
imaging results was set to p < 0.05, familywise error rate (FWE) cor-
rected for small volumes. Small volumes were either spherical search
volumes (sphere radius: 10 mm) around peak coordinates from previous
studies that tested for comparable effects of interests or anatomical masks
derived from MRI atlases (Lancaster et al., 2000; Tzourio-Mazoyer et al.,
2002). Center coordinates for spherical search volumes were [x = —3,
y = 42, z = —6] for vmPFC (Chib et al., 2009), [*£42, 33, 9] for OFC
(Glascher et al., 2009), and [*£14, 10,—10] for VS (O’Doherty et al,
2004). Anatomical masks were created for pre-SMA, insula, and caudate
nucleus. ROIs for response-related areas were generated based on two
criteria: the functional criterion was that activation related to the mod-
ulator of the specific response (buy vs reject) exceeded a threshold of p <
0.05 FWE-corrected for whole-brain, and the anatomical criterion was
that activation occurred within an atlas mask of the precentral gyrus
(Tzourio-Mazoyer et al., 2002). Contrast estimates for value-related ac-
tivation in these ROIs were derived using the toolbox rfxplot (Gléscher,
2009) for SPM8. Other regions were reported if they survived a threshold
of p < 0.05, FWE-corrected for whole-brain. For display purposes, we
used a threshold of p < 0.001 (uncorrected) with 10 contiguous voxels.
Activations are depicted on a skull-stripped overlay of the mean struc-
tural T1-weighted image from all 26 participants.

Results

Behavioral results

The final sample included n = 26 participants. All participants
collected a positive amount of on average 960 points (*£528 SD,
range = 172-2288) indicating that they understood the task and
used the ratings to guide their choices (random choices would
inevitably lead to a negative score). However, a comparable sam-
ple of 26 optimal agents would have collected a significantly
higher amount of on average 1239 points (£417 SD, 556-2074;
ts) = 3.65; p < 0.001). The average decision point (i.e., the
rating at which a response was given) was 4.16 (£0.70 SD, 2.80—
5.32) as compared with the optimal solution with an average
decision point of 3.67. The majority of 19 of the 26 participants
responded on average later than the optimal decision point (sign
test: p = 0.029). The mean decision point for each participant was
negatively correlated with self-evaluated novelty seeking (r =
—.46, p = 0.017), that is, more impulsive participants required
less evidence to make their decisions (Fig. 3A). There was no
significant correlation with the other queried scales of the TCI
questionnaire (harm avoidance: r = 0.23, p = 0.252; cooperative-
ness: r = —.26, p = 0.205).

In general, evidence required for deciding decreased linearly
with increasing points of time (F 5 ;,, = 42.67, p < 0.001) simi-
larly for buy and reject decisions (Fig. 3B). This result is in line
with a time-variant SSM that assumes decreasing rather than
fixed decision boundaries: even if the accumulated evidence re-
mains at a low level, the decreasing boundaries ensure that the
decision process does not last forever (Ditterich, 2006a,b; Church-
land et al., 2008; Cisek et al., 2009). Differences between buy and
reject decisions were restricted to the last decision point, for which
reject decisions required less evidence (Z,5) = 3.25, p = 0.003). This
effect appears to be driven by the fact that participants rather re-
jected than bought the stocks, if there was no evidence for either
choice option at this point (¢,3 = 2.38, p = 0.026). RTs also
decreased with time (F(5 ;,, = 4.70, p = 0.011), again similarly for
buy and reject decisions (Fig. 3C). Buy decisions were faster than
reject decisions for decision point 3 (f,3, = 3.17, p = 0.004) but
not for the remaining time points. To examine the interplay of
required evidence, decision points, and RTs, we conducted a
median-split of trials for each decision point to separate decisions
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Figure 3. A, Negative relationship between self-evaluated novelty seeking and the mean
decision point per participant. B, Evidence at the decision point decreased linearly with time
similarly for buy and reject decisions, suggesting a time-variant accumulation process. €, As for
evidence, RTs were reduced at later decision points similarly for buy and reject decisions. D,
Combined effects of evidence and time point on RTs: higher evidence and elapsed time inde-
pendently reduced reaction times. Only data for decision points 3— 6 are shown as there were
too few decisions made att = 1and 2.

at high and low evidence. Figure 3D shows that within each deci-
sion point, decisions were made faster when evidence was high
(F(1,24) = 69.30, p < 0.001) and, as already mentioned, RTs de-
creased with later decision points (F;,,) = 4.52, p = 0.013).
Although we did not model RTs within each decision point (only
decision points per se), the observed patterns nicely fit into the logic
of a time-variant accumulation process: RTs depend on the distance
of the decision variable from the boundaries and on the rate at which
this distance is surmounted. Thus, both higher evidence and lower
boundaries reduce RTs.

Model comparison

Given the behavioral results, it is not surprising that our model
comparison also revealed the time-variant SSM to be most ade-
quate for predicting decisions and decision points. Figure 4A
shows the comparison of different computational models with a
baseline model by means of their average BIC values (see Mate-
rials and Methods). The current evidence model, which relies
only on the currently presented rating (without evidence accu-
mulation) performed worst, even worse than the Baseline model.
The fix variance model and the optimal solution both provided a
better fit but still were inferior to the three SSM approaches.
Within the SSM models the SSM with forgetting performed
worse than the standard SSM, but the time-variant SSM was
clearly superior to both of them. For 25 of 26 participants the
time-variant SSM provided the best fit (for the remaining partic-
ipant, the SSM with forgetting was best). In addition, the time-
variant SSM appears to describe the data well in absolute terms. If
we take, for instance, the highest probability of a specific response
at every time point according to this model and compare it to the
actual decisions and decision points, we see that the model made
correct predictions in 62.6% (9.7 SD) of the trials, which is well
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Figure4. Model comparisons. A, Comparison of SSM approaches and other computational
models suggested the time-variant SSM to provide the best description of choice behavior
(depicted are the mean differences between the BIC value of each model and the Baseline
model; positive values indicate better model fit). B, Comparison of time-variant SSMs with
different DVs (depicted are the mean differences between the BIC value of each alternative and
the model that used the log-evidence as DV). *p < 0.10; ***p < 0.001.

above the estimated chance level of 14.2% (*2.3 SD). Figure 5
shows that frequencies of buy and reject decisions at every time
point are accurately recovered by the time-variant SSM for all
participants. Furthermore, estimates for the free parameters of
this model accurately reflected interindividual differences in
behavior: the mean decision point correlated with the height
of the two boundaries (for 6y,,,: 7= 0.57, p = 0.002; for [0,jc|:
r = 0.58, p = 0.001), showing that higher boundaries imply
later decisions. Also, the difference between the height of the
two boundaries 6,,,, — |0,eject| correlated positively with the
number of reject decisions (r = 0.83, p < 0.001), showing that
asymmetric boundaries promote the preference of a particular
choice. If 0, is small (large) compared with 6,,,,, the accaumu-
lation process is more likely to cross O,ejec (0yuy), and therefore
more offers are rejected (bought). The parameter A, which should
model the strength in the decrease of the decision boundaries,
was correlated with interindividual differences in the strength of
the effect reported in Figure 3B (r = 0.71, p < 0.001).

Having shown that a time-variant SSM is most adequate
for predicting decisions and decision points in our task, we
tested whether a DV other than the log-evidence for buying
(LE(buy),) might provide an even closer fit to the data (within
the framework of the time-variant SSM). Note that an exact
estimation of LE(buy), is very complex (see Materials and
Methods) and our participants might instead use a heuristic
approximation to it, such as the sum of ratings (see Equation
3), as DV. We thus compared different versions of the time-
variant SSM that differed only with respect to the underlying DV.
Figure 4 B shows that the difference in the average BIC values
between the original version and the three alternatives was always
in favor of the log-evidence model, though there was only a non-
significant trend (p = 0.089) for the comparison with the objec-
tive P(good | e) model. Since all DVs were highly correlated to
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Individual decision profiles and model predictions. For each participant, the average percentages of buy and reject decision at each time point is shown along with the average

probabilities for buy and reject decisions according to the time-variant SSM. Note that the model is able to capture the variability in decision points and the differences in the tendency to rather buy

or reject across participants.

each other (all r < 0.9), however, we did not expect to find large
differences.

Brain regions tracking accumulated value

In our paradigm, the EV essentially varies with changes in the
probability of a good stock (P(good | €),), when new ratings are
disclosed, and we assumed participants to track this updating
process. Results from the probability estimation task (after scan-
ning) suggested that our participants were able to approximate
P(good | e), with a tendency to overestimate low and underesti-
mate high probabilities (Fig. 2). For the fMRI analysis, P(good | ),
was implemented as a parametric modulator at each rating pre-
sentation. In line with our hypothesis, we found this variable to
be significantly correlated with BOLD signals in the vmPFC and
the right VS. Further regions showing a positive relationship with

accumulated value were the left and right OFC (extending into
the anterior insula) and the caudate nucleus (Fig. 6; see also Table
1 for all fMRI results).

Brain regions tracking accumulated evidence

Next, we identified brain regions associated with accumulation of
evidence in general, that is, regardless of for buying or for reject-
ing. The unsigned accumulated log-evidence for buying or for
rejecting the current offer (|[LE(buy),|) was used as the respective
parametric modulator. Since evidence tends to increase with
time, we also included a regressor modeling a linear increase
within each trial. This allowed us to separate effects of evidence
from any other phenomena that might constantly increase with
time (e.g., representation of information costs, working memory
demands, response urgency). Accumulated evidence was associ-
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ated with BOLD signals in the insula,
pre-SMA, caudate nucleus, and right dorso-
lateral prefrontal cortex (dIPFC; Fig. 7A).

We verified that activation in the lo-
cated areas indeed depended on evidence
(beyond a simple linear increase) by two
additional analyses. First, we conducted
median-splits for every time point within
trials (from 1 to 6) separating high from
low states of evidence and extracted the
average BOLD signal in the located areas.
As evident from Figure 7B, activation in
these regions increased with time but was
also higher when evidence was high. Second, we compared the
average BOLD time series in these regions of unambiguous trials,
in which evidence was always positive or always negative, against
ambiguous trials, in which evidence returned to zero or even
switched signs. Note that trials were selected such that decision
points were matched between conditions to avoid differences in trial
length (see Materials and Methods). Because the average (|LE(buy),
is higher in unambiguous compared with ambiguous trials (unam-
biguous: 0.82, 0.10; ambiguous: 0.44, *0.06; t,3) = 31.13, p <
0.001), we expected to find an earlier and stronger increase of activity
(Heekeren et al., 2004; Ploran et al., 2007; Ho et al., 2009). Figure 7C
shows that this pattern was matched for the regions reported in
Figure 7A (we refrain from reporting statistics for these additional
analyses as they are not independent from the parametric analysis;
Kriegeskorte et al., 2009). The regressor of a linear increase re-
vealed a large amount of brain areas, including the regions corre-
lating with accumulated evidence (data not shown). Hence we were
able to isolate regions, which specifically tracked the accumulation
of evidence, from a broader network of brain areas with a linearly
increasing activation pattern.

Figure 6.
accumulated value.

Brain regions accounting for trial-by-trial variability

in behavior

Neuroimaging studies indicate that increased baseline activity in
pre-SMA and caudate nucleus at the start of the accumulation
process mediate faster responses in perceptual decisions under
time pressure (Forstmann et al., 2008; Ivanoff et al., 2008; van
Veen et al,, 2008). This effect presumably refers to a reduced
distance to the decision boundary (Bogacz et al., 2010). Accord-
ingly, we attempted to identify fMRI BOLD responses at the be-
ginning of each trial (i.e., at presentation of the first rating),
which predicted trial-by-trial variability in response tendencies
(i.e., whether the response was given earlier or later than on av-
erage as suggested by the behavioral model). To do so, we in-
cluded the CSP (Equation 19) according to the best performing
model at the decision point as an event-related parametric mod-
ulator at the onset of each trial. The rationale of this analysis is
illustrated in Figure 1C: the behavioral model predicts the deci-
sion point by a probability mass function. The cumulative sum of
this function until ¢ refers to the probability that a decision has
been made until £ and CSP is this cumulative sum at the real
decision point. If CSP is high, then the decision has been made
relatively late (because the model suggested an earlier response
with high probability). If CSP is low, then the decision has been
made comparatively early (because the model suggested a later
response with high probability). We tested for brain regions be-
ing negatively associated with CSP at trial start, such that activity
in these regions predicted comparatively early responses. Note
that by identifying brain regions associated with a parametric
modulator coding this variable we can account for trial-by-trial
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The fMRI BOLD signals in vmPFC, left and right OFC, VS, and caudate nucleus were correlated with the regressor for

Table 1. Peak coordinates and statistics of fMRI analyses
MNI coordinates (mm)

Statistics

Contrast Name of region X y z tvalue Zvalue pvalue
Accumulated  vmPFC 2 36 —4 488 439 0.002
value Left OFC —38 32 —18 406 375 0.015
Right OFC 40 36 —18 408 377 0.014
VS 12 18 —8 433 397 0.007
Left caudate nucleus ~ —8 8 8 425 391 0.014
Right caudate nucleus 8 6 4 447 408 0.008
Accumulated Leftinsula —28 24 —2 838 7.02 <0.001
evidence Right insula 36 22 4 899 738 <0.001
Left pre-SMA —6 8 46 507 468 0.001
Right pre-SMA 8 8 54 609 547  <0.001
Left caudate nucleus  —12 8 6 531 488  <0.001
Right caudate nucleus 10 8 10 460 431 0.003
dIPFC 44 6 28 639 5.69 0.001
Left thalamus -4  —18 =2 590 533 0.006
Right thalamus 6 —24 -2 637 567 0.001
Precuneus 20 —60 28 575 522 0.010
Postcentral gyrus —46 —26 46 574 521 0.010
Inverse CSP Insula —28 24 8 426 402 0.016
Left pre-SMA -10 10 46 415 392 0.023
Right pre-SMA 6 10 56 400 3.80 0.038
(audate nucleus 8 8 —2 387 3.68 0.028
IPS 32 =5 48 630 5.63 0.001
Midbrain -8 -2 —-12 648 575 0.001

dIPFC, dorsolateral prefrontal cortex; IPS, intraparietal sulcus; pre-SMA, presupplementary motor area; MNI, Mon-
treal Neurological Institute; OFC, orbitofrontal cortex; vmPFC, ventromedial prefrontal cortex; VIS, ventral striatum.
Small volume corrected regions (vmPFC, OFC, V'S, caudate nucleus, insula, pre-SMA) are listed first followed by other
regions that survived a threshold of p << 0.05 FWE-corrected at whole brain.

variability in response tendencies that are inherently inexplicable
by the behavioral models, as we derived this regressor from their
“inability” to perfectly predict the decision point.

When we tested for brain regions predicting early responses in
this way, we obtained a similar pattern of activity as for the accumu-
lation of evidence: significant activations were found in pre-SMA,
right caudate nucleus, and left insula (right insula activation was also
observed but did not reach significance), as well as in the right intra-
parietal sulcus (IPS) (Fig. 7D). Note that we controlled for effects of
evidence, value, and the response hand by including the respective
regressors in the analysis. Furthermore, trials with decisions made at
t = 1 were excluded from this analysis to avoid confusion with
response-related signals.

Value correlates in motor areas

A continuous transmission of decision-related information to
response execution units in the brain has been proposed by
many proponents of SSMs (Gold and Shadlen, 2007; Heekeren
et al., 2008; Cisek and Kalaska, 2010). We therefore tested
whether value information is continuously and immediately
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response- and value-related informa-
tion). Figure 8 A depicts the derived ROIs.
To test for effects of value, we then ex-
tracted the parameter estimates for P(good
| e), separately for each ROI in each hemi-
sphere. The rationale is that activity in the
ROI contralateral to the response hand for
buying should be positively associated
with P(good | e),, whereas activity in the
ROI contralateral to the response hand for
rejecting should be negatively associated.
This approach is reminiscent of the later-
alized readiness potential in electrophysi-
ology (Coles, 1989). As the assignment of
response hand (left, right) to choices (buy,
reject) was counterbalanced across partic-
ipants, we could test for the effect of value
on lateralized activation of ROIs using a
2 X 2 ANOVA with response to hand as-
signment as a between-subject factor and
hemisphere of ROI as a within-subject
factor. As can be seen from Figure 8B
(left), there was a strong interaction effect
indicating a positive relationship with
P(good | e), in the ROI for buying and a
negative relationship in the ROI for reject-
ing (F(; 54 = 51.84; p < 0.001).

The interaction effect supports the hy-
pothesis that value information is contin-
uously transmitted to the motor system.
As the parameter P(good | e), is defined at

Seconds Seconds Seconds

Figure7.

made earlier than on average (see Fig. 1C to understand how CSP was created).

transferred to response-related brain regions, as has been
shown in the monkey (Pastor-Bernier and Cisek, 2011) and in
humans for perceptual decisions (Donner et al., 2009). First, we
identified response-related cortical areas as ROIs including only
those voxels that correlated with the event-related regressor of the
specific response (buy or reject) at p < 0.05 (FWE-corrected at
whole brain). In addition, we restricted the ROIs anatomically
by excluding regions not belonging to the precentral gyrus
(such as the basal ganglia, which are known to encode both

A, The fMRI BOLD signals in anterior insula, pre-SMA, caudate nucleus, and dIPFC were correlated with the regressor
for accumulated evidence. B, Contrast estimates for the regions reported in A at every time point separated for high (green) and
low (red) states of evidence. Signals increased with time but were also modulated by the amount of evidence at each time point.
C, fMRI time series for the regions reported in A separated for unambiguous (green) and ambiguous (red) trials. Unambiguous trials
lead to an earlier and stronger increase of activity. D, Activity at trial starts in many regions related to accumulated evidence also
predicted trial-by-trial deviations of actual behavior from model estimates: increased activity in the insula, pre-SMA, and caudate
nucleus as well as IPS was negatively associated with CSP, indicating that higher signals in these areas preceded decisions that were

every rating presentation, however, one
might argue that the observed lateraliza-
tion could solely originate from response
preparation directly preceding the re-
sponse. In other words, at the point when
a stock is finally bought, P(good | €), is usu-
ally high and thus correlated with the re-
sponse itself. We therefore performed a
more rigorous analysis, which was restricted
to the presentation of the first rating. This
time point did not coincide with responses
themselves: the few trials with a response
at this time point (<1%) were excluded
from the analysis. As evident from Figure
8 B (middle), we could replicate the in-
teraction of response hand assignment
and hemisphere for presentation of the
first rating only (F, 5, = 22.74; p <
0.001). To further strengthen our argu-
ment, we separated first ratings into tri-
als of high and low evidence: A “+ +”
(“— =7) at t = 1 provides higher evi-
dence for buying (rejecting) than a “+”
(“—7). We expected the lateralization effect to be modulated
by the amount of evidence. This was indeed the case, as re-
vealed by a significant three-way interaction of response hand,
hemisphere, and evidence (F, ,,) = 9.12; p = 0.006; the inter-
action of response hand and hemisphere remained significant:
F1 54 = 15.49; p < 0.001). Figure 8 B (right) illustrates that
the lateralization effect was more pronounced when evidence
for or against buying was high as compared with low.

Seconds



10696 - J. Neurosci., August 1,2012 - 32(31):10686 —10698

Interestingly, this early lateralization
effect is related to the average decision
point per participant: we obtained a later-
alization score for each participant by
subtracting the parameter estimates of the
ROIs contralateral to the response hands
for buying and rejecting from each other,
such that higher scores refer to stronger
lateralization. This score showed a strong
negative correlation with the mean deci-
sion point (r = —.62; p < 0.001) (Fig. 8C),
indicating that the influence of the first
rating’s value on motor execution areas
was greater for participants who re-
sponded earlier on average.

vy)

= left hemisphere
= right hemisphere

0.05

Discussion

In this study, we investigated the process
underlying the temporal evolution of
value-based decisions in the human brain,
using fMRI in combination with a cogni-
tive modeling approach. The behavioral
data were best described by a time-variant
sequential sampling model that accounts
for the linear decrease of required evi-
dence with time and is compatible with
the similar decrease in RTs. Interestingly,
we found that more impulsive partici-
pants responded earlier, lending support
for the external validity of our paradigm. 30 95 40
The fMRI results suggest that the brain
integrates multiple sources of informa-
tion by forming an updated value repre-
sentation in dopaminoceptive areas
including vmPFC and VS. BOLD signals
in the anterior insula, pre-SMA, and cau-
date nucleus were related to the accumu-
lation of evidence regardless of the specific
response or response hand. Activity in
these areas at the onset of a trial also predicted later deviations
from behavioral models. Finally, we detected value-related infor-
mation in motor execution areas within the precentral gyrus al-
ready at the onset of the accumulation process; the magnitude of
this effect was modulated by interindividual differences in the
height of the decision boundaries.

In the time-variant SSM, evidence is accumulated until one of the
decision boundaries has been reached, but these boundaries de-
crease over time implying that less and less evidence is needed
for committing a decision. This result is in line with recent evidence
from recording and modeling neurophysiological data in monkeys
(Ditterich, 2006a,b; Churchland et al., 2008) and behavioral data in
humans (Cisek et al., 2009). Notably, our paradigm bears particular
similarities to the task of Cisek et al. (2009) (limited amount of in-
formation; objectively changing evidence within trials). These char-
acteristics most likely led to the observed behavioral effects and as a
consequence to the superior fit of the time-variant model. If the
specific nature of the environment shapes the decision-making pro-
cess, it becomes important to characterize the essential features of the
decision problem (Simon, 1956; Payne et al., 1988; Todd and Gigeren-
zer, 2007). We note that value-based decisions are usually made in
situations with a restricted amount of information and time (e.g.,
booking hotels on the Internet, shopping in department stores) as
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Value signals in motor execution areas. 4, ROls in precentral gyrus based on response-specific activity. B, Parameter
estimates for BOLD signals in ROIs related to accumulated value at all rating presentations (left) and at presentation of the first
rating only (middle and right), separated by groups (participants who bought with right/left hand and rejected with left/right
hand). The right panel further illustrates the modulatory effect of evidence by separating first ratings with high evidence for/
against buying (dark blue/red) from low evidence ratings (light blue/red). €, The lateralization effect at the first rating (B, middle)
correlated negatively with the mean decision point.

well as with highly conflicting information (e.g., divergent hotel re-
views, low prices but bad quality) just as it was implemented in the
current experimental design. Computational models that account
for the need to terminate decisions at some point seem therefore
particularly attractive in the framework of economic choices.

Updating the probability of a good stock or the log-evidence for
buying (which we used for modeling behavior) requires complex
calculations and it appears unrealistic that humans are capable of
exactly estimating them. Therefore we tested alternative ways of
forming subjective beliefs, such as a heuristic that only counts the
number of ratings (Anderson and Holt, 1997) or a nonlinear
function of this sum. However, our modeling results do not sup-
port these alternatives. Interestingly, Soltani and Wang (2010)
suggested that probabilistic inferences between arbitrary stimuli
and rewards can be learned through feedback-related changes in
synaptic connectivity, which allows good approximations to the
mathematical quantities (Engel and Singer, 2008). Although such
learning processes cannot fully account for our participants’ be-
havior (feedback was only provided in a few training trials, in
which performance was already quite high), future studies should
investigate how humans combine instructed information and
feedback learning to form a DV when making sequential deci-
sions. The present study did not attempt to make a strong claim
about the exact nature of the DV.
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For perceptual decisions, pre-SMA and the caudate nucleus
have been linked to an adaptive adjustment of the decision
threshold by an increased baseline activity under heightened time
pressure (Lo and Wang, 2006; Forstmann et al., 2008; Ivanoff et
al., 2008; van Veen et al., 2008; Bogacz et al., 2010). Our finding
that comparatively early responses are predicted by increased
BOLD signals in these areas at trial start is in accordance with the
baseline hypothesis and extends it to the domain of value-based
decisions. We did not introduce different conditions of time
pressure but captured trial-by-trial fluctuations in response ten-
dencies via fMRI that remained unexplained by the behavioral
model. We suggest that these fluctuations reflected the probabi-
listic nature of value-based decisions (Mosteller and Nogee, 1951;
Rieskamp, 2008). Future research should test whether voluntary
adjustments and involuntary fluctuations of the decision thresh-
old in value-based decisions recruit overlapping brain circuits as
suggested for perceptual decisions (van Maanen et al., 2011).

Additionally, activity in the same areas (pre-SMA and caudate
nucleus) steadily increased during trials and also tracked accu-
mulated evidence (regardless of for or against accepting the of-
fer). The constant signal increase might be related to the decrease
in the decision threshold with time (increased rather than de-
creased neuronal signals have typically been suggested to reflect
reduced decision thresholds) (Ditterich, 2006a,b; Churchland et
al., 2008; Cisek et al., 2009; Bogacz et al., 2010), though other
explanations seem possible. Altogether, the activation patterns
observed in pre-SMA and caudate nucleus tightly mimic all
model-derived variables that contribute to predicting the deci-
sion point (trial-by-trial fluctuations, decrease in decision
thresholds, accumulated evidence). We therefore suggest that
these regions signal the general willingness to respond as it
evolves throughout the decision-making process. This view is in
line with research on volition indicating that a gradual buildup of
activity in the pre-SMA precedes self-generated actions (Libet et
al., 1983; Haggard, 2008; Fried et al., 2011) and predicts when but
not which decisions are made (Soon et al., 2008). The insula,
showing the same effects, has been linked to evidence accumula-
tion in perceptual decision making independent of response mo-
dalities (Ho etal., 2009). Fluctuations in insula activity might also
be related to variability in risk-seeking tendencies (to respond
earlier also means to behave more risk seeking) (Preuschoff et al.,
2008; Mohr et al., 2010).

It has been repeatedly shown that the vmPFC and the VS
parametrically encode the EV of various objects and offers (Ya-
cubian et al., 2006; Chib et al., 2009; FitzGerald et al., 2009; Leb-
reton et al., 2009). In line with this and with the notion of a
working memory system for rewards (Wallis, 2007), we show that
these regions maintain and update the representation of value
over time during sequential decision making, as activity followed
the Bayesian updating rule for P(good | e), (although we do not
claim that the brain is capable of integrating value information
in an optimal way). Interestingly, the caudate nucleus was the
only region linked to EV (Fig. 6) as well as to evidence accu-
mulation in general (Fig. 7). This finding is in accordance with
a recent study in nonhuman primates, which proposed the
caudate nucleus to encode multiple computations during per-
ceptual decisions (Ding and Gold, 2010; Cai et al., 2011).
Thus, the caudate nucleus appears to play a major role in
decision making as it integrates various signals relevant for the
timing and the specificity of decisions.

The ongoing representation of values was also observed in
motor execution areas: activity in the primary motor cortex con-
tralateral to the response hand used for buying was positively
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associated with the P(good | e), regressor, and the opposite effect
was observed for the side contralateral to the response hand for
rejecting. Further analyses revealed that this lateralization oc-
curred already at trial start (although responses were made >10's
later on average) and was modulated by the amount of evidence,
suggesting an immediate, continuous, and fine-graded represen-
tation of value in the brain’s motor system. In contrast to the
effects found in vimPFC and VS, this effector-specific encoding of
value was influenced by how early participants responded on
average. Hence, we suggest that the motor output system com-
bined information signaling the general tendency to respond, as
encoded in regions like the pre-SMA, with information signaling
the specificity of the response (buy or reject), as provided by
regions like the vmPFC.

Previous studies using sequential decision-making paradigms
(Yang and Shadlen, 2007; de Lange et al., 2010; Stern et al., 2010)
attempted to dissociate signals related to the accumulation of
evidence from preparatory motor activity by prohibiting partic-
ipants to respond before all information had been presented. In
contrast, in our study participants were allowed to make their
decision at any point. By allowing the decision time to vary we
were able to use SSMs to explain the varying decision points and
to examine trial-by-trial variability as outlined above. Further-
more, restricting the decision point to the end of the accumula-
tion phase does not necessarily prevent preparatory motor
activity to occur during accumulation (Donner et al., 2009).

In conclusion, our data show that dopaminoceptive areas
translate perceptual input into a sustained representation of
value that is flexible with respect to newly incoming information.
Motor preparation circuits signal the willingness to respond,
which is affected by the distinctiveness of value information but
also by stochastic fluctuations. Output areas do not simply re-
trieve the completed decision but reflect the development of the
accumulation process right from the beginning.

References

Anderson LR, Holt CA (1997) Information cascades in the laboratory. Am
Econ Rev 87:847-862.

Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S (2010) The
neural basis of the speed-accuracy tradeoff. Trends Neurosci 33:10-16.

Busemeyer JR, Pleskac T (2009) Theoretical tools for understanding and
aiding dynamic decision making. ] Math Psychol 53:126—138.

Busemeyer JR, Townsend JT (1993) Decision field theory: a dynamic-
cognitive approach to decision making in an uncertain environment.
Psychol Rev 100:432—459.

CaiX,Kim S,LeeD (2011) Heterogeneous coding of temporally discounted
values in the dorsal and ventral striatum during intertemporal choice.
Neuron 69:170-182.

Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence fora common
representation of decision values for dissimilar goods in human ventro-
medial prefrontal cortex. ] Neurosci 29:12315-12320.

Churchland AK, Kiani R, Shadlen MN (2008) Decision-making with mul-
tiple alternatives. Nat Neurosci 11:693-702.

Cisek P, Kalaska JE (2010) Neural mechanisms for interacting with a world
full of action choices. Annu Rev Neurosci 33:269-298.

Cisek P, Puskas GA, EI-Murr S (2009) Decisions in changing conditions: the
urgency-gating model. ] Neurosci 29:11560-11571.

Cloninger CR (1994) The temperament and character inventory (TCI): a
guide to its development and use. St. Louis: Center for Psychobiology of
Personality, Washington University.

Coles MG (1989) Modern mind-brain reading: psychophysiology, physiol-
ogy, and cognition. Psychophysiology 26:251-269.

Cox DR, Miller HD (1965) The theory of stochastic processes. London:
Chapman and Hall.

Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for
fMRI studies of the orbitofrontal cortex. Neuroimage 19:430—-441.

de Lange FP, Jensen O, Dehaene S (2010) Accumulation of evidence during



10698 - J. Neurosci., August 1,2012 - 32(31):10686 —10698

sequential decision making: the importance of top-down factors. ] Neu-
rosci 30:731-738.

Ding L, Gold JT (2010) Caudate encodes multiple computations for percep-
tual decisions. ] Neurosci 30:15747—-15759.

Ditterich ] (2006a) Stochastic models of decisions about motion direction:
behavior and physiology. Neural Netw 19:981-1012.

Ditterich J (2006b) Evidence for time-variant decision making. Eur ] Neu-
rosci 24:3628-3641.

Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of choice-
predictive activity in human motor cortex during perceptual decision
making. Curr Biol 19:1581-1585.

Engel C, Singer W (2008) Better than conscious?: decision making, the hu-
man mind, and implications for institutions. Cambridge, MA: MIT.
FitzGerald TH, Seymour B, Dolan RJ (2009) The role of human orbitofron-
tal cortex in value comparison for incommensurable objects. ] Neurosci

29:8388-8395.

Forstmann BU, Dutilh G, Brown S, Neumann J, von Cramon DY, Ridderink-
hof KR, Wagenmakers EJ (2008) Striatum and pre-SMA facilitate
decision-making under time pressure. Proc Natl Acad Sci USA
105:17538-17542.

Fried I, Mukamel R, Kreiman G (2011) Internally generated preactivation of
single neurons in human medial frontal cortex predicts volition. Neuron
69:548-562.

Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in
fMRI: the Balloon model, Volterra kernels, and other hemodynamics.
Neuroimage 12:466—477.

Gléscher J (2009) Visualization of group inference data in functional neu-
roimaging. Neuroinformatics 7:73—82.

Gléscher J, Hampton AN, O’Doherty JP (2009) Determining a role for ven-
tromedial prefrontal cortex in encoding action-based value signals during
reward-related decision making. Cereb Cortex 19:483—495.

GoldJI, Shadlen MN (2007) The neural basis of decision making. Annu Rev
Neurosci 30:535-574.

Haggard P (2008) Human volition: towards a neuroscience of will. Nat Rev
Neurosci 9:934-946.

Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general
mechanism for perceptual decision-making in the human brain. Nature
431:859-862.

Heekeren HR, Marrett S, Ungerleider LG (2008) The neural systems that
mediate human perceptual decision making. Nat Rev Neurosci
9:467-479.

Ho TC, Brown S, Serences JT (2009) Domain general mechanisms of per-
ceptual decision making in human cortex. ] Neurosci 29:8675—8687.
Ivanoff J, Branning P, Marois R (2008) fMRI evidence for a dual process
account of the speed-accuracy tradeoff in decision-making. PLoS ONE

3:€2635.

Kable JW, Glimcher PW (2007) The neural correlates of subjective value
during intertemporal choice. Nat Neurosci 10:1625-1633.

Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular
analysis in systems neuroscience: the dangers of double dipping. Nat Neu-
rosci 12:535-540.

Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L,
Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated
Talairach atlas labels for functional brain mapping. Hum Brain Mapp
10:120-131.

Lebreton M, Jorge S, Michel V, Thirion B, Pessiglione M (2009) An auto-
matic valuation system in the human brain: evidence from functional
neuroimaging. Neuron 64:431-439.

Lewandowsky S, Farrell S (2011) Computational modeling in cognition:
principles and practice. Thousand Oaks, CA: Sage.

Libet B, Gleason CA, Wright EW, Pearl DK (1983) Time of conscious inten-
tion to act in relation to onset of cerebral activity (readiness-potential).
The unconscious initiation of a freely voluntary act. Brain 106:623—642.

Lo C-C, Wang XJ (2006) Cortico-basal ganglia circuit mechanism for a de-
cision threshold in reaction time tasks. Nat Neurosci 9:956-963.

Gluth et al. @ The Emergence of Value-Based Decisions

Mohr PN, Biele G, Heekeren HR (2010) Neural processing of risk. ] Neuro-
sci 30:6613—-6619.

Mosteller F,Nogee P (1951) An experimental measurement of utility. J Polit
Econ 59:371-404.

O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004)
Dissociable roles of ventral and dorsal striatum in instrumental condi-
tioning. Science 304:452—454.

Pastor-Bernier A, Cisek P (2011) Neural correlates of biased competition in
premotor cortex. ] Neurosci 31:7083-7088.

Payne JW, Bettman JR, Johnson EJ (1988) Adaptive strategy selection in
decision making. ] Exp Psychol Learn Mem Cogn 14:534-552.

Philiastides MG, Biele G, Heekeren HR (2010) A mechanistic account of
value computation in the human brain. Proc Natl Acad Sci USA
107:9430-9435.

Platt ML, Glimcher PW (1999) Neural correlates of decision variables in
parietal cortex. Nature 400:233-238.

Ploran EJ, Nelson SM, Velanova K, Donaldson DI, Petersen SE, Wheeler
ME (2007) Evidence accumulation and the moment of recognition:
dissociating perceptual recognition processes using fMRI. ] Neurosci
27:11912-11924.

Preuschoff K, Quartz SR, Bossaerts P (2008) Human insula activation re-
flects risk prediction errors as well as risk. ] Neurosci 28:2745-2752.
Rangel A, Camerer C, Montague PR (2008) A framework for studying the
neurobiology of value-based decision making. Nat Rev Neurosci

9:545-556.

Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59-108.

Rieskamp ] (2008) The probabilistic nature of preferential choice. J Exp
Psychol Learn Mem Cogn 34:1446—1465.

Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intra-
parietal area during a combined visual discrimination reaction time task.
J Neurosci 22:9475-9489.

Simon HA (1956) Rational choice and the structure of the environment.
Psychol Rev 63:129-138.

Soltani A, Wang XJ (2010) Synaptic computation underlying probabilistic
inference. Nat Neurosci 13:112-119.

Soon CS, Brass M, Heinze HJ, Haynes J-D (2008) Unconscious determi-
nants of free decisions in the human brain. Nat Neurosci 11:543-545.
Stern ER, Gonzalez R, Welsh RC, Taylor SF (2010) Updating beliefs for a
decision: neural correlates of uncertainty and underconfidence. ] Neuro-

sci 30:8032—8041.

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
Cambridge, MA: MIT.

Todd PM, Gigerenzer G (2007) Environments that make us smart: ecolog-
ical rationality. Curr Dir Psychol Sci 16:167-171.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Del-
croix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of
activations in SPM using a macroscopic anatomical parcellation of the
MNI MRI single-subject brain. Neuroimage 15:273-289.

Usher M, McClelland JL (2001) The time course of perceptual choice: the
leaky, competing accumulator model. Psychol Rev 108:550-592.

van Maanen L, Brown SD, Eichele T, Wagenmakers EJ, Ho T, Serences J,
Forstmann BU (2011) Neural correlates of trial-to-trial fluctuations in
response caution. ] Neurosci 31:17488—17495.

van Veen V, Krug MK, Carter CS (2008) The neural and computational
basis of controlled speed-accuracy tradeoff during task performance.
J Cogn Neurosci 20:1952-1965.

Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-
making. Annu Rev Neurosci 30:31-56.

Yacubian J, Glischer J, Schroeder K, Sommer T, Braus DF, Biichel C (2006)
Dissociable systems for gain- and loss-related value predictions and errors
of prediction in the human brain. ] Neurosci 26:9530-9537.

Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature
447:1075-1080.



