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Correlated spiking has been widely observed, but its impact on neural coding remains controversial. Correlation arising from comodu-
lation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation
being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already
available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redun-
dancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input
also exhibit correlations arising from precise spike-time synchronization. Contrary to rate comodulation, spike-time synchronization is
unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation
depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation
sensitive to stimulus mean) exhibit rate comodulation, whereas ideal coincidence detectors (with spike generation sensitive to stimulus
variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus
exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different
types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate comodulation
can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding
insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent
neurons.

Introduction
Neurons in many brain areas exhibit correlated spiking but the
role of those correlations remains controversial (Singer, 1993;
Zohary et al., 1994; Engel et al., 1997; Gerstner et al., 1997;
Shadlen and Movshon, 1999; Treisman, 1999; Salinas and Se-
jnowski, 2001; Palanca and DeAngelis, 2005; Averbeck et al.,
2006; Schneidman et al., 2006; Wolfe et al., 2010). Noise correla-
tions are generally thought to degrade coding efficiency (Aver-
beck et al., 2006) [with exceptions (Cafaro and Rieke, 2010)], but
signal-dependent correlations could conceivably carry informa-
tion. However, the feasibility of correlation-based coding has
been called into question by the observation that output correla-
tion varies with firing rate despite no change in input correlation
(de la Rocha et al., 2007). If such a correlation–rate relationship

always existed, input correlation could not be unambiguously
decoded from output correlation, and transferred correlations
would become meaningless (see Fig. 1). Importantly, correlations
range from precise spike-time synchronization (on a millisecond
timescale) to coarse rate comodulation (on a timescale up to
seconds). We hypothesized that different types of correlation
may differ fundamentally in how they are generated and what
information they convey.

Propagation of correlated spiking depends on how individual
neurons respond to correlated input (sensitivity to correlation)
and whether groups of neurons respond with correlated output
(transfer of correlation) such that postsynaptic neurons them-
selves receive correlated input (Abeles, 1991; Aertsen et al., 1996;
Reyes, 2003). With respect to sensitivity to correlation, a critical
factor is whether neurons operate as integrators or coincidence
detectors: integrators respond to temporally dispersed inputs,
whereas coincidence detectors respond selectively to rapid depo-
larization caused by temporally coincident (synchronous) inputs
(Abeles, 1982; König et al., 1996). Operating mode (i.e., integra-
tion vs coincidence detection) reflects interplay between stimulus
kinetics and spike threshold mechanism (see Results). With re-
spect to the transfer of correlation, integrators spike repetitively
at a rate proportional to their time-averaged input, whereas co-
incidence detectors respond to each suprathreshold input with an
isolated spike—these spiking patterns are conducive to rate and
temporal coding, respectively (Mainen and Sejnowski, 1995; König
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et al., 1996; Salinas and Sejnowski, 2001; Schreiber et al., 2004;
Prescott et al., 2006; Prescott and Sejnowski, 2008; Tiesinga et al.,
2008). Importantly, the temporal precision with which an individual
neuron spikes should affect how synchronously a group of such
neurons will spike to shared inputs, which bears directly on transfer
of synchrony. Notably, neurons may be highly specialized for one
operating mode, but most exhibit a context-dependent combination
of modes (Maex et al., 2000; Rudolph and Destexhe, 2003; Prescott
et al., 2006; Hong et al., 2008).

Using computer simulations and dynamic-clamp experiments,
we identified different types of output correlation and investigated
how transfer of each type of correlation depends on the intrinsic
properties of cell pairs receiving correlated input. We show that pairs
of “realistic” coincidence detectors exhibit rate comodulation and
spike-time synchronization, whereas pairs of realistic integrators ex-
hibit only rate comodulation. Synchrony, unlike rate comodulation,
depends on spike-timing rather than rate. Rate- and synchrony-
based coding are thus shown to operate independently.

Materials and Methods
Stimulus preparation
We constructed stimulus waveforms using the same procedure as de la
Rocha et al. (2007). The stimulus I(t) for a given trial was the linear
summation of two Ornstein–Uhlenbeck (OU) processes (Uhlenbeck and
Ornstein, 1930) described by the following:

I�t� � � � ���c�c�t� � �1 � c��t��, (1)

where � and � are the mean and SD of the stimulus, and c is the input
correlation (i.e., the fraction of fluctuating input shared between neu-
rons) (see Fig. 1 A). The common component �c(t) was instantiated once
and applied to all trials, whereas the independent component �i(t) was
randomly updated for each trial. Each OU process was formed by the
following:

d� � �
�

�
dt � N���dt, (2)

where �(t) is Gaussian white noise with zero mean and unit variance.
Sampling rates were 10 and 5 kHz for experiments and simulations,
respectively. N� � (2/�) 1/2 is a normalization constant that makes �(t)
have unit variance. A correlation time � � 5 ms was used unless otherwise
indicated.

Model neurons and simulation procedures
Two conductance-based neuron models were used. We modeled the
integrator as a Morris–Lecar (ML) model with type 1 excitability
(Prescott et al., 2008a) and the coincidence detector as a Hodgkin–Hux-
ley low-sodium (HHLS) model with type 3 excitability (Lundstrom et al.,
2008). Equations for the ML model are as follows:

C
dV

dt
� � gL�V � EL� � gNam��V��V � ENa�

� gKn�V � EK� � I�t�, (3)

where

dn

dt
�

	

�n
�n� � n�,

m��V� � 0.5�1 � tanh�V � V1�/V2�,

n��V� � 0.5�1 � tanh�V � V3�/V4�,

�n�V� � 1/cosh�0.5�V � V3�/V4�. (4)

and gNa � 20 mS/cm 2, gK � 20 mS/cm 2, gL � 2 mS/cm 2, 	 � 0.15, V1 �
�1.2 mV, V2 � 18 mV, V3 � 0 mV, and V4 � 10 mV. The membrane
capacitance per area C was 2 �F/cm 2 and the surface area was 100 �m 2.

Equations for the HHLS model are as follows:

C
dV

dt
� � gL�V � EL� � gNam

3h�V � ENa�

� gKn4�V � EK� � I�t�, (5)

with activation variables m, n, and h governed by the following:

��V�
dz

dt
� z��V� � z,

�z �
1


 � �
, z� �





 � �
, z � m, n, h. (6)

where


m �
0.1�V � 40�

1 � exp� � 0.1�V � 40��
,

�m � 4 exp � � 0.556�V � 65��,


h � 0.07exp� � 0.05�V � 65��,

�h �
1

1 � exp � � 0.1�V � 35��
,


n �
0.01�V � 55�

1 � exp� � 0.1�V � 55��
,

�n � 0.125 exp� � 0.0125�V � 65��. (7)

gNa � 41 mS/cm 2, gK � 79 mS/cm 2, gL � 0.3 mS/cm 2, and the mem-
brane capacitance C � 1 �F/cm 2 and the surface area was 100 �m 2.

The filter-and-threshold (FT) model consisted of three components: a
linear filter to transform input to voltage, a voltage threshold, and an
afterhyperpolarization (AHP). For the filter, we used the time derivative
of a 15-ms-long Blackman filter, which was normalized to transform an
input with variance 1 pA 2 to an output with a variance 0.1 mV 2. The
threshold was 1 mV and the AHP inserted for each spike had �0.5 mV
amplitude and 30 ms decay time.

All simulations in conductance-based models were performed in
NEURON (Hines and Carnevale, 1997). Simulations in the FT model
were performed using custom Python scripts. All code will be made
available on ModelDB. Each stimulus condition (c, �, � 2) was repeated
2–10 times for 30 min of simulated time. All (c, �, � 2) combinations used
are summarized in Table 1. For Figure 5, the 100 –200 simulation runs
conducted for each model resulted in a very large amount of data, making
the calculation of correlations (from up to �40,000 pairs) computation-
ally challenging and the results difficult to present; therefore, we selected

Table 1. Stimulus conditions used for simulation of the integrator (ML),
coincidence detector (HHLS), and FT models

Model � (ms) Parameter No. of samples Minimum Maximum

Integrator 5 c 5 0.1 0.5
� (pA) 12 345 375
�2 (pA 2) 10 100 400

50 c 5 0.1 0.5
� (pA) 10 330 400
�2 (pA 2) 10 100 400

Coincidence
detector

5 c 5 0.1 0.5
� (pA) 18 �150 200
�2 (pA 2) 8 1000 2500

50 c 5 0.1 0.5
� (pA) 25 �100 100
�2 (pA 2) 10 400 4400

FT 5 c 5 0.1 0.5
� (pA) 1 0 0
�2 (pA 2) 30 100 7000
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only pairs having the same stimulus mean, which resulted in 1000 and
2500 pairs for the integrator and coincidence detector, respectively. This
criterion was not applied to experimental data (see Fig. 7) since there
were fewer trials.

Slice preparation and electrophysiology
Experimental protocols were approved by the University of Pittsburgh In-
stitutional Animal Care and Use Committee and have been previously de-
scribed (Prescott et al., 2006). Briefly, adult male Sprague Dawley rats were
anesthetized with intraperitoneal injection of sodium pentobarbital (50–75
mg/kg) and perfused intracardially with ice-cold oxygenated (95% O2 and
5% CO2) sucrose-substituted artificial CSF (ACSF) containing the following
(in mM): 252 sucrose, 2.5 KCl, 2 CaCl2, 2 MgCl2, 10 glucose, 26 NaHCO3,
1.25 NaH2PO4, and 5 kynurenic acid. The brain was rapidly removed and
sectioned coronally to give 300-�m-thick slices, which were kept in normal
oxygenated ACSF (126 mM NaCl instead of sucrose and without kynurenic
acid) at room temperature until recording.

Slices were transferred to a recording chamber constantly perfused with
oxygenated (95% O2 and 5% CO2) ACSF heated to 31 	 1°C. Pyramidal
neurons in the CA1 region of hippocampus were recorded in the whole-cell
configuration with
70% series resistance compensation using an Axopatch
200B amplifier (Molecular Devices). Membrane potential (after correction
for the liquid junction potential of 9 mV) was adjusted to �70 mV through
tonic current injection. Intracellular recording solution contained the fol-
lowing (in mM): 125 KMeSO4, 5 KCl, 10 HEPES, and 2 MgCl2, 4 ATP
(Sigma-Aldrich), 0.4 GTP (Sigma-Aldrich), as well as 0.1% Lucifer yellow;
pH was adjusted to 7.2 with KOH. Pyramidal morphology was confirmed
with epifluorescence after recording. All experiments were performed in 10
�M bicuculline methiodide (Sigma-Aldrich), 10 �M CNQX (6-cyano-7-
nitroquinoxaline-2,3-dione) (Sigma-Aldrich), and 40 �M D-AP-5 (D-2-
amino-5-phosphonovaleric acid) (Ascent Scientific) to block background
synaptic activity.

Stimuli (see above) were injected into the recorded neurons through the
patch pipette. To manipulate spike threshold mechanism (see Results), an
artificial “shunt” conductance (Eshunt � �70 mV, gshunt � 10 nS) was ap-
plied via dynamic clamp implemented with a Digidata 1200A ADC/DAC
board (Molecular Devices) and DYNCLAMP2 software (Pinto et al., 2001)
running on a dedicated processor as previously described (Prescott et al.,
2006; Prescott and De Koninck, 2009); update rate was 10 kHz. Traces were
low-pass filtered at 2 kHz and digitized at 10 kHz using a CED 1401 com-
puter interface (Cambridge Electronic Design).

Reverse correlation analysis
For simulation and experimental data, we calculated spike-triggered av-
erages (STAs) and covariance of stimuli (STC). The STA is simply the
average of the set of stimuli that led to spikes subtracted from the mean of
the prior stimulus distribution (i.e., the distribution of all stimuli inde-
pendent of spiking output). Here, to remove the ambiguities caused by
the temporal correlations, we used the fluctuating part of the unfiltered
stimulus, I�t� � ���c�c�t� � �1 � c�i�t��; in other words, we used
�(t) instead of �(t) (see Eq. 2). Therefore, we have the following:

STA�t� � �I�tspike � t��spike � �I�prior. (8)

The time window for the STA was 200 ms before each spike, which
captured most of the STA power. In a similar way, the STC and spike-
triggered correlation of stimuli (STCor) Q(t,t
) are given by Bialek and de
Ruyter Van Steveninck (1988) as follows:

STC�t,t
� � Covspike � Covprior

� ��I�tspike � t) � STA�t��

�I�tspike � t
� � STA�t
���spike � Covprior

� �I�tspike � t�I�tspike � t
��spike � STA�t�STA�t
�

� �I� � t�I� � t
��prior


Q�t,t
� � STA�t�STA�t
� � STC�t,t
�, (9)

where Covspike and Covprior are the covariance matrices of the spike-
triggered and prior stimuli, respectively. The STA and STCor were used
for predicting a cross-correlogram (CCG) in the first- and second-order
by Equations 29 and 31, respectively (see below, Predicting CCGs from
reverse correlation analysis). Predicted spike train covariance and corre-
lation were computed from the CCG in the same way as the measured
CCGs (see below).

Calculation of the measured CCG and correlation
We computed the CCGs of each spike train as follows. We started by
building a spike train from the spike times with a �t � 1 ms time bin
and computed the CCGs via the time-averaged unbiased empirical
correlation function (Perkel et al., 1967): when a spike train for neu-
ron i and kth repetition is yi,k(t), the cross-correlogram is given by the
following:

CC��� � CCF��� � CCFshuffle���,

CCF��� � �y1�0�y2����

�
1

Nrepeat�t�L � ���� �
k�1

Nrepeat �
0

L��

y1,k�s�y2,k�s � ��ds,

CCFshuffle��� � �y1�0�y2����shuffle

�
1

Nrepeat�t�L � ���� �
k�1

Nrepeat �
0

L��

y1,k�s�y2,k�1�s � ��ds, (10)

where Nrepeat is the number of repetitions, and L is the length of the spike
trains and yi,Nrepeat�1 � yi,1.

From Equation 10, we computed the correlation of the spike-counts
with the time window of size T as follows:

ni,k�t� � �
0

T

yi,k�t � ��d� � �
��

�

yi,k�t � ���T���d�.

(11)

�T is a window function giving �T(t) � 1 if 0 � t � T and �T(t) � 0
otherwise. The shift correlator computes the covariance as follows:

CT � �n1�t�n2�t�� � �n1�t�n2�t��shuffle, (12)

and the correlation coefficient is given by 
T � CT/(C1C2) 1/2 where the
auto-covariance of each neuron Ci (i � 1,2) was calculated in the same
way. Equations 10 and 12 are related as follows:

�n1�t�n2�t�� � �
��

�

CCF����T���d�

�n1�t�n2�t��shuffle � �
��

�

CCF���shuffle�T���d�, (13)

where �T(t) is a triangular window function such that �T(t) � �T � t� if
�T � t � T and �T(t) � 0 otherwise (Bair et al., 2001). Therefore, CT as
well as 
T were computed from CCGs via Equation 13.

In our analysis, we always computed the full CCGs and tried to analyze
their behavior both at long and short timescales. The time window size T
was not as important as in de la Rocha et al. (2007); therefore, in every
case, we used T � 200 ms and dropped T from the notations.

Statistical analysis
We calculated the variance of the covariance, Var[C], by computing the
bootstrap statistics of �y1(0)y2(�)�shuffle in Equation 10; at each step, we
constructed a resampled cross-correlogram �y1(0)y2(�)�resample by ran-
dom resampling from �y1(0)y2(�)�shuffle and computed �n1n2�resample by
Equation 12. We collected 400 �n1n2�resample with which the variance
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became stable. The Var[C] is taken as this resample variance and C is also
recalibrated with the resample mean as follows:

Var�C� � Var��n1n2�resample],

C 3 C � E��n1n2�resample]. (14)

For experimental data in Figure 7B–D, t scores were calculated from C
and Var[C]. However, as for the simulation data, we could arbitrarily add
more repetitions to suppress Var[C] down to sufficiently low level. For
the analytic prediction, Var[C] could be computed in a similar way, but
it was always insignificant (�1% of the covariance) for both experimen-
tal and simulation data.

In Figures 5 and 7, we evaluated the predictive power of the predicted C in
terms of the coefficient of determination, R2, defined by the following:

R2 � 1 �
��Measured C/c� � �Predicted C/c�]2

���Measured C/c� � E��Measured C/c���2
.

(15)

By definition, R 2 � 1 signifies the perfect match, while the prediction has
no correlation with the measured C when R 2 � 0. In some cases, R 2 � 0,
and this signifies that the predictions in fact diverge away from the data
with a different average.

Predicting CCGs from reverse correlation analysis
Here, we derive the first- and second-order prediction presented as
Equations 29 –32 in Results by using the reverse correlation analysis of
the linear–nonlinear (LN) cascade model (Victor and Shapley, 1980;
Meister and Berry, 1999). The LN model is composed of two stages: first,
the stimulus I(t) was linear filtered by the relevant features of the model
{�
} (
 � 1, 2, . . . , D), and the probability to spike at the given time bin
[t, t � �t], P(spike�x) where

x
 � �
0

�

�
�t
�I�t � t
�dt
. (16)

Here, as above (see Reverse correlation analysis), we use the unfiltered
stimulus I�t� � ���c�c�t� � �1 � c�i�t��. Since the actual injected stim-
ulus and I(t) are linearly related, STA and STCor have the same temporal
correlation as the actual stimulus, and, consequently, the temporal cor-
relation naturally shows up in the predicted CCGs; for example, compare
predicted CCGs for � � 5 and 50 ms in Figure 5B.

We follow the same derivation as in the study by de la Rocha et al.
(2007): the common noise part �I � �c��c will be regarded as the per-
turbation on top of I0 � I(t)�c�0 and the comodulated part of the firing
rate will be determined by Wiener series expansion in �I.

First-order prediction (see Results, Eqs. 29, 30). The firing rate change
induced by a small perturbation I03 I0 � �I can be approximated as
follows:

P�spike� � P�spike��I�0�1 �
1

�2 �
0

�

STA�t
��I�t � t
�dt
	,

(17)

where �I(t) has Gaussian statistics with a variance � 2 (Rieke et al., 1999;
Hong et al., 2008). STA represents the spike-triggered average of stimuli.
Then the correlation function of q(t) � P(spike at t) is as follows:

��q1�0� � �q1���q2��� � �q2���

�
�q1��q2�

�1
2�2

2 �
0

�

STA1(t
)STA2�t

���I1� � t
��I2�� � t

��dt
dt



�
c�q1��q2�

�1�2
�

0

�

STA1�t
�STA2�t
 � ��dt
, (18)

where ��I1(0)�I2(�)� � c�1�2�(�) if �Ii � �c��c. This is essentially the
same derivation of the correlation– gain relationship based on the
linear response theory (de la Rocha et al., 2007; Hong et al., 2008)
since the STA is the linear kernel relating the stimulus and firing rate
as in Equation 17.

We now define the firing rate v(t) � q(t)/�t and the predicted cross-
correlogram for each pair as follows:

CCGfirst order�t� � c
v1v2

�1�2
�STA1�t
�STA2�t � t
�dt
, (19)

which is Equation 29 in Results. Furthermore, if we use the identity
(Chialvo et al., 1997; Hong et al., 2008),

�
�v

��
�

v

� � STA�t�dt, (20)

the firing rate covariance is given by the following:

Cfirst order � �d���v1�0� � �v1���v2��� � �v2���

� c
v1v2

�1�2
�� STA1�t�STA2�t � t
�dtdt


� c
v1v2

�1�2
�� STA1�t�dt	��STA2�t

�dt

	

� c�1�2

�v1

��1

�v2

��2
. (21)

where we changed the variables in the third line as t� � t � t
. The last line
is equivalent to the original relationship between the correlation and gain
(see Results, Eq. 30) (de la Rocha et al., 2007; Shea-Brown et al., 2008).

Second-order prediction (see Results, Eqs. 31, 32). When we include the
second-order term in Equation 17, we obtain the following (Rieke et al.,
1999; Hong et al., 2008):

P�spike� � P�spike��s�0�1 �
1

�2 �
0

�

STA�t
��I�t � t
�dt


�
1

2!�4 �
0

��
0

�

Q�t1, t2��I�t � t1��I�t � t2�dt1dt2	 ,

(22)

where Q(t1,t2) is the STCor in Equation 9. The contribution to the
CCG, Equation 31 in Results, is obtained in a straightforward way, as
follows:

�CCGsecond order�t� � c2
v1v2

2�1
2�2

2 ��Q1�t1,t2�Q2�t1 � t, t2 � t�dt1dt2.

(23)

Note that we excluded the self-contraction to generate a proper Wiener
series (Rieke et al., 1999).
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In particular, when we have the same input condition, �1 � �2 � �
and �1 � �2 � �, for the same type of neuron as in Figures 3 and 6, the
peak height at t � 0 is given by the following:

CCGfirst�second order(0) � c
v2

�2 � STA�t�2dt

� c2
v2

2�4 �� Q�t1, t2�
2dt1dt2. (24)

Furthermore, we consider the case when the neuron is effectively
well described by a single preferred spike-evoking stimulus feature
(PSESF), �(t), such as when the neuron functions almost as a pure
integrator or a pure coincidence detector. In this case, Q(t1,t2) can be
written as Q(t1,t2) � Y(t1)Y(t2), where Y(t) � �(t), and therefore

�CCGsecond order�0� � c2
v2

2�4 ��Y�t1�
2Y�t2�

2dt1dt2

� c2
v2

2�4��Q�t1, t1�dt1	��Q�t2, t2�dt2	. (25)

From �Q�t1, t1�dt1 � �3��v/���/v (Hong et al., 2008), the predicted
peak height becomes

CCGfirst�second order�0� � CCGfirst order�0� �
1

2
c2�2��v

��	
2

, (26)

which is equivalent to Equation 32 in Results. Therefore, the firing
rate gain with respect to stimulus variance contributes to the CCG
peak height.

Note in the case of a single PSESF that the input mean and variance
sensitivity of the firing rate are related as follows (Hong et al., 2008):

�v

��
�

�

�� 2 �
�2v

��2, (27)

where

�� � � ��t�dt (28)

Therefore, when �� � 0, as in the pure integrator, the contribution of the
peak to the correlation is suppressed compared with the first-order pre-
diction, Equation 30. In the pure coincidence detector, on the other
hand, �� � 0, but firing rate � is also independent of � (see Fig. 6 B),
which can still make ��/�� finite. Therefore, the predicted correlation in
the pure coincidence detector [based on Eqs. 29, 30, and �(�) � con-
stant] (Barreiro et al., 2010) will be profoundly modified by the
quadratic-order approximation (see Results, Simulations in a phenom-
enological coincidence detector model).

Results
When two or more neurons receive correlated (i.e., shared) in-
put, their output spike trains should exhibit some correlation
despite the effects of independent input (Fig. 1A). Spike train
covariance C and the correlation coefficient 
 (i.e., C normalized
by spike train variance) should, therefore, carry information
about the input correlation c. However, de la Rocha et al. (2007)
showed that the relationship between input and output correla-
tion (denoted correlation susceptibility S � 
/c) depends on the
mean � and variance � 2 of the input (Fig. 1B). This is important
because stimulus-dependent changes in S prevent one-to-one
mapping between input correlation and output correlation.
Correlation-based coding is straightforward if S is independent
of � and � 2 (Fig. 1C, left), but it is compromised or requires a

more complicated decoding scheme if S varies with � and � 2 (Fig.
1C, right).

One way of understanding why this occurs is that, for a given
input correlation, output correlation will vary depending on the
sensitivity (i.e., gain) of the firing rate � of each neuron with
respect to the stimulus mean �: if stimulus fluctuations occur
within a steep region of the �–� curve, rate will fluctuate widely in
each cell and the pair will exhibit large comodulated rate fluctu-
ations, whereas stimulus fluctuations within a shallow region of
the �–� curve will logically drive smaller comodulated rate fluc-
tuations (Fig. 1D). Consequently, 
 “inherits” the same tuning as
�(�), even when c is fixed; under these conditions, c cannot be
unambiguously decoded from 
 without knowledge of �. This
line of reasoning triggered three concerns: (1) it applies to rate
comodulation but not necessarily to spike-time synchronization,
and thus it neglects one component of output correlation; (2) it
implicitly assumes that input fluctuations are “noise” rather than
“signal”; and (3) output rate and synchronization (i.e., correla-
tion based on spike-time synchronization as opposed to rate
comodulation) are liable to be tuned to different stimulus prop-
erties. This led us to our overall hypothesis that some cell types
may encode signal-dependent fluctuations with precise spike-
time synchronization and can do so independently of rate-based
coding of other stimulus features.

The dependence of output rate � on input parameters � and �
differs fundamentally between cell types, as shown in Figure 2 for
our conductance-based models: � is principally sensitive to � in
the case of integrators, whereas it is also very sensitive to � in the
case of coincidence detectors (Higgs et al., 2006; Arsiero et al.,
2007; Lundstrom et al., 2008). For simulations reported here,
input was treated as a continuous stream rather than as discrete
synaptic inputs (Destexhe et al., 2001); nonetheless, � reflects
coordinated fluctuations in presynaptic activity (Fellous et al.,
2003), the temporal structure of which is reflected in the autocor-
relation time � (shorter � implies more precise synchrony), while
c specifies the proportion of inputs shared between two postsyn-
aptic neurons. The first two parameters, � and �, affect the tem-
poral precision of spiking in each postsynaptic neuron, while c
affects correlation across neurons—all three parameters ulti-
mately affect output synchrony.

The greater sensitivity of coincidence detectors to input syn-
chrony relative to integrators (Fig. 2A,B) is a direct consequence
of active membrane properties: activation of outward current (or
inactivation of inward current) at perithreshold potentials helps
ensure spike generation selectively in response to fast stimulus
fluctuations (i.e., synchronous inputs), whereas perithreshold-
activating inward current (or inactivating outward current)
encourages repetitive spiking in response to constant or slow-
changing input (Fourcaud-Trocmé et al., 2003; Svirskis et al.,
2004; Higgs et al., 2006; Arsiero et al., 2007; Lundstrom et al.,
2008; Prescott et al., 2008a). Differential sensitivity to input syn-
chrony can be demonstrated most succinctly by contrasting
which stimulus features preferentially elicit spikes in each cell
type. We estimated the preferred spike-eliciting stimulus feature
as the spike-triggered-averaged stimulus (STA) of the response of
each cell to noisy input (see examples in Fig. 2B). The integrator
exhibits a relatively broad, monophasic STA (Fig. 2C, left),
whereas the coincidence detector exhibits a biphasic STA with a
positive phase that is remarkably narrow (Fig. 2C, right).

The shape of the STA should, in theory, relate directly to the
cross-correlation of output spiking given that the CCG is the overlap
integral of the STA of each neuron, according to the first-order ap-
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proximation in c (see Materials and Methods) (de la Rocha et al.,
2007), as follows:

CCGfirst order�t� � c
v1v2

�1�2
�STA1��� � STA2�t � ��d�.

(29)

Hence, the broad monophasic integrator STA predicts a broad
monophasic CCG for pairs of integrators (Fig. 2D, left), whereas
the narrow biphasic coincidence detector STA predicts a narrow
biphasic CCG for pairs of coincidence detectors (Fig. 2D, right).
Using the relationship between the STA and firing rate, the cova-
riance C of the output spike count is as follows (see Materials and
Methods):

C � �CCG�t�dt � c�1�2

�v1

��1

�v2

��2
, (30)

which is consistent with the study by de la Rocha et al. (2007)
because sensitivity (or gain) of � with respect to � is the dominant
factor determining the degree of correlated spiking given a cer-

tain degree of input correlation (Fig. 1D). Strong dependence of
the relationship between 
 and c (i.e., correlation susceptibility S)
on � is not conducive to correlation-based coding (Fig. 1C,
right). However, the STA does not always accurately represent
the preferred spike-eliciting stimulus feature (this occurs when
spike generation is sensitive to higher-order stimulus statistics),
which invalidates predictions based on Equation 29 in certain
cases (see below).

We therefore set out to identify (1) whether and how correla-
tion susceptibility S(�,�) differs between integrators and coinci-
dence detectors, (2) what the consequences of such differences
are for correlation-based coding, and (3) precisely why the stim-
ulus dependence of S differs between cell types.

Simulations in conductance-based integrator and coincidence
detector models
To compare the correlation susceptibility S (�
/c) of integrators
and coincidence detectors, we conducted a series of numerical
simulations using pairs of model neurons receiving a mix of cor-
related and independent input (Fig. 1A). For each neuron type,
we varied mean � under high- or low-variance � 2 conditions,
and evaluated the output rate � and correlation 
 (Fig. 3). As

A

B C

D

Figure 1. Relationship between input and output correlation. A, Stimulation paradigm in which neurons 1 and 2 receive fluctuating input I1, I2, with mean �1, �2, and variance �1
2,

�2
2. Fluctuating input was modeled as an Ornstein–Uhlenbeck process with � � 5 ms. Some fraction of that input is shared, or correlated, as defined by the input correlation c. Output

firing rate �1, �2, and the output correlation coefficient 
 (�spike train covariance C normalized by variance) were measured. B, Plotting output correlation 
 against input correlation
c shows how much correlation is transferred by the pair of neurons. The slope of that curve, denoted correlation susceptibility S, is �1 but has been shown to depend on input parameters
� and � (de la Rocha et al., 2007). C, Input correlation c can only be unambiguously decoded from 
 (without knowledge of other input parameters) if S does not vary with other input
parameters. The dashed curves on the bottom plots show horizontal cross-sections through 3-D plots (top) at different �. An invariant 
–c relationship (left) is conducive to good
correlation-based coding, whereas a variable relationship (right) is not unless a more complicated decoding scheme is invoked. D, If � is tuned to �, then fluctuations around � will
produce fluctuations in � whose magnitude depends on ��/��. If neurons 1 and 2 receive input with correlated fluctuations, �1 and �2 will be comodulated. Amplitude of �
comodulation naturally depends on ��/��, rendering 
 and � cotuned to �. In that scenario, rate comodulation will not provide information about � beyond that already provided by
rates �1 and �2, but this does not rule out spike-time synchronization providing information about � if input fluctuations are considered signal rather than noise.
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illustrated in Figure 2A, maximal � differs between cell types and
between � conditions, which leads to unavoidable differences in
the range of � on each panel of Figure 3. Nevertheless, the �(�)
curves (gray) are similarly shaped in all four conditions. If 

simply inherited the same tuning as � with respect to �, then 
(�)
curves should also be similarly shaped— clearly, they are not.

As expected for integrators, 
/c increased to a maximum �1 as
� was increased in both the high and low � cases (Fig. 3A, top). In
coincidence detectors, however, a similar pattern was observed in
the low � case, but not in the high � case, in which 
/c decreased
after reaching a peak (Fig. 3A, bottom). Figure 3B shows the same
data replotted with � on the x-axis. For coincidence detectors
receiving high � input, the correlation–rate relationship was
strongly negative at high rates. The same coincidence detectors
receiving low � input exhibited little change in correlation across
most of the (albeit narrow) range of firing rates, which implies
that S is not significantly dependent on � or � in this cell type

under these conditions. This property should be conducive to
good correlation-based coding (see below).

To investigate how the stimulus dependence of S affects
correlation-based coding by integrators and coincidence detec-
tors, we measured 
 in response to different combinations of c
and � (Fig. 4A). As predicted, S was strongly dependent on � in
the case of integrators, which caused encoding of c by 
 to be
ambiguous; in contrast, S was relatively unaffected by � in the
case of coincidence detectors, consistent with good correlation-
based coding (compare Fig. 1C). Notably, Equation 29 failed to
accurately predict 
 in the case of coincidence detectors (Fig. 4A,
inset) despite having worked in the case of integrators (see
below).

Small values of 
 observed among coincidence detectors stem
from the shape of coincidence detector CCGs, which are narrow
and biphasic, unlike integrator CCGs, which are broad and
monophasic (Fig. 4B; compare prediction in Fig. 2D). Small val-

A

B

C

D

Figure 2. Integrators and coincidence detectors are sensitive to different stimulus statistics. Data here are based on simulations in conductance-based models (see Materials and Methods). A, In
the integrator (left), � was sensitive to � but was relatively insensitive to �, whereas � was sensitive to both � and � in the coincidence detector (right). The insets highlight the differential ability
of each cell type to encode �; black and gray curves correspond to arrows on �–� plots. Notably, firing rate variation with � may reflect the rate of brief, suprathreshold input events rather than
the (rate-encoded) magnitude of those events. B, Sample traces show differential responsiveness of each cell type to constant and fluctuating input. The coincidence detector responds preferentially
to fast stimulus transients because its voltage-dependent currents implement a high-pass filter. The integrator also responds to fast stimulus fluctuations, but its voltage-dependent currents
encourage repetitive spiking even when input is constant. C, The differential requirements for spike generation are evident from the spike-triggered-averaged response (STA) to fluctuating input.
D, The CCG corresponds to the overlap integral of the STA from each neuron within a pair. Therefore, pairs of integrators are predicted to exhibit broad, monophasic CCGs (left), whereas pairs of
coincidence detectors are predicted to exhibit narrow, biphasic CCGs based on the typical shape of their STA (right).
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ues of 
 do not imply that synchrony
transfer will fail, because downstream coin-
cidence detectors prefer tall, narrow CCGs
among their upstream neurons rather than
short, broad CCGs, regardless of the abso-
lute magnitude of 
 (S. Hong, S. A. Prescott,
and E. De Schutter, unpublished observa-
tions). To summarize, correlation-based
coding is viable despite small 
 as long as the
relationship between 
 and c is insensitive to
other stimulus features like �. These data
demonstrate the feasibility of correlation-
based coding among coincidence detectors.

Next, we asked why S(�,�) differs be-
tween integrators and coincidence detec-
tors. In all panels of Figure 3, 
/c values
predicted from Equation 29 were plotted
for comparison with measured 
/c values.
The derivation of Equation 29 is based on
linear response theory and requires sev-
eral assumptions that are not strictly met
in our simulations such as very small c.
However, despite comparable stimulus
parameters and identical methods used to
calculate output correlation, Equation 29
predicted most of the output correlation
observed for integrators but only a frac-
tion of that observed for coincidence de-
tectors. In the latter case, the degree of
inaccuracy appeared to depend on �. We
reasoned that identifying why Equation
29 fails to accurately predict output corre-
lation in coincidence detectors, especially
under certain stimulus conditions, would
help identify how correlated spiking in
coincidence detectors differs from that
in integrators.

To test the accuracy of the prediction,
we plotted predicted covariance against
measured covariance in Figure 5. If pre-
diction by Equation 29 were consistently
accurate (i.e., for all stimulus conditions),
all data points would lie along the diago-
nal line. Figure 5A illustrates the consis-
tent accuracy of the prediction for pairs of
integrators versus its inconsistency for
pairs of coincidence detectors. These data
represent responses to a broad range of
different � and �. The important observa-
tion is that the first-order prediction was
reasonably accurate for all stimulus con-
ditions in the case of integrators, whereas
it was grossly inaccurate for many stimu-
lus conditions in the case of coincidence detectors. Whereas Fig-
ure 3 illustrates stimulus conditions for which prediction by
Equation 29 is good or bad, Figure 5 focuses on why Equation 29
sometimes fails to predict output correlation among coincidence
detectors. By plotting covariance C rather than the correlation
coefficient 
, Figure 5A confirms that the prediction error seen
for coincidence detectors is not attributable to autovariances in
the spike train. Sample CCGs (Fig. 5A, right) reveal that the pre-
dicted CCG differs most from the measured CCG at the central
peak; this is true for both integrators and coincidence detectors,

but it translates into a larger discrepancy in predicting overall
output correlation as the CCG gets narrower. Thus, these data
qualitatively confirmed our starting predictions and identified a
quantitative shortfall in the ability of Equation 29 to predict out-
put correlation, especially in coincidence detectors.

In addition to reflecting the stimulus features to which each
cell type is most sensitive, we reasoned that the width of the CCG
also reflects the autocorrelation time of the correlated signal
(which can be taken to reflect the temporal precision of spiking in
presynaptic neurons) (see above). Therefore, we lengthened �

A

B

Figure 3. Output correlation is sensitive to stimulus variance in coincidence detectors, unlike in integrators, and has a variable
relationship with output rate. A, Using the same conductance-based models as in Figure 2, the integrator (top) and coincidence
detector (bottom) were stimulated with high- and low-variance input: �high

2 � 400 pA 2 and �low
2 � 100 pA 2 for the integrator;

�high
2 � 2000 pA 2 and �low

2 � 520 pA 2 for the coincidence detector. Output rate � and correlation 
 measured from simulations
(E) together with 
 predicted from Equation 29 (�) were plotted against input mean �. In B, 
 was replotted against � to
visualize the correlation–rate relationship. The range of � (gray) varies between panels because of differences in maximal firing
rate across cell types and stimulus conditions (Fig. 2 A). For the integrator, 
 increased with � and was quite accurately predicted
by Equation 29 in both the high- and low-variance conditions. For the coincidence detector, 
 decreased for � 
 10 Hz in the
high-variance condition, which was only qualitatively predicted from Equation 29, and the prediction was even less accurate in the
low-variance condition. These results demonstrate that output correlation in coincidence detectors is higher than predicted on
the basis of rate comodulation, and is accentuated under stimulus conditions in which ��/�� is low. Given that rate comodulation
should be minimized under those conditions (Fig. 1 D), correlation in excess of the prediction might be attributable to some
mechanism other than rate comodulation. In every case, input correlation was c � 0.3.
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from 5 to 50 ms for simulations in Figure 5B based on the hy-
pothesis that widening the CCG might reduce the prediction er-
ror. As expected, lengthening � improved the prediction for both
integrators and coincidence detectors but, whereas the CCG for
the integrators was dramatically widened, the CCG for coinci-
dence detectors remained narrow and the prediction still exhib-
ited a sizeable error near the peak of the CCG. To determine
whether prediction error near the peak of the CCG was sufficient
to explain the discrepancy observed on the measured versus pre-
dicted C plots, we removed data within 	2 ms of the peaks of all
coincidence detector CCGs and replotted the data for � � 5 ms—
this amounts to preferentially removing precisely synchronized
spikes from the calculation of total output correlation. The result
was a near-perfect prediction by Equation 29 (Fig. 5C), meaning
the prediction error near the peak of narrow CCGs was sufficient
to explain the failure of the prediction in coincidence detectors
for all input conditions for which the original prediction was
poor.

Next, we investigated (1) whether and how the original pre-
diction might be improved so that the predicted CCG would
more accurately match the measured CCG for coincidence detec-
tors at the central peak, and (2) whether this would improve the
measured versus predicted C plots (as expected given the results

in Fig. 5C). We reasoned that if coincidence detectors are sensi-
tive to stimulus variance (Fig. 2), then the prediction (Eq. 29)
should take into account how stimulus variance affects spike gen-
eration. Therefore, we incorporated a second-order term into the
prediction based on the following:

�CCGsecond order�t�

�
c2v1v2

2�1
2�2

2 ��Q1��1, �2�Q2��1 � t, �2 � t�d�1d�2, (31)

where Q(t,t
) is the spike-triggered correlation of the stimuli
(STCor) (see Materials and Methods for derivation). Total out-
put correlation should thus be predicted by the combination of
Equations 29 and 31. For conditions in which input statistics and
preferred spike-eliciting stimulus feature are equal, Equation 31
predicts the additional peak height as follows:

�CCGsecond order�0� �
c2

2
�2��v

��	
2

. (32)

Using Equation 31, we find that the coincidence detector CCG
was much better predicted at its central peak (Fig. 5D, right) and

A

B

Figure 4. Correlation-based coding by integrators and coincidence detectors. A, We measured output correlation 
 in response to different combinations of mean � and input correlation c (top).
Curves on 2-D plots correspond to horizontal cross-sections, at different �, through 3-D plots (bottom; compare Fig. 1C). Tight clustering of 
–c curves despite differences in � is conducive to good
correlation-based coding by coincidence detectors (right), which contrasts to the broad distribution of those curves for integrators (left). Equivalent plots for the coincidence detector based on
prediction by Equation 29 (inset) shows that the first-order prediction clearly fails to account for output correlation among coincidence detectors. Noticeably, 
 is smaller among coincidence
detectors than among integrators. This stems from differences in the CCG, typical examples of which are shown in B based on measurement from pairs of each cell type with the same mean firing
rate of 12 Hz; c �0.3. These measured CCGs confirmed CCG shapes predicted in Figure 2 D. Small values of 
 do not necessarily compromise synchrony transfer and correlation-based coding, whereas
stimulus-dependent variability in S does (see text). In parts A and B, � 2 � 100 pA 2 for the integrator and � 2 � 1000 pA 2 for the coincidence detector.
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A

B

C

E

D

F

Figure 5. Sensitivity to second-order stimulus statistics explains why the first-order prediction cannot fully account for output correlation in coincidence detectors. A, Measured output covariance
normalized by input correlation (C/c) was plotted against predicted C/c for conductance-based integrator and coincidence detectors models receiving fluctuating input (�� 5 ms) for a broad range
of � and � values. Prediction is based on Equation 29. The arrows point to data points for which sample CCGs are shown (right). Consistently accurate prediction (i.e., for all stimulus conditions)
would be evident from points clustering around the line, which is seen for the integrator (R 2 � 0.97) but not for the coincidence detector (R 2 � �0.94). Predicted CCGs (black) deviated from
measured CCGs (color) mostly around the central peak. This prediction error impacts the total output correlation for the coincidence detector more significantly than for the integrator because the
CCG of the former is biphasic, which causes the predicted C to almost vanish. B, Same plots as in A but with slowly fluctuating input (� � 50 ms). The integrator CCG broadened and resulted in
improved prediction, but the coincidence detector CCG remained narrow and with still a sizable deviation from prediction. C, Given that the first-order prediction deviated from measured correlation
primarily near the central peak of the CCG, we removed data 	2 ms around that peak and replotted measured versus predicted C/c based on data for � � 5 ms input. After removing the “excess”
synchronization near the CCG peak, the first-order prediction was very accurate for coincidence detectors (R 2 � 0.98), meaning that Equation 29 fails specifically to explain (Figure legend continues.)
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measured C was accurately predicted for a broad range of input
conditions (Fig. 5D, left). Successfully modifying our quantita-
tive prediction by incorporating Equation 31 argues that the dif-
ference in threshold mechanism is critical insofar as spike
generation in integrators is preferentially sensitive to first-order
stimulus statistics, whereas spike generation in coincidence de-
tectors is also sensitive to second-order stimulus statistics (Fig. 2).
On a more practical note, our ability to modify our quantitative
prediction so that it works consistently (i.e., for all stimulus con-
ditions) for integrators as well as for coincidence detectors con-
firms that we did not violate any fundamental assumption to the
point of invalidating the prediction as a whole.

In principle, the second-order contribution (Eq. 31) can de-
crease much more quickly than the first-order prediction (Eq. 29)
as the input correlation c becomes smaller. However, we found
that the first-order prediction remained inconsistent for coinci-
dence detectors even at relatively small values of c (Fig. 5E, left)
and that including second-order terms significantly improved
that prediction (Fig. 5E, right). In fact, measured C was closely
matched by the second-order prediction across a broad range of
c, and both were much larger than the first-order prediction ex-
cept for very small c (Fig. 5F), proving that our result is not an
artifact of large input correlations.

The nonlinear contribution to precise spike-time synchrony is
not necessarily limited to second-order terms, and indeed the
remaining systematic deviations from our second-order predic-
tion in Figure 5, D and E, suggest that even higher-order terms
contribute to synchrony, although that contribution is evidently
quite small. Quantifying the nth order nonlinearity becomes
more difficult for higher n, as the dimensionality of the nth mo-
ment of the spike-triggering stimuli rapidly increases, and was
considered beyond the scope of the present study.

Simulations in a phenomenological coincidence detector
model
For the conductance-based models described above, the differ-
ence in threshold mechanism between integrators and coinci-
dence detectors derives from distinct spike initiation dynamics
(Prescott et al., 2008a). Based on results from phenomenological
models without “dynamics” (de la Rocha et al., 2007), one might
suspect that the specific dynamics of the cell model are not vital
for the correlation–rate relationship. The type of threshold and
the dynamical mechanism responsible for “thresholding” are in-
extricably linked, but, nonetheless, to test whether the type of
threshold is critical rather than the dynamics per se, we con-
structed a phenomenological coincidence detector model com-
prising a filter and threshold in which the filter is biphasic, like the
STA in our conductance-based coincidence detector model (Fig.

6A; compare Fig. 2C). In this dynamics-free model, � was com-
pletely independent of � but varied with � (Fig. 6B; compare Fig.
2A, right)—in effect, this model constitutes an “ideal” coinci-
dence detector. Despite the first-order prediction (i.e., Eq. 29)
that there should be no output correlation (given that ��/�� � 0)
(Barreiro et al., 2010), pairs of ideal coincidence detectors receiv-
ing correlated input did indeed exhibit correlated spiking (Fig.
6C, left). Moreover, sample CCGs (Fig. 6C, right) were compa-
rable in shape to those of the conductance-based coincidence
detector model (compare Figs. 4, 5). Furthermore, the same pre-
diction error was observed near the peak of the narrow CCGs
when applying Equation 29, but our quantitative prediction was
near-perfect when second-order terms (Eq. 31) were included.
Overall, these results argue that the type of threshold used by a
pair of neurons receiving correlated input will impact the corre-
lation in their output.

To summarize results up to this point, ideal coincidence de-
tectors (exemplified by our FT model) exhibit correlations aris-
ing solely from spike-time synchronization. In contrast, more
realistic coincidence detectors (exemplified by our conductance-
based HHLS model) exhibit a mixture of spike-time synchroni-
zation and rate comodulation, whereas realistic integrators
(exemplified by our conductance-based ML model) exhibit
mostly rate comodulation. The timescales of these two types of
output correlation differ but nonetheless overlap. More impor-
tantly, the two types of output correlation exhibit fundamentally
different sensitivities to firing rate: rate comodulation varies with
firing rate, whereas spike-time synchronization does not. We
predicted that real neurons should exhibit rate comodulation and
spike-time synchronization if those neurons operate at least par-
tially as coincidence detectors and, moreover, that the predomi-
nance of each type of output correlation will depend on the
balance of operating modes.

Experiments in CA1 pyramidal neurons made to behave
preferentially as integrators or coincidence detectors via
manipulation of threshold mechanism by dynamic clamp
Integrators and coincidence detectors are found throughout the
nervous system but tend to exhibit specializations beyond thresh-
old mechanism. Because those additional specializations could
confound our comparison of correlation susceptibility, we chose
to compare correlation susceptibility in a single type of neuron
whose threshold mechanism was experimentally manipulated
such that the neuron behaves preferentially as an integrator or
coincidence detector.

Pyramidal neurons, including those in the CA1 region of hip-
pocampus, display the hallmarks of integrators when recorded in
acute brain slices but behave more like coincidence detectors
upon introduction of a virtual leak conductance by dynamic
clamp (Fig. 7A), consistent with a predicted switch in threshold
mechanism (Prescott et al., 2006, 2008b). Thus, by manipulating
the membrane properties of CA1 pyramidal neurons, we were
able to compare correlation susceptibility in a single cell type
operating preferentially in one or the other mode—the shift in
operating mode is quantitative, not absolute. In the interests of
comparing experimental and simulation data [and to compare
with past studies (de la Rocha et al. (2007)], we applied the same
stimulation paradigm used in simulations (i.e., noisy current in-
jection) together with the simplest dynamic-clamp manipulation
capable of switching the threshold mechanism (i.e., constant leak
conductance).

Compared with STAs in the integrator-mode (Fig. 7A, left),
STAs in the coincidence detector-mode (Fig. 7A, right) had a

4

(Figure legend continued.) precisely synchronized spikes. D, Equation 31 describes a second-
order correction based on c 2. Prediction based on first- and second-order statistics (i.e., Eqs. 29,
31) gave dramatically improved accuracy near the peak of the coincidence detector CCG. Similar
albeit smaller improvement was observed for the integrator (data not shown). According to the
measured versus predicted C/c plot, inclusion of second-order terms could largely account for
output correlation in the coincidence detector where the first-order prediction had failed. In
A–D, input correlation c � 0.5. E, Same plots as in A and D for the coincidence detector but with
input correlation c � 0.2. The red arrows indicate the same data marked in A and D. F, Success
of the second-order prediction in accounting for measured output covariance across a broad
range of input correlations, compared with failure of the first-order prediction, argues that
output covariance among coincidence detectors is dominated by second-order terms except
when input correlation c is extremely small (��0.1). These show that the results in A–E qual-
itatively hold for a wide range of input correlation.
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higher peak height, and were therefore
steeper than integrator STAs, but the neg-
ative phase was far less prominent than
in STAs from our coincidence detectors
models (compare Fig. 2C). This is likely
due to spike initiation in real neurons be-
ing influenced by more currents with gat-
ing variables spanning a broader range of
timescales than were included in our min-
imal conductance-based models. In any
case, as we would predict, the steep weakly
biphasic STAs are consistent with the nar-
row weakly biphasic CCGs observed for
pyramidal neurons in the coincidence
detector-mode (see below). Most impor-
tantly for our purposes, firing rate gain
with respect to �, which is proportional
to how biphasic the STA is (Eq. 20), was
significantly lower in the coincidence
detector-mode compared with the de-
fault integrator-mode (0.14 	 0.041 vs
0.05 	 0.016 Hz/pA; p � 0.01, t test),
whereas firing rate gain with respect to �
was similar between modes (0.034 	
0.022 vs 0.022 	 0.011 Hz/pA), which
means ��/�� was, relative to ��/��, higher
in the coincidence detector-mode (0.25 	
0.16 vs 0.50 	 0.29; p � 0.01, t test). This is
consistent with the differential response
properties reported for the conductance-
based models in Figure 2A. Like for simu-
lation data in Figure 5, we plotted our
experimental data as measured versus pre-
dicted C based on the first-order prediction
described in Equation 29 (Fig. 7B, top). As
expected, the prediction error was much
greater for the coincidence detector-
mode than for the integrator-mode,
which was also evident in the sample
CCGs (Fig. 7B, bottom). Consistent
with simulations (compare Figs. 4, 5,
CCGs), the CCG for the coincidence
detector-mode was much narrower than
for the integrator-mode, and the first-
order prediction deviated from the mea-
sured CCG primarily at its peak (Fig. 7B,
bottom). As for simulation data, we hy-
pothesized that removing a narrow region
around the peak of the CCG (where the
actual and predicted CCGs differ most) would dramatically im-
prove the prediction as visualized on the measured versus pre-
dicted C plots, which indeed it did (Fig. 7C). Similarly, including
the second-order terms described by Equation 31 improved our
prediction, especially for the coincidence detector-mode (Fig.
7D). These experiments demonstrate that pyramidal neurons re-
ceiving shared input can exhibit output correlation in excess of
that predicted from firing rate comodulation, and that this spike-
time synchronization is greater when the neurons behave more
like coincidence detectors.

Discussion
Through simulations and experiments, we have shown that pairs
of neurons receiving correlated input can exhibit spiking that is

correlated in different ways, and that the overall contribution of
each type of output correlation depends on intrinsic cellular
properties. Ideal integrators exhibit output correlations com-
prised entirely of rate comodulation. This makes sense given that
individual integrators use rate encoding in which spiking is dic-
tated by the mean (i.e., a first-order statistic) of the input; there-
fore, input can be reconstructed entirely by applying a first-order
filter (i.e., the STA) to the spike train. Conversely, ideal coinci-
dence detectors exhibit output correlations comprised entirely of
spike-time synchronization (Fig. 6). However, realistic coinci-
dence detectors exhibit output correlations comprised partly of
spike-time synchronization and partly of rate comodulation (Fig.
5). This too makes sense given that individual coincidence detec-
tors use temporal encoding in which spiking is sensitive to the

A

B

C

Figure 6. Phenomenological model sensitive only to stimulus variance exhibits correlated spiking due uniquely to spike-time
synchronization. A, FT model was constructed by coupling a biphasic filter (reminiscent of the coincidence detector STA; Fig. 2C)
and a step-function representing threshold. B, Because of its filter properties, the FT model is uniquely sensitive to stimulus
fluctuations. Firing rate gain with respect to � is zero but is positive with respect to �. C, Using the stimulation paradigm shown
in Figure 1A, a pair of FT models were given correlated input with equal � and �; c � 0.5; � � 5 ms. Measured 
/c values
increased with �, despite the first-order prediction (Eq. 29) giving a much smaller correlation, which vanishes as the time window
size T increases (data not shown) on the basis of ��/�� equaling 0. The arrows point to data for which sample CCGs are shown.
Predicted CCGs (black) deviated from measured CCGs (color) in the same manner as when the first-order prediction (Eq. 29) was
applied to the conductance-based coincidence detector model in Figure 5A. When second-order terms were included (Eq. 31), the
predicted CCG was much more accurate (bottom).
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variance (i.e., a second-order statistic) of
the input; therefore, reconstructing the
input from the spike train requires inclusion
of first- and second-order filters (Theunis-
sen and Miller, 1995). Real neurons and re-
alistic conductance-based models are never
pure integrators or coincidence detectors.
We have juxtaposed the two operating
modes for didactic purposes, but, ulti-
mately, operating mode is a continuum rep-
resenting the interplay between stimulus
kinetics and neural dynamics. Neural dy-
namics—most notably spike generation—
differ between neurons, can be modulated
within a given neuron, and directly impact
how a neuronal ensemble encodes and
transmits information.

Some cell types are optimized for in-
tegration or coincidence detection; for
example, many neurons early in the au-
ditory pathway (e.g., cochlear nucleus and
superior olive) are exquisite coincidence
detectors (Manis and Marx, 1991; Cao et
al., 2007; Mathews et al., 2010), whereas
certain neurons in the entorhinal cortex
are near-perfect integrators (Egorov et al.,
2002). In addition to morphological spe-
cializations (Agmon-Snir et al., 1998), a
broad range of ion currents can influence
operating mode, the common feature be-
ing that such currents activate or inacti-
vate at voltages near threshold, or that
they impact the gating of other peri-
threshold currents, for example, by shift-
ing voltage threshold (Prescott et al., 2006,

A

B

C D

Figure 7. CA1 pyramidal neurons operating preferentially in a coincidence detector-mode exhibit greater spike-time synchro-
nization than when operating in an integrator-mode. A, Responses from a typical regular spiking pyramidal neuron to constant and
fluctuating (� � 5 ms) input are shown without any manipulation (left) and with a virtual shunt (10 nS, �70 mV reversal
potential) inserted by dynamic clamp (right). We used the shunt to enhance adaptation by depolarizing threshold, thereby shifting
the neuron from acting preferentially as an integrator to acting preferentially as a coincidence detector, as shown previously
(Prescott et al., 2006). Trials with and without dynamic clamp were interleaved to assess each neuron in both operating modes. The
bottom panels show representative STA from each mode from one of the neurons comprising the pair used to sample CCGs (as

4

indicated by arrows) in B–D. B, Following the same approach
used for conductance-based models (Fig. 5), we plotted mea-
sured and predicted C/c for each “preferred” operating mode.
The prediction here is based on Equation 29. The circles iden-
tify those points that deviated significantly from prediction
( p � 0.01, t test). In the integrator-mode, only 12 of 416
points showed significant deviation of the measured C/c from
prediction, while significantly more points (78 of 320) showed
significant deviation in the coincidence detector-mode ( p �
0.001, � 2 test); in other words, the first-order prediction was
less consistent for the coincidence detector-mode. The arrows
point to data for which sample CCGs are shown. Predicted CCGs
(black) deviated from measured CCGs (color) the same way as
in Figure 5A. Data are from a total of 12 cells. C, Measured and
predicted C/c values for both operating modes were replotted
after removing data 	2 ms around the peak in the CCGs. As in
Figure 5C, excluding excess synchrony not predicted on the
basis of rate comodulation gave a closer match between mea-
sured and predicted C/c values, leaving only one data point
(circled) that deviated significantly from prediction ( p�0.01,
t test). D, Likewise, inclusion of second-order terms (i.e., Eq.
31) in our prediction gave a dramatically improved match,
leaving only three data points (circled) for each operating
mode with significant deviation from prediction ( p � 0.01, t
test). The improved prediction of spike-time synchrony af-
forded by inclusion of the second-order correction is also evi-
dent from the sample CCG (compare Fig. 5D).
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2008a). Whether pyramidal neurons in the neocortex and hip-
pocampus function as integrators or coincidence detectors has
been controversial (Abeles, 1982; Softky and Koch, 1993; Shadlen
and Newsome, 1998). The answer depends not only on intrinsic
cell properties but also on stimulus conditions (Rudolph and
Destexhe, 2003) and other external factors like background syn-
aptic activity that influence membrane conductance (Destexhe et
al., 2003). Shunting and adaptation, especially in combination,
can encourage coincidence detection in pyramidal neurons that
might otherwise behave preferentially as integrators (Prescott et
al., 2006, 2008b). The adaptation current IM has been shown to
encourage coincidence detection in hippocampal and neocortical
pyramidal neurons (Hu et al., 2007; Guan et al., 2011) and is itself
subject to endogenous modulators and to several drugs (for re-
view, see Brown and Passmore, 2009). This supports the view that
pyramidal neurons (and presumably other cell types through ad-
aptation by IM and via other mechanisms) can shift between op-
erating modes. By not operating at one or the other extreme,
pyramidal neurons can flexibly use rate- and/or synchrony-based
coding (see below).

The coexistence of rate- and synchrony-based coding is con-
sistent with recent modeling work showing that differently en-
coded information can be simultaneously propagated through
feedforward networks depending on network properties (Krem-
kow et al., 2010; Kumar et al., 2010). Our results emphasize the
importance of cellular properties for exactly the same issues. Net-
work and cellular properties can be intimately related (see above
regarding synaptic input and membrane conductance) and may
interact nonlinearly such that forms of modulation, which indi-
vidually have weak effects, combine to produce powerful gating
mechanisms that switch a network between propagating syn-
chronous or asynchronous activity (see below). But it is not nec-
essarily the case that synchronous and asynchronous spikes act
independently; for example, in spiny stellate cells receiving
thalamocortical input via a limited number of weak synapses,
asynchronous background cortical input may be crucial for set-
ting the membrane potential of stellate cells close enough to spike
threshold that synchronous thalamic inputs can elicit spikes
(Douglas and Martin, 2007; da Costa and Martin, 2011). In that
example, asynchronous input may facilitate the propagation of
synchronous spiking and, furthermore, might act as a continu-
ously variable gain-control mechanism rather than as a simple
on– off switch.

An important related issue is correlation between excitatory
and inhibitory input. This has been proposed as a mechanism to
regulate information transmission (Salinas and Sejnowski, 2001;
Kremkow et al., 2010), amplify external inputs (Murphy and
Miller, 2009), and enhance response fidelity (Wehr and Zador,
2003; Cafaro and Rieke, 2010). Such correlations may exist with
delays of only a few milliseconds, likely because of feedforward
inhibition ensuring a narrow integration window (Wehr and Za-
dor, 2003; Higley and Contreras, 2006). Under those conditions,
presynaptic spikes synchronized with millisecond precision are
required to reliably evoke responses in postsynaptic neurons.

Information encoded by rate or synchrony must be reliably
transmitted (when allowed by gating mechanisms) and eventu-
ally decoded. Unambiguous decoding requires independent rate-
and correlation-based coding (Fig. 1). Recent findings (de la
Rocha et al., 2007) have cast doubt on this independence.
We concur that a correlation–rate relationship compromises
correlation-based coding based on rate comodulation, but we
demonstrate here that output correlation and rate can be corre-
lated without interfering with synchrony-based coding. Count-

ing spikes neglects the information carried by spike timing. The
absolute timing of spikes in a single presynaptic cell has little
impact on postsynaptic activation, but the relative timing of
spikes across multiple presynaptic cells is crucial if the postsyn-
aptic cell operates as a coincidence detector; by extension, the
absolute timing of synchronized volleys likely carries information
about the original stimulus.

It follows that integrators exhibit the correlation–rate rela-
tionship described by de la Rocha et al. (2007), but that same
relationship, although it can be observed in coincidence detectors
(Barreiro et al., 2010), applies to only a fraction (i.e., to only one
component) of their output correlation. Notably, de la Rocha et
al. used computer models in which spike generation depended on
mean input (i.e., integration) and the 1-s-long stimuli used in
their experiments were sufficiently short that slow adaptation was
minimal, thus favoring spike generation based on mean input
(Prescott and Sejnowski, 2008). In addition to testing “integra-
tor” models, we tested conductance-based and phenomenologi-
cal models in which spike generation depends on input variance
(i.e., coincidence detector models). Our experiments were con-
ducted with 300-s-long stimuli to favor adaptation, our rationale
being that neurons in vivo exist in a chronically depolarized and
shunted state because of synaptic bombardment (Destexhe et al.,
2003). By testing a single cell type under different “virtual net-
work conditions” rather than testing different cell types repre-
senting each extreme of the continuum between integration and
coincidence detection, our results show that the neuronal op-
erating mode can be shifted along that continuum and that
this shift in operating mode adjusts the balance of rate- and
synchrony-based coding.

These results demonstrate the importance of cell-level prop-
erties for network-level coding. There has been a longstanding
bias in the network modeling community to focus on synaptic
weights and network architecture, with far less emphasis put on
cellular properties. Here, we have shown what happens when
neurons do not “integrate and fire.” Similarly, Burak et al. (2009)
and Barreiro et al. (2010) recently showed differences in output
correlation depending on the type of model used. Effects of syn-
aptic kinetics, background noise, and input spike train statistics
on output correlation have also been documented (Maex et al.,
2000; Tetzlaff et al., 2008; Ostojic et al., 2009). Tchumatchenko et
al. (2010) have shown specifically that output correlations can be
rate dependent or independent according to input conditions.
Our results emphasize how both types of correlations can coexist
and that this depends on input conditions and (how that input is
encoded given) single cell firing properties. Indeed, whereas sim-
plified models tend to favor pure integration or pure coincidence
detection, real neurons and realistic conductance-based models
exhibit a context-dependent mixture of operating modes. Neglect-
ing the richness of cell-level coding properties will surely translate
into underestimation of network-level coding possibilities.

In conclusion, different types of neurons or even the same
neuron operating under different conditions can be differentially
sensitive to first- and second-order stimulus statistics, namely
mean and variance. If we do not assume that fluctuations are
simply noise, and if a neuron is sensitive to those fluctuations
(which is true of coincidence detectors), then output spiking
should carry information about the signal variance. Two such
neurons receiving correlated input may carry information about
signal variance in their precisely synchronized spiking. Even if
correlated with firing rate (indeed, such output correlations
might arise from correlations between features of the original
input), spike-time synchronization is separate from rate co-
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modulation, which, by definition, is directly linked to the firing
rate that is tuned to the signal mean. Both forms of correlation
may coexist and operate independently. Thus, the richness of
single-neuron coding abilities translates into even richer multi-
neuron coding possibilities.
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