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Neurofibromatosis type 1 (NF1) is the most common monogenic disorder in which individuals manifest CNS abnormalities. Affected
individuals develop glial neoplasms (optic gliomas, malignant astrocytomas) and neuronal dysfunction (learning disabilities, attention
deficits). Nf1 genetically engineered mouse models have revealed the molecular and cellular underpinnings of gliomagenesis, attention
deficit, and learning problems with relevance to basic neurobiology. Using NF1 as a model system, these studies have revealed critical
roles for the NF1 gene in non-neoplastic cells in the tumor microenvironment, the importance of brain region heterogeneity, novel
mechanisms of glial growth regulation, the neurochemical bases for attention deficit and learning abnormalities, and new insights into
neural stem cell function. Here we review recent studies, presented at a symposium at the 2012 Society for Neuroscience annual meeting,
that highlight unexpected cell biology insights into RAS and cAMP pathway effects on neural progenitor signaling, neuronal function, and
oligodendrocyte lineage differentiation.

Neurofibromatosis type 1 (NF1) is a common inherited tumor
predisposition syndrome affecting 1 in 3000 individuals world-
wide (Friedman et al., 1999). As such, children and adults are
prone to the development of benign and malignant tumors of the
peripheral nervous system (PNS) and CNS. Within the CNS,
children and adults affected with NF1 manifest cognitive dis-
abilities, behavioral issues, and motor delays, which negatively
impact on scholastic achievement (Hyman et al., 2005, 2006;
Isenberg et al., 2012; Soucy et al., 2012). Moreover, 15–20% of
children with NF1 will develop a low-grade glioma of the optic
pathway, which, when symptomatic, can cause reduced vision
(Listernick et al., 1994, 1997). In addition, adults with NF1
harbor a 50- to 100-fold increased risk of high-grade (malig-
nant) glioma development (Rasmussen et al., 2001; Gutmann
et al., 2002). While uncommon, these cancers when encoun-
tered are frequently fatal and unresponsive to conventional
therapies.

As a tumor predisposition syndrome, NF1 is a dominantly
inherited genetic condition, where all affected individuals harbor
a germline NF1 gene mutation. In this regard, children with NF1
start life with one nonfunctional and one functional NF1 gene in
every cell in their body. Reduced NF1 gene expression is sufficient
for some NF1-associated CNS clinical features (learning, mem-
ory, and attention deficits), whereas tumor formation requires
complete loss of NF1 gene function in the neoplastic cells.

The NF1 gene resides on chromosome 17q11.2 in humans (11
B4–5 in the mouse) and encodes a 220–250 kDa cytoplasmic pro-

tein. Neurofibromin contains a 300 aa RAS GTPase activating pro-
tein (GAP) domain (Xu et al., 1990), which functions to convert RAS
from its active GTP-bound form to its inactive GDP-bound form.
Loss of neurofibromin expression (as observed in human NF1-
associated tumors) results in increased RAS activity and cell growth
(Basu et al., 1992: DeClue et al., 1992; Bollag et al., 1996). Consistent
with increased RAS pathway activity in NF1-deficient tumor cells,
high levels of activated RAF/MEK and AKT/mammalian target of
rapamycin (mTOR) are observed (Dasgupta et al., 2005b; Johannes-
sen et al., 2005) (Fig. 1). In addition, neurofibromin also positively
controls adenylyl cyclase (AC) activity, and intracellular cAMP levels
(Tong et al., 2002; Dasgupta et al., 2003). Reduced or absent Nf1 gene
expression in astrocytes and neurons is associated with lower cAMP
levels. While the mechanism underlying neurofibromin cAMP reg-
ulation is currently incompletely elucidated, both Ras-dependent
and Ras-independent modes have been implicated (Hannan et al.,
2006; Brown et al., 2010b).

Over the past decade, researchers have developed numerous
robust and accurate models of NF1-associated CNS abnormali-
ties (Table 1). These Nf1 mutant mouse strains have helped elu-
cidate the molecular and cellular pathogenesis of NF1-associated
clinical features as well as served as tractable platforms for drug
discovery and preclinical therapeutic evaluation before clinical
trials in humans.

Brain abnormalities in NF1
Remarkably little is known about structural brain abnormalities
in individuals with NF1. In �50% of autopsied brains, disor-
dered cortical architecture has been reported, with random ori-
entation of neurons, focal heterotopic neurons, proliferation of
glial cells to form well defined gliofibrillary nodules, and hyper-
plastic gliosis (Rosman and Pearce, 1967). Glial fibrillary acidic
protein (GFAP) expression is increased, supporting the existence
of reactive astrogliosis (Nordlund et al., 1995). Astrogliosis has
also been observed in Nf1�/� mouse brains (Gutmann et al.,
1999; Rizvi et al., 1999).

Received July 8, 2012; revised Aug. 1, 2012; accepted Aug. 3, 2012.
This work was supported by National Cancer Institute Grant CA141549-01, National Institutes of Health Grant

NS065547, and the Department of Defense (to D.H.G.).
The authors declare no competing financial interests.
Correspondence should be addressed to Dr. David H. Gutmann, Department of Neurology, Box 8111, 660 South

Euclid Avenue, Washington University School of Medicine, St. Louis, MO 63110. E-mail: gutmannd@
neuro.wustl.edu.

DOI:10.1523/JNEUROSCI.3242-12.2012
Copyright © 2012 the authors 0270-6474/12/3214087-07$15.00/0

The Journal of Neuroscience, October 10, 2012 • 32(41):14087–14093 • 14087



Magnetic resonance imaging (MRI) has
revealed focal areas of high signal intensity
on T2-weighted images of brains of children
with NF1. Autopsy analysis of the brain re-
gions corresponding to areas of high T2 sig-
nal intensity on MRI performed before
death in two children concluded that the
high-signal intensity lesions on MRI repre-
sented regions containing increased fluid
within the myelin associated with hyper-
plastic or dysplastic glial cell proliferation
(DiPaolo et al., 1995).

Based on these collective findings, it
was proposed that early metabolic abnor-
malities in these brains leads to focal
edema and vacuolization of myelin, which
may be visible as T2 hyperintensities, fol-
lowed by destruction of neurons, and ul-
timately to regression of visible lesions.
Further support for a widespread myelin
disorder model derives from water diffu-
sion MRI, which identified significant in-
creases in brain water diffusion in NF1
patient brains (Eastwood et al., 2001; Al-
kan et al., 2005; Zamboni et al., 2007; van
Engelen et al., 2008; Ferraz-Filho et al.,
2012). When T2 hyperintense lesions
were specifically sampled, greater differ-
ences were observed, underscoring the
notion that these hyperintense MRI ab-
normalities represent focal patches indic-
ative of abnormal myelin.

Macrocephaly is another common fea-
ture of children with NF1 (Friedman and
Birch, 1997; Friedman et al., 1999). Over-
all, macrocephalic subjects showed signif-
icant increases in white matter volumes
(Steen et al., 2001; Cutting et al., 2002),
with increased gray matter volumes vari-
ably observed. One heavily myelinated
tract, the corpus callosum, has been ex-
tensively examined: children with NF1
have significantly larger corpus callosi
compared with controls (Kayl et al., 2000;
Moore et al., 2000), and a larger corpus
callosum size is associated with reduced
IQ (Pride et al., 2010). Even in adults, in-
creased corpus callosum size is found in
brains from NF1 patients (Wignall et al.,
2010). Together, these findings provide evidence for more perva-
sive myelin dysfunction in the brains of individuals with NF1.

Neurofibromin, the NF1 gene product, is widely expressed in the
CNS during early development. By mid-gestation, newly postmi-
totic neurons show increased levels of neurofibromin compared
with less differentiated neuroepithelial cells (Daston and Ratner,
1992; Huynh et al., 1994). In the adult CNS, neurofibromin is
strongly expressed in subsets of neurons, including projection neu-
rons (Nordlund et al., 1993). Oligodendrocytes also express high
levels of neurofibromin (Daston and Ratner, 1992; Daston et al.,
1992). In contrast, astrocytes lack detectable levels of neurofibromin
expression in situ (Daston and Ratner, 1992; Daston et al., 1992;
Nordlund et al., 1993, 1995), but can be induced after injury (Hewett
et al., 1995).

Direct evidence that oligodendrocyte lineage cells can be af-
fected by loss of NF1 expression derives from several studies in
mice: following bi-allelic Nf1 gene inactivation in neuroglial pro-
genitor cells, oligodendrocyte precursors are increased in num-
ber in vitro and in vivo (Bennett et al., 2003; Hegedus et al., 2007).
Consistent with an important role for oligodendrocytes in NF1
biology, Nf1 inactivation in the brain results in increased num-
bers of NG2� glial cells in the mouse brain (Hegedus et al., 2007)
and altered neuron– glial specification (Wang et al., 2012). Cur-
rent studies are aimed at testing how loss of Nf1 expression affects
oligodendrocyte differentiation and function.

Low-grade gliomas in NF1
Gliomas arising in the context of NF1 are largely restricted to the
optic pathway (nerve, chiasm, and radiations) and brainstem of

Figure 1. Neurofibromin signaling pathway regulation. The NF1 gene product, neurofibromin, functions as both a negative
regulator of RAS activity (RAS GAP) and as a positive regulator of AC activity. Impaired neurofibromin function leads to increased
RAS activation, resulting in high levels of RAF/MEK and AKT/mTOR signaling. Similarly, reduced neurofibromin function is associ-
ated with decreased cAMP levels and reduced protein kinase A (PKA) activity. GRD, GAP-related domain.
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children typically younger than 7 years of age (Listernick et al.,
1994, 1997; Guillamo et al., 2003). Importantly, some optic glio-
mas can lead to progressive visual loss, while other radiographi-
cally similar ones may be completely asymptomatic (normal
vision). What determines this exquisite regional and spatial pat-
tern of gliomagenesis and the variable effects on vision in children
with NF1 are currently unknown; however, potential contribu-
tors include the timing of NF1 gene inactivation (cell of origin),
the role of non-neoplastic cells in the tumor microenvironment,
and the response of associated neurons.

Timing of Nf1 gene inactivation
Recent studies have revealed that Nf1 loss must occur in a specific
progenitor cell during a restricted window of mouse develop-
ment (Lee et al., 2012). While Nf1 loss in neuroglial progenitors
before embryonic day 16.5 results in optic glioma formation in
Nf1�/� mice, postnatal biallelic Nf1 loss in GFAP� astrocytes is
not sufficient for gliomagenesis. Interestingly, these Nf1 mouse
optic gliomas appear to arise from progenitor cells in the third
ventricle, rather than the lateral ventricle where many adult glio-
mas derive (Alcantara Llaguno et al., 2009). Studies are currently
underway to define the role of more restricted progenitors, in-
cluding NG2� glia in Nf1 optic gliomagenesis as well as to define
the unique properties of stem cells in the third ventricle (Dahiya
et al., 2011).

Stromal influences on gliomagenesis
Studies using Nf1 genetically engineered mouse strains have also
revealed that the location of gliomas in NF1 results from a com-
bination of susceptible progenitor cells coupled with a permissive
local microenvironment (stroma). In this regard, Nf1 loss in neu-
roglial progenitors is insufficient for gliomagenesis unless cou-
pled with reduced Nf1 expression in non-neoplastic (Nf1�/�)
cells in the brain (Bajenaru et al., 2002, 2003; Zhu et al., 2005b). It
is curious that while Nf1�/� stromal cells and Nf1-deficient pro-
genitors exist throughout the CNS of these mice, gliomas are
restricted to the optic nerve and chiasm. Further examination of
potential progenitor cells [neural stem cells (NSCs)] has demon-
strated that not all NSC populations increase their proliferation
and glial differentiation following Nf1 gene inactivation.
Whereas Nf1�/� brainstem and third ventricle NSCs exhibit in-
creased proliferation and glial differentiation relative to wild-
type controls, Nf1�/� neocortical and lateral ventricle NSCs are
nearly indistinguishable from wild-type NSCs (Lee et al., 2010).
This differential response to Nf1 loss results from differential
expression of one signaling component of the RAS/mTOR
growth control pathway, leading to increased AKT activation in
Nf1�/� brainstem, but not neocortical, NSCs.

The instructive role of the local microenvironment (stroma) is
additionally underscored by studies focused on microglia. Resi-
dent microglia are abundant in human low-grade gliomas, and

comprise 35–50% of the total number of cells in these tumors
(Simmons et al., 2011). Using several Nf1 genetically engineered
mouse strains, pharmacologic and genetic silencing of microglia
function impairs optic glioma growth (Daginakatte and Gut-
mann, 2007; Daginakatte et al., 2008; Simmons et al., 2011). One
of the stromal factors that facilitates gliomagenesis and continued
growth is the chemokine CXCL12 (stroma-derived factor-1�)
(Warrington et al., 2007), such that forced expression of CXCL12
in the brains of Nf1 optic glioma mice results in ectopic glioma-
like formation (Sun et al., 2010). CXCL12 acting through its re-
ceptor, CXCR4, regulates glial cell survival in a cAMP-dependent
manner: Restoring cAMP levels in Nf1 optic glioma strains re-
duces tumor growth (Warrington et al., 2010). Current work is
focused on identifying the spectrum of microglia-produced
growth and survival factors that drive and maintain glioma
growth as potential targets for stroma-directed therapeutic drug
design.

Response of associated neurons
There is considerable variability in the clinical outcome of chil-
dren with NF1-associated optic glioma. While some children
with progressive visual loss may have no further clinical deterio-
ration following treatment, other optic gliomas may cause con-
tinued vision loss with little response to chemotherapy. What
determines these divergent clinical responses is currently unclear,
but may reflect vulnerability of Nf1�/� CNS neurons to neuronal
cell death. Analysis of CNS neurons from the hippocampus, ret-
ina, and striatum of Nf1�/� mice have shown reduced neurite
lengths, growth cone areas, and survival relative to wild-type lit-
termates (Brown et al., 2010b), which are not further worsened
by total Nf1 loss (Brown et al., 2012). This is in striking contrast to
Nf1�/� PNS sensory and sympathetic neurons, which exhibit
little change in neurite integrity or apoptosis. Moreover, Nf1�/�

PNS neurons have longer processes and inappropriate cell sur-
vival following neurotrophin withdrawal (Vogel et al., 1995). On
the molecular level, Nf1�/� PNS neuron survival is driven by
RAS/AKT hyperactivation, whereas Nf1�/� CNS neuronal mor-
phology reflects attenuated cAMP generation. The relationship
between the specific germline NF1 gene mutation in individuals
with NF1 and resulting neuronal function in the brain is pres-
ently being explored to identify genetic and potential genomic
modifiers of disease progression and outcome.

Models of malignant glioma and therapeutic implications
While optic gliomas are the most common CNS tumor found in
children with NF1, malignant gliomas can develop in all areas of
the brains of adults with NF1 (Ilgren et al., 1985; Rasmussen et al.,
2001; Gutmann et al., 2002).

Table 1. Nf1 genetically engineered mouse models of CNS dysfunction

GEM strain Description CNS abnormality References

Nf1 �/� mice Mice with reduced Nf1 gene expression throughout Impaired learning, memory, and attention;
increased astrogliosis

Jacks et al., 1994; Silva et al., 1997; Gutmann
et al., 1999; Rizvi et al., 1999

Nf1�/� Syn mice Mice with reduced Nf1 gene expression in hippocampal neurons Impaired learning, memory, and attention Cui et al., 2008
Nf1�/� GFAPCKO mice Nf1 �/� mice with complete Nf1 loss in neuroglial progenitors Impaired learning, memory, and attention;

optic glioma formation
Brown et al., 2010a; Bajenaru et al., 2003

Nf1�/�; KRas GFAP mice Nf1 �/� mice with KRas activation in neuroglial progenitors Optic glioma formation Dasgupta et al., 2005a
Nf1;p53 GFAPCKO mice Mice with Nf1 and p53 inactivation in neuroglial progenitors High-grade glioma formation Zhu et al., 2005b
Nf1;p53; Pten GFAPCKO mice Mice with Nf1,p53, and Pten inactivation in neuroglial progenitors GBM formation Kwon et al., 2008
Nf1;p53; Pten nestinCKO mice Mice with Nf1,p53, and Pten inactivation in neural stem cells GBM formation Chen et al., 2012
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Molecular analysis of high-grade glioma
While the prevalence of NF1 mutation in idiopathic glioma was
initially underappreciated, data from The Cancer Genome Atlas
study revealed that NF1 mutation was one of the most frequently
occurring mutations found in glioblastoma (GBM), along with mu-
tations in the TP53, PTEN, EGFR, RB, and CDKN2A/2B genes (Can-
cer Genome Atlas Research Network, 2008). Although these genes
were well known in other cancers, this type of comprehensive anal-
ysis revealed new information about the prevalence of particular
mutations in GBM and increased our understanding of the complex
genetic landscape of this deadly high-grade brain tumor.

Mouse high-grade glioma models
These large-scale genome-wide sequencing studies have provided a
wealth of information regarding the molecular events that take place
in a particular tumor type, and offer potentially critical diagnostic
and prognostic value. However, while studies using human tumor
samples and cancer cell lines have provided important molecular
insights, these data represent only a “snapshot” of the oncogenic
process. To better understand the natural history of a tumor’s devel-
opment, researchers have turned to genetically engineered mouse
models (GEMMs). The development of GEMMs for the study of
tumorigenesis has allowed investigators to study tumors that have
high fidelity to their human counterparts in an endogenous set-
ting, as they develop within their natural macroenvironments
and microenvironments. Moreover, these models recapitulate
the cellular heterogeneity of the tumors typically seen in human
disease physiology and, in models with 100% penetrance, allow
for investigation into the very earliest molecular and cellular al-
terations. Thus, they have provided researchers with invaluable
resources for studying the underlying mechanisms involved in
tumor initiation and progression.

A number of mouse models of high-grade glioma have been
developed, including mice with genetic alterations of EGFR,
PDGF, Bmi1, Arf, and many other genes, either alone or in com-
bination (Holland et al., 1998; Uhrbom et al., 1998; Bruggeman et
al., 2007; Chen et al., 2012b). The Parada Laboratory developed
mouse models of GBM, wherein two or three of the most com-
monly mutated genes found in human GBM—Nf1, p53, and Pten
(Cancer Genome Atlas Research Network, 2008)—are condi-
tionally mutated. These mice developed tumors with 100% pen-
etrance, and the tumors faithfully recapitulated the human
tumors, both histologically and molecularly, thus making them
valid models for studying the natural history of tumor develop-
ment. Using these models, they found that mutation in p53 must
precede that of Nf1 for glioma to develop (Zhu et al., 2005a),
which could account for the fact that in NF1 patients, gliomas are
less frequently observed than other types of neoplasms. They also
showed that while Nf1;p53 mutant mice developed tumors with
100% penetrance, mice with the additional Pten mutation had
shortened survival time, with higher grade tumors that developed
faster (Kwon et al., 2008). Examination of the presymptomatic
mice allowed analysis of the earliest events in tumor develop-
ment. Pulse chase experiments, as well as other forms of analysis,
revealed that the subventricular zone—a primary niche of adult
neural stem cells— exhibited early aberrant cellularity, prolifera-
tion, and migration of neural stem cells into the brain paren-
chyma. These studies led to the proposal that stem/progenitor
cells are the cell of origin of malignant glioma (Zhu et al., 2005;
Kwon et al., 2008; Alcantara Llaguno et al., 2009). Thus, GEMMs
can provide important information about the earliest neoplastic
events. Additionally, they are invaluable for the preclinical testing
of putative drugs that target a particular oncogenic pathway.

Cell of origin and therapeutic implications
One topic of intense study in the cancer field is the “cell of origin.”
Identifying the cell population that gives rise to and propagates a
particular tumor type has important implications for the design
of effective treatment strategies. One long-held theory is that tu-
mors arise from differentiated cells that, after accumulating mu-
tations, de-differentiate and acquire tumorigenic potential,
including uncontrolled growth, stem-like properties, and self-
renewal ability. One corollary of this theory is that a relatively
large number of cells have tumorigenic potential. In the case of
glioma, it was postulated that glial cells, in particular astrocytes,
were the source of the tumors. Definitive evidence to support this
theory, however, has been lacking.

Recently, the idea of “cancer stem cells” as the source of certain
tumor types (Clarke et al., 2006) has gained considerable traction.
Evidence for the existence of cancer stem cells has been provided for
a number of solid tumors, including GBM (Singh et al., 2004). While
standard methods for studying cancer stem cells have been ex-
tremely informative, they also have significant limitations. In the
endogenous tumor setting, cancer stem cells are thought to be rela-
tively quiescent and therefore not susceptible to the current chemo-
therapies and radiotherapies that target rapidly dividing cells,
making them a likely candidate for the source of tumor recurrence
following treatment. Therapies designed to target this particular cell
population might therefore greatly improve prognosis for patients
with therapy-resistant cancers such as glioma, making identification
and analysis of these cells critical.

Using two different methods (genetically and by stereotactic
injection), the Parada Laboratory previously demonstrated that
neural stem cells in the SVZ can give rise to tumors upon condi-
tional deletion of the Nf1/p53/Pten tumor suppressor genes (Al-
cantara Llaguno et al., 2009). Additionally, they have found that
eliminating this population of cells in their mouse glioma model
reduced tumor size and infiltration, and extended survival (Chen
et al., 2012a). As the behavior of cancer stem cells is affected by
their microenvironment, they sought to study the effect of elim-
inating this mutant cell population in the endogenous (in vivo)
tumor setting by intercrossing mice carrying a Nestin-�TK-IRES-
GFP transgene with Nf1;p53;Pten mutant mice. The Nestin-�TK-
IRES-GFP transgene is expressed in quiescent neural stem cells of
the subventricular zone and also labels a subset of glioma cells in
the mutant mice. It does not, however, label the highly prolifer-
ative Ki67� population of tumor cells. The mice were subjected
to a dual regimen of temozolomide (TMZ), which kills rapidly
dividing cells, and gancyclovir, which will kill the relatively qui-
escent Nestin-�TK-IRES-GFP-expressing cells once they enter
the cell cycle. Such studies provide evidence that TMZ specifically
targets the amplifying tumor-dividing population, but not the
quiescent transgene-positive cells. Moreover, these data indicate
that tumor regrowth after eradication of the proliferative cell
pool is mediated by the quiescent endogenous tumor population.
These data lend considerable support to the cancer stem cell hy-
pothesis for malignant glioma and have important implications
for the design of therapeutic strategies.

Understanding the learning deficits associated with NF1:
mechanisms for the spatial learning, attention deficits, and
working memory impairments associated with NF1
Behavioral analyses of mice heterozygous for a null mutation in
the Nf1 gene (Nf1�/�) (Jacks et al., 1994) revealed a pattern of
deficits in specific cognitive domains, including executive, atten-
tion, and spatial impairments, that is similar to that observed in
individuals with NF1 (Costa et al., 2002; Cui et al., 2008; Shilyan-
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sky et al., 2010). For example, Nf1�/� mice required extended
training to learn the position of the hidden platform in the Morris
water maze (Silva et al., 1997). A pilot study on children with NF1
revealed a similar pattern of spatial learning deficits in a virtual
Morris maze (Ullrich et al., 2010). As seen in Nf1�/� mice, chil-
dren with NF1 needed additional training to reach the same level
of performance as unaffected children. Importantly, in both mice
and children with NF1, the behavioral and cognitive deficits de-
scribed do not reflect generalized impairments in brain function.
Nf1�/� mice show clear deficits in spatial learning and contextual
conditioning (both hippocampal-dependent tasks), but are com-
pletely normal in visual learning and in auditory conditioning
(hippocampal-independent tasks) (Silva et al., 1997; Costa et al.,
2002; Cui et al., 2008).

The increase in RAS/ERK signaling observed in the brains of
Nf1�/� mice leads to increased phosphorylation of synapsin I
(Cui et al., 2008), a presynaptic molecule that regulates neu-
rotransmitter release. In turn, this causes enhanced GABA release
in hippocampal, prefrontal, and striatal circuits (Costa et al.,
2002; Li et al., 2005; Cui et al., 2008; Shilyansky et al., 2010). This
enhanced GABA-mediated inhibition accounts for the deficits in
hippocampal long-term potentiation (LTP) observed in Nf1�/�

mice. Hippocampal LTP is a key mechanism underlying spatial
learning and memory (Lee and Silva 2009). Cre-mediated and
cell type-specific Nf1 gene deletions confirmed the importance of
changes in GABA inhibition: while Nf1 heterozygosity in inhibi-
tory neurons leads to deficits in LTP and spatial learning, reduced
neurofibromin expression in either astrocytes or excitatory neu-
rons does not (Cui et al., 2008).

Working memory, which, like attention, depends on intact
prefrontal circuitry, is also impaired in both Nf1�/� mice and in
individuals with NF1 (Shilyansky et al., 2010). Functional imag-
ing studies showed that the working memory impairments of
NF1 subjects correlated with hypoactivation in the prefrontal
cortex, which may reflect increased GABA-mediated inhibition
in prefrontal cortical circuits of Nf1�/� mice (Shilyansky et al.,
2010). Remarkably, a dose of a GABA receptor inhibitor (picro-
toxin), which caused deficits in working memory in control mice,
rescued the working memory deficits of Nf1�/� mice, a result
consistent with the hypothesis that increased inhibition is at the
root of the working memory deficits associated with NF1.

Increases in RAS/ERK signaling in Nf1�/� mice have been
implicated in the working memory, attention, and spatial learn-
ing deficits of these mice (Costa et al., 2002; Li et al., 2005; Cui et
al., 2008; Shilyansky et al., 2010). Genetic and pharmacological
manipulations that target the RAS/ERK signaling pathway were
shown to rescue the physiological and behavioral deficits of
Nf1�/� mice. Importantly, pharmacological manipulations that
impair the isoprenylation of RAS (statins, farnesyl transferase
inhibitors), and therefore decrease the levels of RAS/ERK signal-
ing, also rescue key electrophysiological and behavioral pheno-
types of Nf1�/� mice. Indeed, at concentrations that do not affect
signaling, physiology, or behavior of wild-type controls, statins
reverse the signaling, electrophysiological, attention, and spatial
learning deficits of Nf1�/� mice (Li et al., 2005). Prompted by
these findings, clinical studies are currently underway to test the
efficacy of statins as a treatment for the behavioral and cognitive
deficits in individuals with NF1 (Krab et al., 2008; Acosta et al.,
2011; Chabernaud et al., 2012).

Similar to individuals with NF1, Nf1 mutant mice also show
attention deficits (Li et al., 2005; Brown et al., 2010a). These
deficits are thought to be key contributors to academic and social
problems in children with NF1 (Mautner et al., 2002; Hyman et

al., 2005; Li et al., 2005). Using an additional Nf1 GEM strain to
study attention, in which the Nf1�/� mutation is combined with
Cre-driven homozygous Nf1 gene deletion in GFAP-expressing
cells (Nf1 OPG mouse), it was found that reduced striatal dopa-
mine was responsible for the observed attention deficits (Brown
et al., 2010a). Treatment with methylphenidate (but not with
drugs that affect RAS) reversed the attention deficits of these Nf1
OPG mutants (Brown et al., 2011), suggesting that defects in
brain catecholamine homeostasis contribute to the attention def-
icits observed. These results suggest that, in addition to drugs that
affect RAS/ERK signaling, drugs that manipulate dopaminergic
function could also be used to treat the cognitive deficits associ-
ated with NF1.

Treatments and future directions
With the availability of genetically engineered mouse models for
NF1-associated CNS pathology, it now becomes possible to en-
vision a pipeline in which fundamental basic science discoveries
lead to the identification of new cellular and molecular targets for
therapeutic drug design, culminating in preclinical evaluation
before testing in patients with NF1. First, the success of Nf1
mouse model implementation has already resulted in the clinical
evaluation of lovastatin in children with NF1-associated learning
deficits (Li et al., 2005) and rapamycin analogs for the treatment
of glioma (Hegedus et al., 2008). Second, mouse models afford an
opportunity to envision specific features of NF1 as distinct dis-
eases defined by the timing of NF1 gene inactivation or the par-
ticular cell of origin. Similar to other cancers, the identification of
molecular or cellular subtypes of NF1-associated nervous system
tumors or learning/behavioral problems may result in more in-
dividualized treatments with a higher likelihood of success.
Third, as we further exploit these powerful preclinical models,
additional cellular and molecular targets may emerge as candi-
dates for future therapeutic drug design. In this regard, one could
envision more effective therapies resulting from the combined
use of targeted inhibition of multiple growth control pathways
regulated by neurofibromin in the neoplastic cell (NF1-deficient
neuroglial precursor) or dual targeting of non-neoplastic (micro-
glia) and neoplastic cells within NF1-associated CNS tumors.
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