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Understanding speech in noisy environments is often taken for granted; however, this task is particularly challenging for people with
cochlear hearing loss, even with hearing aids or cochlear implants. A significant limitation to improving auditory prostheses is our lack
of understanding of the neural basis for robust speech perception in noise. Perceptual studies suggest the slowly varying component of
the acoustic waveform (envelope, ENV) is sufficient for understanding speech in quiet, but the rapidly varying temporal fine structure
(TFS) is important in noise. These perceptual findings have important implications for cochlear implants, which currently only provide
ENV; however, neural correlates have been difficult to evaluate due to cochlear transformations between acoustic TFS and recovered
neural ENV. Here, we demonstrate the relative contributions of neural ENV and TFS by quantitatively linking neural coding, predicted
from a computational auditory nerve model, with perception of vocoded speech in noise measured from normal hearing human listeners.
Regression models with ENV and TFS coding as independent variables predicted speech identification and phonetic feature reception at
both positive and negative signal-to-noise ratios. We found that: (1) neural ENV coding was a primary contributor to speech perception,
even in noise; and (2) neural TFS contributed in noise mainly in the presence of neural ENV, but rarely as the primary cue itself. These
results suggest that neural TFS has less perceptual salience than previously thought due to cochlear signal processing transformations
between TFS and ENV. Because these transformations differ between normal and impaired ears, these findings have important transla-
tional implications for auditory prostheses.

Introduction
One way to characterize a speech waveform is as the sum of a
number of amplitude-modulated signals representing the out-
puts of a set of narrow frequency channels distributed across the
acoustic spectrum (Flanagan, 1980). In this view, the output of
each channel can be separated into a rapidly varying carrier signal
that specifies the waveform temporal fine structure (TFS) and a
slowly varying modulating signal that specifies its temporal enve-
lope (ENV). It is of considerable theoretical and translational
interest to understand the relative roles of ENV and TFS for ro-
bust speech perception. Findings from several psychoacoustic
studies suggest that there is an important dichotomy between
ENV and TFS cues; however, this remains a topic of consider-
able debate (Drullman, 1995; Smith et al., 2002; Oxenham and
Simonson, 2009).

Envelope cues have been shown to support robust speech
identification in quiet when provided in as few as four frequency
bands (Shannon et al., 1995). This finding has important impli-

cations for cochlear implants (CIs), which currently only provide
ENV information over a relatively small (�8) number of effective
channels, and is consistent with the observation that many CI
patients understand speech remarkably well in quiet (Wilson et
al., 1991). However, ENV cues have been shown to be susceptible
to noise degradations (Fu et al., 1998). Conversely, TFS cues have
been suggested to be important for speech perception in noise
(Qin and Oxenham, 2003; Zeng et al., 2005). The lack of TFS in
current CI stimulation strategies has been hypothesized to under-
lie some of the difficulties CI patients have, e.g., understanding
speech in noise (Fu and Shannon, 1999) and appreciating music
(Drennan and Rubinstein, 2008). These perceptual difficulties
have motivated efforts to develop novel CI strategies to provide
TFS in addition to ENV (e.g., Rubinstein et al., 1999; Litvak et al.,
2003; Nie et al., 2005; Zeng et al., 2005).

Many conclusions about the relative roles of ENV and TFS
cues for speech perception have been derived from listening ex-
periments using vocoders (Dudley, 1939; Flanagan and Golden,
1966) that retain only the ENV or TFS components of the acous-
tic waveform. The interpretation of perceptual vocoder studies
relies on assuming that ENV and TFS can be isolated. However,
narrowband cochlear filtering limits the ability to isolate TFS
from ENV (Ghitza, 2001) due to transformations between acous-
tic TFS and (recovered) neural envelopes (see Heinz and Swami-
nathan, 2009, their Fig. 10). Speech ENV cues recovered from
broadband TFS speech can be intelligible (Zeng et al., 2004) but
are reduced (although not completely eliminated) for TFS speech
created with narrow analysis bands (Gilbert and Lorenzi, 2006;
Heinz and Swaminathan, 2009).
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In light of such transformations, the hypothesized role of
acoustic TFS for speech perception in noise must be evaluated by
factoring in the neural coding of ENV and TFS to various forms
of vocoded speech. Here, we quantitatively related the neural
coding of ENV and TFS predicted from a physiologically based
auditory nerve (AN) model to speech identification scores col-
lected from normal hearing listeners using the same set of noise-
degraded speech stimuli.

Materials and Methods
Acoustic stimuli. Speech signals consisted of 16 consonants (/p, t, k, b, d,
g, f, s, �, v, z, j, m, n, r, l/) in an /a/-C-/a/ context spoken by four talkers
(two for each gender), i.e., 64 vowel-consonant-vowel (VCV) utterances
(Shannon et al., 1999). Recorded phonemes were transformed to equal
duration (500 ms) and overall level [65 dB sound pressure level (SPL)]. A
speech-shaped noise (generated with the same magnitude spectrum as
the original phoneme, but with randomized phase in each interval) was
added to each intact speech utterance before vocoding. Vocoded stimuli
were created with either only fine structure (TFS speech) or envelope
(ENV speech). Five stimulus versions that differed in their composition
of acoustic ENV and TFS were used to evaluate the salience of TFS and
ENV cues: (1) intact speech; (2) phonemic ENV speech (PHENV); (3)
periodicity ENV speech (PDENV); (4) broadband TFS speech (BBTFS);
and (5) narrowband TFS speech (NBTFS).

Specific stimulus generation details were the same as those in previous
studies (Gilbert and Lorenzi, 2006; Lorenzi et al., 2006; also see Swami-
nathan, 2010). Each VCV was initially bandpass filtered into 1 or 16
spectral bands using third-order Butterworth filters. Analysis filter bands
spanned 80 – 8020 Hz and were logarithmically spaced. The Hilbert
transform (Hilbert, 1912) was applied in each band to decompose the
signal into ENV (magnitude of the Hilbert analytic signal) and TFS (co-
sine of the Hilbert analytic signal phase).

For PHENV speech, Hilbert envelopes were extracted in each of the 16
bands and lowpass filtered at 64 Hz with a sixth-order Butterworth filter.
For PDENV speech, the same procedures were used, except that the
ENVs were bandpass filtered from 64 –300 Hz and the first five bands
(center frequencies ��250 Hz) were eliminated to avoid aliasing effects.
These ENV signals were used to amplitude modulate sine-wave carriers
at the respective analysis filter center frequencies. Finally, signals were
bandpass filtered with the original analysis filters and then summed
across all bands to create ENV speech.

For TFS speech, VCVs were first bandpass filtered into 1 or 16 bands
(BBTFS or NBTFS, respectively). The ENV component was discarded
and the TFS in each band was scaled by the rms power of the original
bandpass filtered signal. These power-adjusted TFS signals were summed
over all bands to create TFS speech (Gilbert and Lorenzi, 2006; Lorenzi et
al., 2006).

Subjects. Five male native speakers of American English, matched
closely in age (mean � 28.8; SD � 1.9), right handed, and with normal
hearing (0.25– 8 kHz), participated in the study. Informed consent was
obtained in compliance with an approved Institutional Review Board
protocol from the Purdue University Human Research Protection
Program.

Speech reception procedures. The noise-degraded VCVs and their vo-
coded homologues were presented at eight different signal-to-noise ra-
tios (SNRs) (Q, and SNR � 10, 5, 0, �5, �10, �15, �20 dB, where Q
represents in quiet). Intact VCVs were fixed at 65 dB SPL, and the rms
noise level was chosen to achieve the desired SNR. Stimuli were presented
with Tucker Davis Technologies hardware and software. Sennheiser HD
580 headphones were used to present sounds monaurally to the right ear.
Listeners were tested in a double-walled, sound-attenuating chamber
using a single-interval, 16-alternative forced choice procedure. Each
block presented the entire set of VCV stimuli (16 consonants � 4 speak-
ers) in random order for a single stimulus version (INTACT, BBTFS,
NBTFS, PHENV, or PDENV speech) at a single SNR. One session (�2 h,
with breaks as needed) comprised two repetitions of eight blocks (in
quiet followed by the seven decreasing SNR conditions in order). Each
subject participated in five sessions (five stimulus versions), with the

order of stimulus versions randomized across subjects. Training was
provided only for the Q condition for each stimulus version, and feed-
back was provided only during training. The modest training was given
only to familiarize subjects with the testing environment and task (Shan-
non et al., 1995).

Speech reception analyses. For each stimulus version and SNR, a 16 �
16 confusion matrix from the 64 VCV tokens was compiled for each
listener. The specific reception of phonetic features (see Table 1), e.g.,
voicing (voiced versus unvoiced), manner (occlusive versus constric-
tive), place (front versus middle versus back), and nasality (nasal versus
non-nasal), was evaluated by information–transmission analyses (Miller
and Nicely, 1955) on the individual confusion matrices. All statistical
analyses were conducted on arcsine-transformed scores (Studebaker,
1985).

Computational auditory nerve model. Spike trains were obtained from
a phenomenological AN model (Zilany and Bruce, 2006, 2007) that has
been tested extensively against neurophysiological data obtained in re-
sponse to both simple and complex stimuli, including tones, broadband
noise, and speech-like sounds (Zhang et al., 2001; Zilany and Bruce,
2006, 2007). Many physiological properties associated with nonlinear
cochlear tuning are captured by this model, including compression, sup-
pression, and broadened tuning with increased sound level (Heinz,
2010). Ten high spontaneous rate AN fibers with characteristic frequen-
cies (CFs) ranging from 200 Hz to 8 kHz were selected based on the
acoustic characteristics of the VCVs. For each fiber, sound levels were
chosen at the best modulation level (BML) for each stimulus type, where
BML is defined as the sound level producing maximal ENV coding and
was typically �15 dB above fiber threshold (Joris and Yin, 1992). Al-
though this approach generally means that the sound levels used for the
AN model were lower than those used for the perceptual measures (65 dB
SPL), it does not provide a significant limitation to the conclusions from
this study. The choice of BML is often used in single-fiber studies of
modulation coding to reduce across-fiber variability associated with the
non-monotonic effect of sound level, since the level dependence (relative
to fiber threshold) of modulation coding is generally consistent across
AN fibers (e.g., Palmer, 1982; Joris and Yin, 1992). Because modulation
perception is generally level independent (Viemeister, 1979), the use of
BML for individual fibers in the present study represents the assumption
that at most sounds levels, some AN fibers are available to support robust
envelope perception. Several factors support this assumption, including
the wide range of AN fiber thresholds (Liberman, 1978), efferent-
mediated dynamic range decompression in noise (e.g., Kawase et al.,
1993), and long-duration dynamic range adaptation effects that occur in
the AN and higher auditory centers (Dean et al., 2005; Wen et al., 2009).

Quantifying TFS and ENV coding in AN spike trains. Neural cross-
correlation coefficients (�TFS and �ENV) were used to quantify the simi-
larity between TFS or ENV components of different AN spike train

Table 1. Phonetic features of the 16 English consonants used in this study

Consonant Voicing Manner of articulation Place of articulation Nasality

/p/ Unvoiced Occlusive Front Non-nasal
/t/ Unvoiced Occlusive Middle Non-nasal
/k/ Unvoiced Occlusive Back Non-nasal
/b/ Voiced Occlusive Front Non-nasal
/d/ Voiced Occlusive Middle Non-nasal
/g/ Voiced Occlusive Back Non-nasal
/f/ Unvoiced Constrictive Front Non-nasal
/s/ Unvoiced Constrictive Middle Non-nasal
/�/ Unvoiced Constrictive Back Non-nasal
/v/ Voiced Constrictive Front Non-nasal
/z/ Voiced Constrictive Middle Non-nasal
/j/ Voiced Constrictive Middle Non-nasal
/m/ Voiced Constrictive Front Nasal
/n/ Voiced Constrictive Front Nasal
/r/ Voiced Constrictive Middle Non-nasal
/l/ Voiced constrictive Middle Non-nasal

Classification of consonants by acoustic phonetic features: voicing (voiced versus unvoiced), manner (occlusive
versus constrictive), place (front versus middle versus back), and nasality (nasal versus non-nasal).
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responses (Heinz and Swaminathan, 2009). For each AN fiber, the sa-
lience of speech-related TFS and ENV coding following degradation (i.e.,
due to vocoding and/or noise) was quantified by computing �TFS and
�ENV between intact speech in quiet (baseline) and each degraded
condition.

Figure 1 illustrates the computation of these metrics for /aba/ in quiet
and at 10 dB SNR for a 1 kHz CF AN fiber. Separate metrics for TFS and
ENV were computed using shuffled auto-correlograms (SACs) and shuf-
fled cross-correlograms (SCCs) (Joris, 2003; Louage et al., 2004; Joris et
al., 2006). SACs are computed by tallying spike intervals across stimulus
repetitions (rather than within) and yield more robust characterizations
of temporal responses than classic all-order interval histograms (Rug-
gero, 1973). Normalized SACs are plotted as a function of delay (or
inter-spike interval) and are much like auto-correlation functions (Fig.
1 A, B, dark lines). TFS and ENV coding can be separated by comparing
the responses to a stimulus and its polarity-inverted pair (e.g., A� with
A�) (Joris, 2003; Louage et al., 2004; Joris et al., 2006). Polarity inversion
acts to invert the TFS but does not affect ENV. Cross-polarity correlo-
grams are computed by comparing spikes from A� and A� [e.g.,
SCC(A�,A�)] (Fig. 1 A, B, thin lines). To emphasize TFS, difcors were
computed as the difference between the SAC (original ENV, original
TFS) and the cross-polarity correlogram (original ENV, inverted TFS),
where the difcor peak height quantifies the strength of TFS coding. To
quantify ENV coding, sumcors were computed as the average of the SAC
and the cross-polarity correlogram. Here, only the neural coding of pho-
nemic ENV information was considered by restricting the sumcor spec-
tra to include only frequencies below 64 Hz. The third column of Figure
1 illustrates the use of SCCs to quantify the similarity between spike trains
in response to intact speech in quiet (A) and degraded speech (B). Cross-
stimulus correlograms [e.g., SCC(A�, B�), thick line in Figure 1C] and
cross-stimulus, cross-polarity correlograms [e.g., SCC(A�, B�), Figure

1C, thin line] were computed to facilitate the separation of TFS and ENV
cross-correlations by using difcors and sumcors, respectively.

Neural cross-correlation coefficients (Heinz and Swaminathan, 2009)
ranging between 0 and 1 were computed by comparing the degree of
response similarity (column 3 of Fig. 1) to the degree of temporal coding
for each stimulus individually (columns 1 and 2 of Fig. 1). The cross-
correlation coefficient for TFS was computed from the difcor peak
heights as follows:

�TFS �
difcorAB

�difcorA � difcorB

. (1)

Likewise, the neural cross-correlation coefficient for ENV was computed
from sumcor peak heights (after subtracting the baseline value of 1) as
follows:

�ENV �
(sumcorAB � 1)

�(sumcorA � 1) � (sumcorB � 1)
. (2)

For the single-fiber responses in Figure 1, both �TFS and �ENV were high
(close to 1), indicating that the temporal coding in quiet and at 10 dB
SNR was quite similar.

Results
Perception of noise-degraded speech
Figure 2A shows identification scores for consonants as a func-
tion of SNR for intact and vocoded speech averaged across all
listeners. Pooling across all SNRs, intact speech was the most
intelligible, followed by PHENV and BBTFS speech (not statisti-
cally different from one another), followed by PDENV, and then

Figure 1. Correlogram analyses to quantify the neural coding of ENV and TFS in noise-degraded speech. Columns 1 and 2 show temporal coding of /aba/ in quiet (Q) and for a 10-dB SNR,
respectively; column 3 illustrates the similarity in temporal coding between these two conditions. A, B, Normalized shuffled auto correlograms (thick line) and cross-polarity correlograms (thin line).
C, Shuffled cross-stimulus correlogram (thick line) and cross-polarity, cross-stimulus correlogram (thin line). D–F, Difcors represent TFS coding, with �TFS shown in F. G–I, Sumcors represent
phonemic (0 – 64 Hz) ENV coding, with �ENV shown in I. Fiber CF � 1000 Hz.
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by NBTFS speech. The performance with NBTFS speech was sig-
nificantly worse (p � 0.05) than all other vocoded speech. De-
spite quantitative differences, the finding that NBTFS speech was
less intelligible than BBTFS is consistent with previous studies
(Smith et al., 2002; Gilbert and Lorenzi, 2006). The overall per-
formance reported for speech reception of sentences in quiet with
modest training (�70% for BBTFS, �0% for NBTFS) was much
lower than the present results, likely due to the increased diffi-
culty of an open-set task (Smith et al., 2002). Performance for
closed-set identification of French VCVs in quiet with significant
training (�98% for BBTFS, �90% for NBTFS) was better than
the present results, particularly for the NBTFS condition (Gilbert
and Lorenzi, 2006). Previous studies suggest significant recov-
ered envelopes remain for the NBTFS condition, despite being
reduced relative to BBTFS (Sheft et al., 2008; Heinz and Swami-
nathan, 2009). Thus, it is not clear whether the improved perfor-
mance for NBTFS speech with extensive training observed in
other studies is due to listeners learning to use TFS cues (as is
often assumed) or from learning to use the small but significant
recovered ENV cues. The fact that the neural coding of TFS for
NBTFS speech is stronger than BBTFS (Heinz and Swaminathan,
2009) and that this trend is opposite from the consistent percep-
tual trend (Fig. 2; also see Smith et al., 2002; Gilbert and Lorenzi,
2006) questions whether the training effect is based on TFS cues
alone.

Identification scores were compared across stimuli at positive
and negative SNRs to determine whether the relative contribu-
tions of ENV and TFS cues differed between favorable and de-
graded conditions. At positive SNRs (Q, 10, 5, 0 dB) intact speech
was the most intelligible followed by PHENV speech, which was
slightly (but significantly) better than BBTFS speech, followed by
PDENV speech and finally NBTFS speech. A two-way ANOVA on
positive SNRs showed significant effects of stimulus type [F(4,99) �
975.48, p � 0.0001] and SNR [F(3,99) � 385.41, p � 0.0001], as well
as a significant interaction [F(12,99) � 14.95, p � 0.0001]. Post hoc
Tukey–Kramer adjustments for pairwise comparisons between
stimulus types revealed that the order of decreasing performance
(INTACT, PHENV, BBTFS, PDENV, to NBTFS) represented all
significant differences (p � 0.05). In contrast, at negative SNRs (�5,
�10, �15, �20 dB) intact speech was the most intelligible followed
by TFS speech (BBTFS comparable to NBTFS speech) and then ENV
speech (PHENV comparable to PDENV speech). For negative

SNRs, there were significant effects of stimulus type [F(4,99) �
110.28, p � 0.0001] and SNR [F(3,99) � 218.26, p � 0.0001], as well
as a significant interaction [F(12,99) � 18.06, p � 0.0001]. Post hoc
comparisons revealed that intact speech was significantly better than
all other types, followed by TFS speech (BBTFS not significantly
different from NBTFS), which was significantly better than ENV
speech (PHENV not significantly different from PDENV). These
psychoacoustic results suggest that the relative salience of ENV and
TFS cues differs for favorable and degraded conditions, consistent
with the general consensus from perceptual studies (Shannon et al.,
1995; Qin and Oxenham, 2003; Zeng et al., 2005).

Neural coding of noise-degraded speech
The effects of noise on the neural coding of TFS for intact and
vocoded speech are shown in Figure 2B. Mean TFS coding across
CFs was better for intact than for NBTFS speech, which was itself
better than BBTFS for SNR � �10 dB. Not surprisingly, there
was no TFS coding for PHENV or PDENV vocoders. These
trends in TFS coding across stimulus types are inconsistent with
the VCV identification scores (Fig. 2A), in particular the reversal
in relative salience of NBTFS and BBTFS speech.

Figure 2C shows mean values of �ENV for intact and vocoded
speech as a function of SNR. As expected, neural coding of ENV
was strongest (and similar) for intact and PHENV speech. How-
ever, phonemic ENV coding was also present for the three vo-
coder versions in which acoustic phonemic ENV was absent (i.e.,
“recovered” ENV coding). Consistent with results from previous
perceptual modeling (Zeng et al., 2004; Gilbert and Lorenzi,
2006; Sheft et al., 2008) and neurophysiological (Heinz and
Swaminathan, 2009) studies in quiet, recovered ENVs from
BBTFS speech were stronger than NBTFS speech for positive
SNRs; however, recovered ENVs from NBTFS and BBTFS were
similar for negative SNRs. It is interesting that, in contrast to TFS
coding, these trends in the relative salience of neural recovered
ENVs for NBTFS and BBTFS are consistent at both positive and
negative SNRs with the identification scores for TFS speech (Fig.
2A). In addition to recovered ENVs from TFS speech, there were
recovered phonemic ENVs from PDENV speech. This result sug-
gests that higher-rate acoustic ENV cues can be recovered as
lower-rate neural phonemic ENV coding, which may have con-
tributed to the perception of the PDENV speech that lacked
acoustic envelope modulations below 64 Hz (Fig. 2A).

Figure 2. The effects of noise on speech identification and neural coding are compared between intact speech and four speech vocoders that differed in their composition of acoustic ENV and TFS.
A, Mean consonant identification scores across listeners (with SEM bars) are shown as a function of signal-to-noise ratio, SNR, with chance level (1/16) indicated by the dashed line. As noise level
increased (SNR decreased), identification became more difficult in all cases; however, the relative performance across vocoders differed for positive and negative SNRs. B, C, Neural coding of TFS
(�TFS) and phonemic ENV (�ENV), where the neural cross-correlation coefficients were computed between model spike train responses to the noisy vocoded speech and the intact speech in quiet.
Mean �TFS and �ENV values across AN fibers [all eight CFs � 2.5 kHz for TFS (Johnson, 1980); all 10 CFs �8 kHz for ENV] are plotted with SEM bars. Recovered phonemic envelope coding [e.g., from
the periodicity envelope (PDENV), broadband TFS (BBTFS), and narrowband TFS (NBTFS) speech vocoders] is represented by dashed curves in C, whereas true phonemic envelope coding is
represented by solid curves. Black dashed line at �ENV � 0.1 in C represents the ENV noise floor; the TFS noise floor was negligible (�TFS � 0.01).

1750 • J. Neurosci., February 1, 2012 • 32(5):1747–1756 Swaminathan and Heinz • Neural Bases for Robust Speech Perception



Quantitative correlations between neural coding and
perception of noise-degraded speech
A regression model based only on neural ENV and TFS coding
was successful in predicting consonant identification scores for
both positive and negative SNRs. Figure 3 shows measured iden-
tification scores for intact and vocoded speech conditions plotted
against identification scores predicted from the neural metrics
�ENV and �TFS. Predicted identification scores were obtained
from the linear regression model

PC � b0 � b1�ENV � b2�TFS � b3�ENV�TFS, (3)

where PC is the mean percentage correct consonant identifica-
tion score (from Fig. 2A) normalized to a range between 0 and 1,
and �TFS and �ENV are the mean values from Figure 2B,C. To
ensure accurate evaluation of TFS contributions when ENV cues
were very small (i.e., at very low SNRs), the neural noise floor was
subtracted from the cross-correlation coefficients before fitting
the regression model. The statistical significance of the coeffi-
cients b1, b2, and b3 provides insight into the relative contribu-
tions of neural ENV, TFS, and their interaction, respectively, to
speech intelligibility.

The overall model adjusted R 2 (Adj R 2)for predicted conso-
nant identification at positive SNRs was 0.68 (Fig. 3A), which was
highly significant (p � 0.0003). The regression coefficient corre-
sponding to �ENV was found to be mainly significant (p �
0.0032), with �TFS just marginally significant (p � 0.0317) (Table
2). This result suggests that at positive SNRs, neural coding of
ENV (both true and recovered) is the most significant contribu-
tor to consonant identification, consistent with previous psy-
choacoustic studies demonstrating that ENV cues alone are
sufficient for speech perception in quiet listening conditions

(e.g., Shannon et al., 1995). The finding that neural TFS cues were
only marginally significant contrasts with recent psychoacoustic
studies that have suggested acoustic TFS alone can support
speech intelligibility in quiet (Gilbert and Lorenzi, 2006; Gilbert
et al., 2007; Sheft et al., 2008); however, these apparently con-
trasting results can be reconciled by the fact that at positive SNRs,
acoustic TFS can contribute as neural recovered ENV (Fig. 2C).

At negative SNRs (Fig. 3B), the overall fit of consonant iden-
tification from neural ENV and TFS coding was excellent (Adj
R 2 � 0.95, p � 0.0001). In contrast to positive SNRs, �ENV, �TFS,
and the interaction between �ENV and �TFS were all found to be
significant, although to varying degrees (Table 2). Consistent
with commonly held beliefs, neural TFS was found to be signifi-
cant (p � 0.0011) for degraded SNRs. In fact, the interaction
between neural TFS and ENV was found to be highly significant
(p � 0.0004), suggesting that the contribution of TFS is even
greater in the presence of ENV cues. However, neural ENV alone
was found to be the most significant contributor (p � 0.0001) to
speech intelligibility at negative SNRs. These findings suggest that
the perceptual salience of neural ENV cues for speech perception
in degraded listening conditions is equal to or even greater than
that of neural TFS cues.

Reception of phonetic features in noise
Figure 4 shows mean reception of voicing, manner, place, and
nasality as a function of SNR for intact and vocoded speech aver-
aged across all listeners. As with identification scores, the recep-
tion of phonetic features was compared across stimuli at positive
and negative SNRs to identify whether the relative contributions
of ENV and TFS cues differed between favorable and degraded
conditions. For each of the features, separate two-way ANOVAs
on positive and negative SNRs showed significant effects for fac-
tor stimulus type (p � 0.0001) and SNR (p � 0.0001), as well as
significant interactions between these two factors (p � 0.01). For
the reception of voicing (Fig. 4A), post hoc comparisons between
stimuli revealed that the reception of voicing was greatest for
intact speech, followed by PHENV and BBTFS speech (not sig-
nificantly different from one another), followed by NBTFS and
PDENV speech (not significantly different from one another). Voic-
ing reception at negative SNRs showed a different pattern across TFS
and ENV speech than for positive SNRs (particularly for SNR ��10
dB). Voicing reception was greatest for intact speech, followed by
TFS speech (BBTFS not significantly different from NBTFS speech)
and then ENV speech (PHENV not significantly different from
PDENV speech). Thus, these psychoacoustic results suggest that the
relative importance of TFS cues (compared to ENV) for voicing is
greater at negative than at positive SNRs. For the reception of man-
ner (Fig. 4B), post hoc comparisons between stimuli showed that
information transmitted for manner was greatest for intact speech,
followed by PHENV speech, which was better than BBTFS speech,
followed by PDENV speech, and finally NBTFS speech (all signifi-
cant differences, p � 0.05). In contrast to voicing, manner reception
for negative SNRs was only different for intact speech, with no sig-
nificant differences for all four vocoded speech versions, which were
all extremely low for most of the degraded conditions. The reception
of place (Fig. 4C) at positive SNRs was greatest for intact speech,
followed by PHENV and BBTFS speech (not significantly different
from one another), followed by PDENV speech and finally NBTFS
speech. Similar to manner, the reception of place for negative SNRs
was greatest for intact speech, but was not significantly different for
all other vocoded speech (although it appears that both versions of
TFS speech were slightly above both ENV speech versions). The
reception of nasality (Fig. 4D) at positive SNRs was higher for intact

Figure 3. Neural coding of phonemic envelope and fine structure predicts VCV identification
scores at both positive (A) and negative (B) SNRs. Consonant identification scores for intact and
vocoded speech are plotted against predicted identification scores from linear regression mod-
els based on �ENV and �TFS. Data from all five stimulus types (i.e., intact, BBTFS, NBTFS, PHENV,
and PDENV) are included for all SNRs. The Adj R 2 and p value are inset for each panel (regression
coefficients are shown in Table 2). The diagonal line represents a perfect one-to-one match
between measured and predicted identification scores.

Swaminathan and Heinz • Neural Bases for Robust Speech Perception J. Neurosci., February 1, 2012 • 32(5):1747–1756 • 1751



speech, followed by BBTFS speech, which
was better than NBTFS and PHENV speech
(not significantly different from one an-
other), followed by PDENV speech. The re-
ception of nasality for negative SNRs was
greatest for intact speech, followed by TFS
speech (BBTFS and NBTFS speech were not
significantly different), which was better
than PHENV speech, followed finally by
PDENV speech.

Figure 5 compares the reception of voic-
ing, manner, place, and nasality for intact,
ENV, and TFS speech in quiet and at a de-
graded listening condition (�10 dB SNR).
The comparisons that were used to delin-
eate the relative contributions of ENV and
TFS cues to phonetic feature reception
based on the present psychoacoustic data
were primarily between PHENV and
NBTFS speech, similar to previous studies
(e.g., Gilbert and Lorenzi, 2006; Sheft et al.,
2008) without factoring in the neural coding
of ENV and TFS.

For the in-quiet condition, listeners
showed good (better than 80%) reception
of all four phonetic features (voicing,
manner, place, and nasality) when us-
ing mainly ENV cues (i.e., for PHENV
speech); the reception of manner and na-
sality was slightly better than voicing and
place in these conditions. Shannon et al.
(1995) used ENV vocoded speech to sug-
gest that nearly perfect reception of manner and voicing (but
poor reception of place) are obtained when using mainly tempo-
ral ENV cues. However, their results were based on ENV vocod-
ers created using a maximum of four analysis bands with
impoverished spectral information, which may have led to poor
reception of place. Studies with 16-band ENV vocoders have
shown good reception of place with ENV cues (Friesen et al.,
2001; Başkent, 2006; Sheft et al., 2008), consistent with the pres-
ent results from the PHENV speech that was generated with 16
analysis bands. In contrast with PHENV speech in quiet, the re-
ception of voicing, manner, and place was much poorer (�50%)
for NBTFS speech (for which TFS cues are typically assumed to be
the primary cues; Gilbert and Lorenzi, 2006; Gilbert et al., 2007;

Sheft et al., 2008).Together, these perceptual results suggest that
the high reception of voicing, manner, and place from intact
speech in quiet is largely due to contributions of ENV cues with
less contribution from TFS cues. Nasality was shown to be well
transmitted for both PHENV and NBTFS speech, with reception
being slightly better for PHENV speech. This result is consistent
with previous studies (Sheft et al., 2008) that showed good recep-
tion of nasality for both ENV and TFS speech.

The relative pattern of phonetic feature reception across TFS
and ENV speech differed for positive and negative SNRs, with the
transition often occurring at �5 dB SNR (Fig. 4). Thus, Figure 5
compares feature reception across stimulus types at �10 dB SNR,
which is representative of the degraded listening condition be-
yond this transition. The reception of voicing and place at �10

Figure 4. The effects of noise on specific reception of phonetic features for intact and vocoded speech. Mean reception
of voicing (A), manner (B), place (C), and nasality (D) is plotted (with SEM bars across listeners) as a function of signal-to-
noise ratio. Reception of phonetic features was measured in terms of relative information transmitted (i.e., 1.0 represents
perfect reception).

Table 2. Predictive models of VCV identification and phonetic feature reception based on neural coding of ENV and TFS

Percent Correct Voicing Manner Place Nasality

Positive SNRs
ENV 0.87 (0.0032) 1.19 (0.0046) 1.21 (0.0018) 1.07 (0.0020) 1.18 (0.0042)
TFS 0.66 (0.0317) 1.14 (0.0120) 0.77 (0.0493) 0.85 (0.0194) 1.81 (0.0003)
E�T �0.61 (0.1634) �1.02 (0.1100) �0.63 (0.2614) �0.70 (0.1691) �1.73 (0.0091)
Adj R 2 0.68 0.65 0.75 0.73 0.73
p value (0.0003) (0.0006) (�0.0001) (0.0001) (0.0001)

Negative SNRs
ENV 0.76 (�0.0001) 0.30 (0.0028) NF 0.40 (0.0042) 0.40 (0.0560)
TFS 0.33 (0.0011) 0.19 (0.0031) NF 0.11 (0.1705) 0.82 (�0.0001)
E�T 2.65 (0.0004) 1.48 (0.0017) NF 3.84 (�0.0001) 3.24 (0.0023)
Adj R 2 0.95 0.92 NF 0.95 0.94
p value (�0.0001) (�0.0001) (�0.0001) (�0.0001)

Coefficients from the regression models (i.e., b1, b2, and b3 in Eq. 3, corresponding to �ENV, �TFS , and their interaction, E�T) are shown with their p values in parentheses, along with the overall model goodness of fit (Adj R 2) for overall
percentage correct (Fig. 3) and the reception of individual phonetic features (voicing, manner, place, and nasality; Fig. 6). Statistically significant coefficients ( p � 0.01) are underlined and bold; marginally significant coefficients (0.01 �
p � 0.05) are underlined. Top and bottom sections represent positive (Q, 10, 5, 0 dB) and negative (�5, �10, �15, �20 dB) SNRs, respectively. NF, Not fit (e.g., reception of manner was too poor to fit for negative SNRs).
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dB SNR was better for NBTFS speech than for PHENV speech,
with essentially no reception of these features for PHENV speech.
The reception of manner was absent for both PHENV and
NBTFS speech. In contrast, the reception of nasality was highest
among all features for both NBTFS and PHENV speech and was
better for NBTFS speech than for PHENV speech. These psy-
choacoustic results suggest that the reception of voicing, place,
and nasality in degraded listening conditions is primarily due to
the contribution of TFS cues, with minimal if any contribution
from ENV cues.

Quantitative correlations between neural coding and
reception of phonetic features in noise
The regression model (Eq. 3) also successfully predicted the re-
ception of individual phonetic features (e.g., voicing, manner,
place, and nasality; see Fig. 6) based only on the neural metrics
�ENV and �TFS (Fig. 2B,C). For the reception of voicing, manner,
and place at positive SNRs (Fig. 6A–C), �ENV was found to be
mainly significant, with �TFS only marginally significant (Table
2). These results suggest that the reception of these three phonetic
features at positive SNRs depends most significantly on the neu-
ral coding of ENV alone and much less so on neural TFS alone.
This finding is consistent with previous psychoacoustic studies
suggesting that listeners can use ENV cues for accurate reception
of manner (Shannon et al., 1995; Gilbert and Lorenzi, 2006),
place [when ENV speech is created with a large number of anal-
ysis bands (Fu et al., 1998; Sheft et al., 2008)], and voicing (Shan-
non et al., 1995). However, the present result that neural ENV is
the most significant contributor to the reception of place and
voicing is inconsistent with suggestions based on TFS speech that
listeners can use TFS alone to achieve accurate reception of place
and voicing in quiet (Gilbert and Lorenzi, 2006). In contrast to
voicing, manner, and place, the reception of nasality at positive
SNRs (Fig. 6D) was best fit by a regression model with significant
coefficients for �ENV, �TFS, and their interaction, E�T, although
only the TFS term was highly significant (p � 0.001, Table 2).
These results suggest that the reception of nasality at positive
SNRs is primarily determined by the neural coding of TFS (and to
a lesser degree by its interaction with ENV or by ENV alone). This
finding is consistent with previous results suggesting listeners can
use TFS cues for nasality reception in quiet; however, it was also
suggested that ENV cues can be used (Sheft et al., 2008). The

present results suggest that neural ENV can contribute to nasality
at positive SNRs, but mainly as a secondary cue to neural TFS.

Regression models fit to the data for negative SNRs were
quite accurate (Fig. 6 E–G, Table 2), and suggest that the rela-
tive salience of ENV and TFS cues for phonetic feature recep-
tion was different between favorable and degraded listening
conditions. For voicing (Fig. 6 E), �ENV, �TFS, and their inter-
action, E�T, were all found to be significant (Table 2). This
suggests that the reception of voicing at degraded SNRs bene-
fits from both neural ENV and TFS alone, but also from having
neural ENV and TFS together (as indicated by the positive and
significant coefficient for the E�T term). At negative SNRs,
the reception of manner was near the noise floor for most
conditions (Fig. 4 B) and hence was not fit with the regression
model. For place at negative SNRs (Fig. 6 F), both �ENV and the
interaction between �ENV and �TFS were found to be signifi-
cant, with the E�T term being extremely significant (Table 2).
This result suggests that the reception of place in degraded
listening conditions is most dependent on the interaction be-
tween ENV and TFS (i.e., both cues being available together),
but that neural ENV alone is also a significant contributor;
TFS alone was not a significant contributor. Similar to positive
SNRs, the regression results (Fig. 6G, Table 2) suggest that the
reception of nasality at negative SNRs is primarily determined
by the neural coding of TFS alone; the neural coding of ENV
does contribute at negative SNRs, but only through an inter-
action with neural TFS and not by itself.

Integrating the present data with previous studies, it is clear
that the apparent contributions of ENV and TFS to phonetic
feature reception differ between acoustical, psychoacoustical,
and psychophysiological analyses based on linking neural coding
directly to perceptual results with identical stimuli. In a seminal
study describing the acoustic structure of speech based on tem-
poral information, Rosen (1992) suggested that ENV provided
mainly phonetic cues to manner, whereas TFS contributed
primarily to place and, to a smaller extent, voicing. Subse-
quent detailed psychoacoustic studies with ENV and TFS vo-
coded speech in quiet (e.g., Shannon et al., 1995; Sheft et al.,
2008; Ardoint and Lorenzi, 2010) were largely consistent (with
a few discrepancies) with Rosen’s acoustic analyses, suggesting
important and complementary contributions for both ENV
and TFS for speech perception under favorable listening con-
ditions. Previous psychoacoustical support for the importance of
TFS for listening in noise has been mainly limited to studies
comparing the perception of intact and ENV speech in noise (e.g.,
Qin and Oxenham, 2003). Psychoacoustic analyses of the present
vocoder data, extended to include TFS speech in noise, also sug-
gested that the reception of all phonetic features in degraded
listening conditions is primarily due to the contribution of TFS
cues, with minimal contribution from ENV cues (Figs. 4 and 5).
In contrast, the present psychophysiological analyses (Fig. 6, Ta-
ble 2) demonstrate that consideration of cochlear signal process-
ing suggests the following: (1) a primary contribution of ENV
coding (as both true and recovered ENV) for all features (except
nasality) at positive SNRs; (2) an equal or greater contribution of
neural ENV alone compared to neural TFS alone at negative
SNRs for all features (except nasality); (3) a significant interac-
tion between neural ENV and TFS at negative SNRs suggesting
that the contribution of neural TFS is greater in the presence of
neural ENV; and (4) a primary role of neural TFS coding alone
for nasality.
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Figure 5. Specific reception of voicing, place, manner, and nasality in quiet (filled black
symbols) and degraded listening condition (�10 dB SNR; open red symbols) for intact, 16-band
phonemic envelope speech (PHENV), broadband TFS speech (BBTFS), narrowband TFS speech
(NBTFS), and periodicity envelope speech (PDENV).
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Discussion
Implications for robust speech perception
Evidence for the importance of TFS and ENV cues for speech
perception in quiet (Shannon et al., 1995; Gilbert and Lorenzi,
2006; Sheft et al., 2008) and in noise (Qin and Oxenham, 2003;
Nie et al., 2005; Zeng et al., 2005; Hopkins and Moore, 2009) has
come primarily from psychoacoustic studies. Thus, these percep-
tual results should be interpreted mainly in terms of the role of
acoustic ENV and TFS cues, and with caution in translating these
results to conclusions about neural ENV and TFS. For complex
stimuli, neural ENV and TFS at the output of the cochlea may
differ from acoustic ENV and TFS at the input to the ear
(Zwicker, 1962; Saberi and Hafter, 1995; Ghitza, 2001). For ex-
ample, acoustic TFS can produce useful temporal coding in the
AN in two ways: (1) responses that are synchronized to the stim-
ulus fine structure itself (i.e., “true TFS”); and (2) responses that
are synchronized to stimulus-related ENV (i.e., “recovered enve-
lopes”) (see Heinz and Swaminathan, 2009, their Fig. 10). Hence,
interpretation of the perceptual salience of acoustic ENV and TFS
must carefully consider the physiological transformations that
these cues can undergo through cochlear filtering.

A more complete understanding of the relative roles of ENV
and TFS for speech perception can be achieved only by taking a
synergistic approach of quantifying the salience of ENV and TFS
in both the perceptual and neural domains, as employed here.
Relating neural coding to measured speech identification dem-
onstrated that: (1) neural ENV (comprising both acoustic ENV
coded as neural ENV and acoustic TFS coded as recovered neural
ENV) is a primary cue for speech perception, even in degraded
listening conditions; and (2) neural TFS does contribute in de-
graded listening conditions (less by itself and more through an
interaction with ENV), but never as the primary cue (except for
nasality). The present finding that the perceptual salience of neu-
ral TFS is less than previously thought arises due to consideration
of cochlear signal processing that transforms TFS and ENV cod-
ing in normal hearing ears and is consistent with the general
conclusions of several recent psychoacoustic studies (Oxenham
and Simonson, 2009; Bernstein and Brungart, 2011).

An important consideration for the present conclusions is that
they are based on relating speech perception measured from hu-
man listeners to predicted neural coding from a computational
AN model that was validated against physiological data from
animal studies. One issue that could affect the present neural
predictions is the potential difference in the degree of ENV recov-
ery between humans and cats. Based on suggestions that humans
have sharper tuning than cats (Shera et al., 2002, 2010; Joris et al.,
2011; however, also see Ruggero and Temchin, 2005), it has been
predicted that ENV recovery is greater in humans than in cats
(Ibrahim and Bruce, 2010). Thus, the present results may actually
provide a conservative estimate of the contribution of ENV re-
covery to speech perception in noise.

Implications for hearing aids and cochlear implants
Any perceptual benefit of acoustic TFS that arises from recovered
ENVs in normal hearing listeners (sharp cochlear tuning) may
not be restored with auditory prostheses designed to enhance TFS
coding in listeners with sensorineural hearing loss (SNHL; broad-
ened cochlear tuning) or in CI listeners (no cochlear tuning)
because their ability to recover ENV cues is severely degraded or
completely absent. The theoretical framework used in the present
study (also see Heinz and Swaminathan, 2009) suggests that it
may be possible to overcome this apparent limitation by focusing
hearing aid and CI signal processing strategies on the restoration
of neural ENV cues, rather than acoustic TFS cues.

Listeners with SNHL have particular difficulty understanding
speech in noise and have been shown to have a correlated deficit
in their ability to use acoustic TFS cues (Lorenzi et al., 2006). The
straightforward interpretation of this perceptual TFS deficit is
that it arises due to a degradation in the fundamental ability of
AN fibers to phase lock to TFS; however, neurophysiological re-
cordings have demonstrated that the strength of phase locking is
not degraded following noise-induced hearing loss (Kale and
Heinz, 2010). Thus, efforts to develop hearing aids to enhance the
neural coding of TFS directly would appear to be misguided.
Although other factors may contribute [e.g., degraded spatiotem-
poral cues (Heinz et al., 2010; Kale, 2011)], the present data sug-

Figure 6. Neural coding of phonemic envelope and fine structure predicts (Eq. 3, Table 2) measured reception of phonetic features at positive (A–D) and negative (E–G) SNRs. Measured
information transmission from psychoacoustical data (from Fig. 4) is plotted against predicted information transmission from neural coding of phonemic envelope and fine structure (�ENV and �TFS

from Fig. 2 B, C) for voicing, manner, place, and nasality. At negative SNRs the reception of manner was negligible for most of the vocoder conditions, and thus the regression model was not fit. The
adjusted R 2 and p value of the regression models are inset for each panel. The diagonal lines represent a perfect one-to-one match between measured and predicted reception scores.
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gest that the loss of recovered ENVs could also contribute to the
reduced ability to use acoustic TFS cues following SNHL and is
expected to occur due to the broadened cochlear tuning and loss
of tonotopicity often observed in impaired AN responses (Liber-
man and Dodds, 1984; Miller et al., 1997; Heinz and Swamina-
than, 2009; Kale, 2011). The fact that both perceptual and
neurophysiological studies suggest that envelope coding in quiet
is not degraded following SNHL (Lorenzi et al., 2006; Kale and
Heinz, 2010) provides promise for hearing aid strategies focused
on restoring neural envelopes, rather than enhancing acoustic
TFS, to improve speech perception in noise.

The implications of the present results for CIs can be under-
stood by considering each of the regression model terms (Eq. 3)
with respect to current CI technology. The present finding that
neural ENV was a primary contributor to speech perception in
both favorable and degraded listening conditions is extremely
promising, because CIs are very successful at providing ENV in-
formation directly to the AN; however, an important distinction
is that CIs currently provide acoustic ENV rather than neural
ENV. The present results suggest that CI speech perception in
noise could be improved by incorporating a physiologically based
AN model that captures the non-linearities associated with
healthy cochlear signal processing (e.g., Zilany and Bruce, 2007)
as a front end in CI speech processors so that acoustic ENV coded
as neural ENV and acoustic TFS recoded as (recovered) neural
ENV can be transmitted. The present finding that neural TFS
alone was rarely the primary cue for speech perception, even in
degraded listening conditions, is promising in the sense that cur-
rent CI technology is unable to provide neural TFS. Furthermore,
if neural TFS alone could someday be provided, the present re-
sults suggest that speech perception would likely be no better
than that for a CI that provided neural ENV alone, at least in
steady-state noise. A key empirical question would then be
whether neural ENV alone is good enough, given the vast redun-
dancies of speech and the fact that robust speech perception in
noise likely also depends on across-channel ENV coding, not only
within-channel ENV coding (Crouzet and Ainsworth, 2001;
Swaminathan and Heinz, 2011). Of course, it is likely that some
improvements in speech perception in noise (and in sound local-
ization) could be achieved by adding TFS. However, the highly
significant interaction term (E�T) for overall speech perception
in noisy conditions (Table 2) implies that if TFS is able to be
provided in future technology (e.g., Middlebrooks and Snyder,
2010), an important design constraint must be that TFS be pro-
vided in a way that does not disrupt neural ENV coding.

Implications for neural coding: are recovered envelopes a
vocoder artifact or robust biological signal processing?
Recovered ENV from acoustic TFS has mainly been interpreted
as an outcome of signal processing “artifacts” from vocoder im-
plementations (Zeng et al., 2004; Gilbert and Lorenzi, 2006; Sheft
et al., 2008). However, it is possible that the ability to extract ENV
from acoustic TFS in the speech waveform represents a useful
form of robust biological signal processing (e.g., especially for
noise-degraded speech) that is available to normal hearing listen-
ers with narrow cochlear filters, but not to listeners with SNHL or
CI patients. It has been well documented (theoretically and per-
ceptually) that FM provides an SNR improvement over AM (e.g.,
Crosby, 1937; Zeng et al., 2005). It could be that the auditory
system is designed around this principle such that TFS is able to
faithfully carry/transmit neural ENV by aiding in its recovery at
peripheral and/or higher auditory stages when true ENV is de-
graded by noise. Moreover, it has been shown that ENV coding is

enhanced at central stages compared to the periphery (Joris,
2003; Agapiou and McAlpine, 2008), suggesting the possibility of
a central hierarchy of ENV recovery from TFS starting at the
cochlea.
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