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The characteristic oscillations of the sleeping brain, spindles and slow waves, show trait-like, within-subject stability and a remarkable
interindividual variability that correlates with functionally relevant measures such as memory performance and intelligence. Yet, the
mechanisms underlying these interindividual differences are largely unknown. Spindles and slow waves are affected by the recent history
of learning and neuronal activation, indicating sensitivity to changes in synaptic strength and thus to the connectivity of the neuronal
network. Because the structural backbone of this network is formed by white matter tracts, we hypothesized that individual differences in
spindles and slow waves depend on the white matter microstructure across a distributed network. We recorded both diffusion-weighted
magnetic resonance images and whole-night, high-density electroencephalography and investigated whether individual differences in
sleep spindle and slow wave parameters were associated with diffusion tensor imaging metrics; white matter fractional anisotropy and
axial diffusivity were quantified using tract-based spatial statistics. Individuals with higher spindle power had higher axial diffusivity in
the forceps minor, the anterior corpus callosum, fascicles in the temporal lobe, and the tracts within and surrounding the thalamus.
Individuals with a steeper rising slope of the slow wave had higher axial diffusivity in the temporal fascicle and frontally located white
matter tracts (forceps minor, anterior corpus callosum). These results indicate that the profiles of sleep oscillations reflect not only the
dynamics of the neuronal network at the synaptic level, but also the localized microstructural properties of its structural backbone, the
white matter tracts.

Introduction
People differ markedly with respect to their habitual sleep dura-
tion and timing. Electroencephalographic (EEG) recordings
show large interindividual differences in sleep oscillation charac-
teristics, such as slow waves and spindles, which, at the same time,
have remarkable trait-like stability within an individual across
nights (Kerkhof, 1991; Finelli et al., 2001; De Gennaro et al., 2005;
Buckelmüller et al., 2006; Gander et al., 2010; Botella-Soler et al.,
2012). The topography of slow-wave expression over the scalp is
unique to each person (Rusterholz and Achermann, 2011). Fur-
thermore, subject-specific slow-wave expression profiles have
been associated with functionally relevant attributes (Dijk, 2011)
such as chronotype (Kerkhof, 1991), sleep maintenance (Dijk,
2006), and the risk of schizophrenia (Sarkar et al., 2010). Simi-

larly, sleep spindles have trait-like properties: the power profile in
the spindle frequency range is remarkably constant over different
nights within a person (Werth et al., 1997; De Gennaro et al.,
2005, 2008) and indeed shows high heritability (De Gennaro et
al., 2008). Spindle characteristics are likewise associated with
meaningful measures, such as learning abilities (Schabus et al.,
2008), cognitive performance (Bódizs et al., 2005), intelligence
(Fogel and Smith, 2011), schizophrenia severity (Ferrarelli et al.,
2007), and tolerance to environmental noise (Dang-Vu et al.,
2010a). Despite this literature, little is known about the brain
structural and functional mechanisms that cause the genetically
specified interindividual differences and determine the proper-
ties of slow waves and spindles.

Slow waves and spindles are affected by the recent history of
induced neuronal activation and synaptic plasticity (for review,
Tononi and Cirelli, 2006; Diekelmann and Born, 2010; Poe et al.,
2010; Fogel and Smith, 2011). Because learning-induced plastic-
ity mostly depends on synaptic changes, the profile of slow waves
and spindles likely reflects synaptic strength (Esser et al., 2007;
Vyazovskiy et al., 2007; Vyazovskiy et al., 2008; Vyazovskiy et al.,
2009) and consequently connectivity dynamics of the neuronal
network. Crucially, whereas synapses comprise the endpoints of
the network, its structural backbone is formed by long-range
myelinated white matter tracts. Therefore, we hypothesized that
slow waves and spindles might not only depend on synaptic
strength, but also on the structural properties of the white matter
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tracts. Indirect support for this hypothesis is provided by Buch-
mann et al. (2011), who applied magnetic resonance imaging
(MRI) and voxel-based morphometry to demonstrate a correla-
tion between corpus callosum volume and slow-wave power over
10 min of sleep. As indicated by Buchmann et al. (2011), more
definite conclusions would require more sophisticated imaging
methods, such as diffusion tensor imaging (DTI) (Jones, 2010).

We, therefore, used DTI to investigate whether individual dif-
ferences in the whole-brain white matter microstructure might
contribute to the interindividual variability in slow wave and
spindle characteristics as assessed by high-density sleep EEG. DTI
allows for a detailed quantification of white matter properties,
such as fractional anisotropy (FA), which is taken as a marker of
white matter integrity (Beaulieu, 2010), and axial diffusivity
(AD), which reflects the strength of diffusion along the axonal
direction (Budde et al., 2007). Using this sensitive methodology,
we here demonstrate, for the first time, partially overlapping and
partially specific white matter networks associated with the
subject-specific profiles of slow waves and spindles.

Materials and Methods
Sleep recordings. Fifteen healthy males (mean age 25.4 � 4.8 SD) with no
history of neurological disorders took part in this study after given writ-
ten informed consent according to the Declaration of Helsinki. The pro-
tocol of this study was approved by the medical ethical review board of
the VU University Medical Center (Amsterdam, The Netherlands). Par-
ticipants followed a regular sleep schedule in the week preceding the
recording, as verified from actigraphy and sleep logs, and were requested
to abstain from alcohol and caffeine for 24 h before the recording session.

Whole-night 256-channel electroencephalography (Electrical Geode-
sics) was recorded referenced to the Cz electrode, high pass filtered at
0.01 Hz, low pass filtered at 200 Hz with a hardware Bessel filter, and
digitized at 500 Hz. Using the FAST toolbox (Leclercq et al., 2011), two
independent raters scored sleep according to standard criteria (Iber et al.,
2007) in 30 s epochs. One participant was excluded because he did not
reach sleep stage N3 (non-REM stage 3, i.e., deep sleep). Segments con-
taining artifacts were visually detected and excluded from analysis. For
each epoch, noisy channels were automatically excluded when the signals
exceeded the absolute thresholds of 1000 �V or its variance was above
10000 �V 2. Slow wave and spindle detection was conducted after re-
referencing to the averaged mastoid channels.

Slow wave detection. Slow waves were automatically detected using
methods described previously (Massimini et al., 2004; Dang-Vu et al.,
2008) with custom code written in Matlab 7.13 (MathWorks). EEG po-
tentials were averaged over four nonoverlapping areas of the scalp (on
frontal, posterior, and lateral electrodes as in Massimini et al., 2004) and
bandpass filtered between 0.2 and 4 Hz (Fig. 1A). The following criteria
were applied independently to each local average to identify slow waves:
(1) a negative zero crossing and a subsequent positive zero crossing sep-
arated by 0.2–1 s; (2) a negative peak between the two zero crossings with
voltage less than �60 �V; and (3) a peak-to-peak difference between the
negative peak and the subsequent positive peak in the 1 s period after
the negative peak of �75 �V. The peak-to-peak threshold was based on
the prescribed value for the detection of slow waves in the consensus
sleep scoring manuals (Rechtschaffen and Kales, 1968; Iber et al., 2007).

For each slow wave, we calculated (1) the maximum amplitude at
the negative peak and (2) the slope between the negative peak and the
following upward zero-crossing (Fig. 1B). Furthermore, we calcu-
lated slow wave density as the number of slow waves per minute. For

Figure 1. Detection of slow-wave and spindle parameters. A, The black line shows a 20 s segment of sleep EEG referenced to the averaged mastoids. After 0.2– 4 Hz bandpass filtering (purple
line), a slow wave was detected when the amplitude of the negative peak was less than �60 �V (green line), the duration between two zero-crossings was between 0.2 and 1 s, and the negative
peak-to-positive peak difference was �75 �V. B, Three parameters were used to describe slow-wave activity: (1) slow-wave density, which is the number of slow waves in a minute; (2) the
amplitude of the negative peak (blue line); and (3) the steepness of the rising slope, which is the amplitude of the negative peak divided by the interval between the negative peak and the following
zero crossing (red line). C, To quantify spindles, the original signal shown in A was bandpass filtered between 11 and 16 Hz (blue line) and Hilbert-transformed into its envelope (purple line). A spindle
was detected when the envelope of the band-passed signal was higher than the absolute threshold of 3 �V (green line) for 0.5–2 s. D, Two parameters were used to describe spindles: (1) spindle
density, which is the number of spindles per minute; and (2) spindle power, which is the area outlined by the envelope (dark blue).
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each participant, these values were then averaged separately for sleep
stages N2 and N3.

Spindle detection. Spindles were automatically detected using an adap-
tation of the methods described previously (Mölle et al., 2002; Ferrarelli
et al., 2007). The raw EEG signal was averaged over the same four non-
overlapping areas of the scalp as above, bandpass filtered between 11 and
16 Hz, and transformed into the envelope of the Hilbert transform (Fig.
1C,D). A spindle was detected when the signal envelope remained above
the threshold of 3 �V for a duration of 0.5–2 s. These two absolute
criteria allow for a constant detection threshold that is consistent
across subjects and simplifies the interpretation of between-subject
variability.

For each spindle we calculated the spindle power, which is defined as
the area outlined by the envelope above the threshold (Fig. 1D). Further-
more, we calculated spindle density as the number of spindles per min-
ute. For each participant, these values were then averaged separately for
sleep stages N2 and N3.

Diffusion tensor imaging. Diffusion properties in the white matter were
assessed using DTI measures of fractional anisotropy and axial diffusivity
from diffusion-weighted images. One image at b � 0 s/mm 2 and 64

diffusion-weighted images at b � 1000 s/mm2
were acquired on a Philips Achieva 3T MRI
scanner (Philips Medical Systems) with the fol-
lowing parameters: TR/TE � 8188/60 ms, flip
angle � 90°, 224 � 224 � 120 mm FOV, 2 �
2 � 2 mm voxel size.

The FMRIB Software Library (FSL) data
analysis suite [FSL 4.1.9 (Smith et al., 2004);
http://www.fmrib.ox.ac.uk/fsl/] was used for
correction of eddy current distortions and mo-
tion artifacts and for the computation of FA
and AD. Single-voxel statistical analysis of the
FA and AD maps was carried out using tract-
based spatial statistics (TBSS) (Smith et al.,
2006). Briefly, individual maps are warped into
the MNI152 template space using nonlinear
registration. Individual maps are averaged
across subjects, and voxels with FA � 0.2 are
included in the analysis, resulting in the selec-
tion of only major fiber bundles. Individual
DTI maps are then projected onto this skeleton
of putative white matter tracts.

Group statistics were computed separately
for FA and AD on the slow-wave and spindle
parameters. The design matrix included a
column of ones to capture the intercept and a
demeaned column for the sleep parameter,
the latter representing the contrast of inter-
est. In this way, the single-subject DTI values
included in the white matter skeleton were
correlated with the slow-wave and spindle
parameters. Statistical tests were carried out
using the FSL tool randomise, with a
threshold-free cluster-enhanced correction
for multiple comparisons [TFCE correction
(Smith and Nichols, 2009)] using 10,000
permutations. The p values in the Tables re-
fer to the most significant voxel in that par-
ticular contrast. The correlation maps with
the slope of the slow wave in N3 and the
spindle power in N2 are plotted in Figures 2
and 3, respectively. These figures show the
significant voxels thresholded at (corrected)
p � 0.05 after using tbss_fill overlaid on the
white matter skeleton in gray color and the
study-specific MRI template. To identify
which electrodes were the most informative
in determining the slow-wave slope, we cal-
culated at each significant voxel which group
of electrode had the highest correlation. The

four regions of interest are then color-coded in Figure 2.
The Matlab/FSL script for the complete analysis can be requested from

the corresponding author.

Results
Association between properties of slow waves and white
matter diffusion
Slow waves were automatically detected and their properties
quantified by three parameters (Fig. 1A,B): (1) the mean ampli-
tude of the negative peak, (2) the mean rising slope (Riedner et
al., 2007), and (3) the slow-wave density (the number of slow
waves per minute). The values for these parameters were calcu-
lated separately for sleep stages N2 and N3 (Iber et al., 2007) and
are shown in Table 1.

The mean steepness of the rising slope of slow waves in stage
N3 sleep was significantly positively correlated with AD, but not
FA, in several parts of the structural skeleton of major white
matter bundles (corrected p value � 0.006 at the peak voxel, see

Figure 2. White matter tracts where axial diffusivity was higher in individuals with a steeper slow-wave slope. The plot shows
the voxels with a positive significant correlation (thresholded at p � 0.05 after correction for multiple comparisons) superimposed
on the white matter skeleton (light gray) and on the study-specific MRI template (dark gray) following the neurological convention
(right is right). The average slope was computed from the slow waves detected in all the four regions of interest, while the color
coding indicates which region of interest was the most correlated with the AD at each voxel. The white matter tracts in which AD
was associated with the slope steepness are concentrated in the frontal white matter, including the forceps minor, the genu and
anterior part of the corpus callosum (G CC and aCC, respectively). These frontal pathways connect to the superior longitudinal
fascicle (sLF) and the temporal branch of the inferior fronto-occipital fascicle (iFOF).
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Fig. 2). A steeper rising slope was associated with higher AD in the
forceps minor and neighboring white matter structures, includ-
ing part of the uncinate fascicle, the genu and anterior part of the
corpus callosum, the right superior longitudinal fascicle, and the
temporal branch of the right inferior fronto-occipital fascicle.
These areas comprise a mostly frontal interconnected network;
major bundles in the parietal and occipital areas were below the
significance threshold. To investigate which electrodes were the
most informative in estimating the slow-wave slope, we calcu-
lated, at each significant voxel, the correlation between the slope
and axial diffusivity for each of the four regions of interest and
then selected the region of interest showing the highest correla-
tion. The slow-wave slopes estimated from anterior electrodes
showed the highest correlation with axial diffusivity, especially in
the anterior white matter bundles (color-coded in Fig. 2). Neither
AD nor FA correlated significantly with slow-wave density or the
mean negative peak amplitude. No correlations were found
for stage N2 sleep slow-wave parameters (details are reported
in Table 1).

Association between properties of spindles and white
matter diffusion
Spindles were automatically detected and their properties quan-
tified by two parameters (Fig. 1 C,D): (1) the mean spindle power
and (2) the mean spindle density (the mean number of spindles
per minute). These parameters were calculated separately for
sleep stages N2 and N3 and are shown in Table 2.

Individuals with a higher spindle power during sleep stage N2
had a higher axial diffusivity in the forceps minor, the genu and
anterior part of the corpus callosum, the temporal branch of the
inferior longitudinal fascicles, and the areas surrounding and in-
trinsic to the thalamus, including parts of the internal and exter-
nal capsule (corrected p value � 0.02 at the peak voxel; Fig. 3).
Higher spindle density, calculated during N2 and N3, positively
correlated with higher AD in specific parts of the white matter

tracts in the left middle temporal lobe (corrected p value � 0.04 at
the peak voxel for both contrasts, details are reported in Table 2).

Discussion
Individual differences in the steepness of the rising slope of the
slow wave during stage N3 sleep and in spindle power during
stage N2 sleep are associated with axial diffusivity in partially
overlapping major frontal white matter tracts that include the
forceps minor, parts of the uncinate fascicle, and the anterior
corpus callosum. Connected to this white matter backbone are
the temporal branch of the inferior fronto-occipital fascicle and
parts of the superior longitudinal fascicle, tracts in which AD was
correlated with the profiles of both slow waves and spindles. In
addition, participants with higher spindle power had higher axial
diffusivity in white matter tracts within and surrounding the thal-
amus, including the internal and external capsule. Of note is that
the slow-wave profile is mainly associated with frontal white mat-
ter, whereas the spindle profile is associated with white matter in
a more extensive network that also includes subcortical regions.
This difference is in line with the known anatomical and cellular
substrate of both types of oscillatory events and with evidence
from intracortical and scalp EEG, fMRI, and MRI studies (Scha-
bus et al., 2007; Dang-Vu et al., 2008; Dang-Vu et al., 2010b).
These results indicate that specific parameters of slow-wave and
spindle activity do not only depend on the dynamics of the con-
nectivity at the synaptic level (Vyazovskiy et al., 2007; Vyazovskiy
et al., 2008; Vyazovskiy et al., 2009), but also reflect the more
stable network properties that are determined by the structural
backbone of white matter tracts.

The correlation between the slow-wave slope and AD in the
superior longitudinal fascicle and the temporal fascicle was more
pronounced in the right than in the left hemisphere. It is unclear
whether this lateralization is due to an underlying anatomical
difference between hemispheres, such as the unilateral increase in
diffusivity in the arcuate fasciculus for language-related skills and
handedness (Glasser and Rilling, 2008; Lebel and Beaulieu, 2009;
Propper et al., 2010), or to the predominance of slow-wave activ-
ity on the right hemisphere (Goldstein et al., 1972; Roth et al.,
1999; Sekimoto et al., 2000). This latter fact or local magnetic field
in homogeneities might reduce the signal-to-noise ratio, thereby
weakening the correlation in the left hemisphere. In fact, a more
liberal threshold reveals significant correlation in the homolo-
gous regions in the left hemisphere.

Role of axial diffusivity in slow-wave synchronization
and propagation
Axial diffusivity is considered a marker of axonal integrity
(Budde et al., 2007; Budde and Song, 2010). The present findings
indicate that axonal integrity in frontal parts of the white matter
bundles determines the steepness of the slow-wave slope. Slope
steepness is thought to reflect the extent to which the neuronal
network synchronizes activity during the transition from the
downstate of hyperpolarization and neuronal silence to the up-
state of depolarization and discharge of action potentials (Ste-
riade et al., 1993; Vyazovskiy et al., 2007). Taken together, these
observations suggest that higher AD in selected brain regions
might contribute to the synchronization of the slow wave, result-
ing in a steeper slope.

The effect of axonal integrity on slow-wave slope can be
thought of in terms of known biophysical processes. We propose
that while the intrinsic bistability of membrane potentials during
slow-wave sleep eventually leads to some spontaneous isolated
firing (Destexhe et al., 1999; Chauvette et al., 2010), white matter

Table 1. Summary of the parameters for the slow waves, including mean and
standard deviation

Stage Parameter Mean SD PFA PAD

N2 Slow wave density (SW per minute) 2.61 �0.56 0.07 0.11
Mean negative peak (�V) �92.24 �5.96 0.26 0.68
Mean rising slope (�V/s) 324.41 �31.04 0.59 0.13

N3 Slow wave density (SW per minute) 11.26 �3.77 0.27 0.11
Mean negative peak (�V) �87.52 �4.23 0.56 0.93
Mean rising slope (�V/s) 357.84 �28.05 0.14 0.006

The rightmost columns indicate the corrected p value for the most significant voxel of the correlation between the
slow wave parameter (row) and the DTI parameter (column). A significant correlation between AD and the rising
slope of slow waves during sleep stage N3 was observed, indicating that axial diffusivity was higher in individuals
with a steeper slow wave slope (see Fig. 2).

Table 2. Summary of the parameters for the spindles, including mean and
standard deviation

Stage Parameter Mean SD PFA PAD

N2 Spindle density (spindles per minute) 9.09 �2.84 0.33 0.04
Mean spindle power (�V) 4.22 �0.55 0.50 0.02

N3 Spindle density (spindles per minute) 5.63 �3.29 0.31 0.04
Mean spindle power (�V) 3.54 �0.50 0.58 0.11

The rightmost columns indicate the corrected p value for the most significant voxel of the correlation between the
spindle parameter (row) and the DTI parameter (column). A significant correlation between AD and spindle power
during sleep stage N2 was observed, indicating that axial diffusivity was higher in individuals with a stronger spindle
power (Fig. 3). Furthermore, axial diffusivity was higher in individuals with a higher spindle density in sleep stages
N2 and N3 in the temporal branch of the right inferior fronto-occipital fascicle (Fig. 3).
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tracts with higher axial diffusivity will promote a more synchro-
nized switching into the upstate over multiple neurons, as re-
flected in the steepness of the slow-wave slope. Crucially,
according to our interpretation, strong axonal integrity of the
bundles that connect prefrontal and limbic regions will catalyze
the probability that sparse neuronal firing can ignite a widespread
avalanche of slow-wave activity across the neuronal network.

White matter tracts of particular importance for the expres-
sion of slow waves comprise, among others, the forceps minor,
the genu of the corpus callosum, and the uncinate fascicle. These
bundles are ideal candidates to support the spreading of slow
waves over widespread cortical areas across hemispheres (Fig. 2).
Once a slow wave has been triggered in frontal regions, activity
spreads toward the posterior part of the cortex along the cingulate
cortex and the longitudinal fascicles (Botella-Soler et al., 2012).
Conduction over the corpus callosum might be involved in the
enhanced interhemispheric connectivity observed during sleep
(Nir et al., 2008).

This interpretation is supported by intracranial and high-
density EEG experiments that have demonstrated that slow waves
are highly dynamic and are not confined to any brain region but

travel over the cortex (Massimini et al.,
2004; Botella-Soler et al., 2012). Although
they can emerge in any part of the cortex,
they are more likely to first appear in the
anterior cingulate cortex and insula and
then propagate along the anteroposterior
axis over medial cortical areas (Murphy et
al., 2009). Activity in the medial prefron-
tal cortex during slow waves (Dang-Vu et
al., 2008) and spindles (Schabus et al.,
2007) has been described using combined
EEG-fMRI. Furthermore, the volume of
the corpus callosum, measured with MRI,
is associated with an individual’s power
spectral density in slow-wave frequency
band (Buchmann et al., 2011). By em-
ploying DTI, not only do we confirm the
association between slow waves and fron-
tal regions, such as the prefrontal and cin-
gulate cortex, but we also demonstrate
that the profiles of slow waves are specifi-
cally affected by the microstructural prop-
erties of the main interregional white
matter bundles.

Role of axial diffusivity in
spindle profiles
A similar mechanism might contribute to
the enhanced spindle power in individuals
with high AD in the areas surrounding
and within the thalamus and the internal
and external capsule, including the co-
rona radiata. These areas are thought to be
involved in driving spindles by way of
projections to and from the cortex (Ste-
riade et al., 1985; Steriade, 2003a, Steriade,
2003b). Corticothalamic and thalamocor-
tical fibers run through the superior and
anterior thalamic peduncles that are lo-
cated on the medial part of the internal
capsule and in the anterior limb of the in-
ternal capsule, respectively. Our findings

suggest that a stronger AD in the thalamocortical loop that sup-
ports the generation of spindles (Steriade et al., 1985; Steriade,
2003b) could enhance their power. Similarly, high AD in the
frontal white matter network including the corpus callosum may
facilitate interhemispheric synchronization (Achermann and
Borbély, 1998), which is of functional relevance given its associ-
ation with memory performance (Cantero et al., 2002; Mölle et
al., 2004).

Temporal lobe
Expression profiles of slow waves and spindles consistently cor-
related with axial diffusivity not only in frontal white matter, but
also in two major white matter tracts of the temporal lobe: the
temporal branch of the inferior fronto-occipital fascicle and the
inferior longitudinal fascicle. The association of AD in the tem-
poral lobe and spindle activity was particularly strong, as judged
from the spindle power correlation in both hemispheres and the
spindle density correlation during both stages N2 and N3 sleep.
Whereas spindles are generated in thalamocortical networks
(Steriade, 2003b), their enhanced expression in individuals with
higher AD in the inferior fronto-occipital fascicule and the infe-

Figure 3. White matter tracts where axial diffusivity was higher in individuals with a stronger spindle power in sleep stage N2.
Some of the white matter tracts in which AD was associated with spindle power partially overlap with the tracts plotted in Figure
2, such as the forceps minor, the genu and anterior part of the corpus callosum (G CC and aCC, respectively), the superior longitu-
dinal fascicle (sLF), and the inferior fronto-occipital fascicle (iFOF). The network of white matter tracts whose AD was correlated
with spindle power was more extended in the temporal lobe than the network where AD was associated with the slow-wave slope
and included the inferior longitudinal fascicle (iLF) as well. Other tracts more selectively associated with spindle power include the
white matter regions around the thalamus, such as the internal and external capsule (iC and eC, respectively) and the internal
medullary lamina (iML) of the thalamus. In addition, tracts in the middle temporal lobe, colored in blue, were associated with
spindle density in sleep stage N2.
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rior longitudinal fascicle may be of particular functional rele-
vance, because these fascicles connect the temporal lobes with
widespread cortical areas. Several studies have shown that mem-
ory performance and intelligence are positively associated with
spindle density (Gais et al., 2002; Clemens et al., 2005; Morin et
al., 2008; Fogel and Smith, 2011) and also with white matter
connectivity in the temporal lobe (Persson et al., 2006; Sasson et
al., 2010; Kantarci et al., 2011). Individual differences in white
matter connectivity may mediate the association of spindle ex-
pression with memory performance and intelligence. Thus, these
different structural and neurophysiological traits might be re-
lated and result from a common genotype. An intriguing addi-
tional possible explanation is that the variability in AD in these
white matter bundles may in part reflect plasticity-induced
changes associated with prolonged activation. There is accumu-
lating evidence of an increase in structural connectivity, assessed
with DTI, in response to training (Keller and Just, 2009; Scholz et
al., 2009; Landi et al., 2011). A possible mechanism underlying
such strengthening might be the recently discovered changes in
myelination in association with glutamate release onto oligoden-
drocytes along the axon during action potentials (Kukley et al.,
2007; Araque and Navarrete, 2011; Wake et al., 2011). Based on
these findings, a prolonged and repeated high level of spindle
activity, for example triggered by extensive learning (Fogel and
Smith, 2011) and measured in this study with high spindle power
and high spindle density, will conceivably strengthen an individ-
ual’s temporal lobe white matter connectivity. Such increased
connectivity might facilitate the synchronization between spin-
dles and hippocampal ripples (Clemens et al., 2007) that under-
pins the communication between neocortex and hippocampus
(Siapas and Wilson, 1998; Clemens et al., 2011) and bolsters
memory consolidation during sleep (Diekelmann and Born,
2010).

Conclusion
Our findings indicate that interindividual variability in regionally
specific white matter tracts contribute to the trait-like expression
of slow waves and spindles, the most characteristic oscillations of
the sleeping brain. The individual profiles of both these types of
sleep oscillations correlate strongly with white matter axial diffu-
sivity in frontal regions. In addition to these areas, spindle pro-
files show a marked association with axial diffusivity in
subcortical white matter, including tracts within and around the
thalamus. The regional distribution is in line with previous work
on the neural sources of these oscillations. The findings comple-
ment earlier work which indicated that the expression profile of
sleep oscillations reflect dynamic properties of network connec-
tivity as a consequence of the relatively fast changes in synaptic
strength (Tononi and Cirelli, 2006; Poe et al., 2010). White mat-
ter tracts, representing the structural backbone of neuronal net-
work connectivity, appear equally important in determining the
expression of sleep oscillations, reflecting the more stable and
trait-like individual characteristics.
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