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Hierarchical Learning Induces Two Simultaneous, But
Separable, Prediction Errors in Human Basal Ganglia
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Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life
tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used
functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous,
uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral
tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy
in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons.
Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we
can learn about simultaneously.

Introduction
In recent years, computational reinforcement learning (RL;
Sutton and Barto, 1998) has provided an indispensable frame-
work for understanding the neural substrates of learning and
decision making. Dopaminergic signals projecting into the stria-
tal nuclei, once elusive and misunderstood, are now widely
thought to be correlated with a scalar prediction error signal that
indicates the difference between reward expectations and actual
observations (Barto, 1995; Montague, Dayan, and Sejnowski,
1996). This prediction error signal is key for learning about re-
wards in the world and is a central element in RL models of
learning.

Although the original studies of dopaminergic prediction er-
rors suggested that dopaminergic neurons all report one unitary
scalar prediction error signal (Schultz et al., 1997; e.g., Schultz,
2002), computational RL models that attempt to scale beyond
simple action-outcome associations into real-world tasks suggest
that more than one prediction error may become necessary at
each point in time (Sutton et al, 1999). In the present study, we

asked the question: can the classic neural correlates of reward
prediction errors support more than one prediction error signal
type?

Tasks with hierarchical structure constitute one example in
which multiple, simultaneous reward prediction errors are
needed. This is because in hierarchical settings, outcomes rele-
vant to multiple levels of a task structure might be observed at the
same time, and the brain must update its expectations about each
level separately. For example, imagine a gambler who arrives at a
city with multiple casinos, holding a set of coupons that allow
him to enter any one of the casinos and play a number of different
games. The gambler enters one casino and plays blackjack, rou-
lette, and a slot machine. Each time he plays a game, he might
observe a difference between what he expected to win, and the
actual outcome—a “game-level prediction error” that can be
used to adjust his future expectations about this game. However,
upon playing the last coupon for a casino, he not only learns
about the last game itself, but also has enough information to
update his knowledge about the casino as a whole: was this a good
casino to spend his coupons on? It is at this point that two coin-
cident reward prediction errors would arise: a simple game-
related prediction error and a higher-level casino-related
prediction error linked to learning the value of the casino as a
whole. These prediction errors are not redundant. For example,
the slot machine may have been worse than expected but the
casino better than expected.

To determine whether concurrent prediction errors occur in
the human brain, we designed a task akin to the casino example
above— effectively, a hierarchical extension of the classic bandit
task used in previous RL research (Daw et al., 2006; Cohen et al.,
2007) to a hierarchical setting. We used fMRI to record BOLD
signals while participants played this task. We were especially
interested in BOLD signals in the ventral striatum (VS), an area
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where activity has been shown repeatedly
to be correlated with prediction error sig-
nals (Hare et al., 2008; Glimcher, 2011;
Niv et al., 2012), as well as the ventral teg-
mental area (VTA) from which dopamine
neurons arise. To model learning in this
setting, we used the computational frame-
work of hierarchical RL (HRL; Sutton et
al, 1999; Dietterich, 2000; Barto and Ma-
hadevan, 2003), an extension of the RL
framework for hierarchical settings that
was shown recently to be relevant to hu-
man learning (Botvinick et al., 2009;
Ribas-Fernandes et al., 2011).

Materials and Methods
Participants
Thirty participants were recruited from the
Princeton University community and gave in-
formed consent. Two participants were ex-
cluded due to technical problems during
scanning and all data analysis was performed
on the remaining 28 participants (ages 18 –38,
mean 22.04 years, 13 males, all right-handed).
Participants received compensation of $20 per
hour plus a small bonus based on task performance (participants began
the task with a budget of $1 and kept any money earned by playing
casinos, resulting in average earnings of $2.34, std � 1.39, min � �0.45,
max � 4.55). All experimental procedures were approved by the institu-
tional review board of Princeton University.

Imaging
Functional brain images were acquired using a 3 T Siemens Allegra head-
only MRI scanner with a circularly polarized head volume coil. High-
resolution (1 mm 3 voxels) T1-weighted structural images were acquired
with an MP-RAGE pulse sequence at the beginning of the scanning ses-
sion. Functional data were acquired using a high-resolution echo-planar
imaging pulse sequence (3 mm 3 voxels, 41 contiguous 3 mm thick slices
aligned with the anterior commissure-posterior commissure plane, in-
terleaved acquisition, TR 2400 ms, TE 30 ms, flip angle 90°, field of view
192 mm).

Task and procedure
The computerized task was coded using MATLAB (Mathworks) and the
Psychophysics Toolbox version 3 (Brainard, 1997). Participants played
120 trials split into four blocks of 30 trials each. Between blocks, they were
offered an option to take a break. On each trial, two doors representing
the two different casinos appeared (Fig. 1). Each door was marked
“Open” or “Closed.” In 70 of the 120 trials, both casinos were open, and
in 50 trials one of the doors was closed, forcing participants to choose the
only open casino. These forced trials, which included 25 trials in which
each of the two casinos was open, were interspersed randomly among the
120 trials, and not determined based on participants’ actions or earnings.
Throughout the task, participants indicated their choices by pressing
buttons on a right-hand response trigger box. If no choice was made
within 2 s, a message with the text “Timed Out!” appeared and the par-
ticipant was allowed to keep playing.

Once a participant chose a casino, the casino’s door opened and re-
vealed a rectangular bar that graphically indicated, in red, how many
points needed to be accumulated to win 10¢ in the casino. This number
of “target points” was drawn from a normal distribution with a SD of 2.5
and a mean of 5 for the left casino and 6 for the right casino, rounded to
the closest integer and bounded between 2 and 10.

After a jittered time interval that lasted between 2.5 and 3.5 s (uniform
distribution), four slot machines were displayed inside the casino, each a
different color. Overall, there were eight slot machines in the task, each a
unique color and each assigned permanently to one of the casinos. Thus,

throughout the task, each casino always contained the same four slot
machines in the same four locations, and a slot machine never appeared
in both casinos. Participants played the casino by serially selecting two
slot machines using one of the four buttons in the trigger box. For every
3 s in which no choice was made, a message with the text “Timed Out!”
appeared, a penalty of 5¢ was assessed, and the participant was allowed to
keep playing. When the first slot machine was selected, the other three
slot machines were temporarily deactivated (graphically depicted by
turning gray). The selected slot machine was animated to simulate spin-
ning for 200 ms and then displayed the number of points obtained. The
number of points was shown as a green bar inside the slot machine with
a Roman numeral to its side. The top bar indicating the casino target
points was also updated in the following way: if the points accrued were
sufficient to win the casino, the bar turned green; if not, the portion of the
total target points just accrued in the slot machine became yellow, with
the remaining bar still red. Each slot machine was associated with a
normal distribution from which points were drawn (rounded to the
closest integer and bounded between 0 and 5). The means of the normal
distributions associated with each of the 8 slot machines (4 per casino)
drifted independently after each trial by �0.5 or �0.5 (drawn randomly
with equal probability) and were bounded between 0 and 5. The SD of the
distribution was always 1.

After the first slot machine play, a jittered wait time of 2.5–3.5 s (uni-
form distribution) was imposed until the remaining slot machines be-
came active again and a second slot machine could be chosen. After the
second slot machine was selected, it spun for another 200 ms and dis-
played the number of accrued points. Once again, the target points bar
added the points just accrued and turned green in case of a win or stayed
partially yellow/partially red if not. Simultaneously, a message was also
displayed indicating the total amount of money earned in the casino and
the end of the trial: “Exiting casino. Total Earned 10¢” (or “�10¢”).
Trials in which the target points had been achieved resulted in a “win”
(and accrual of 10¢), whereas trials in which the target was not reached
resulted in a “loss” (and deduction of 10¢ from the total earnings). After
a jittered wait time of 2.5–3.5 s (uniform distribution), the casino door
closed and a new trial began.

Note that to orthogonalize prediction errors at the two levels of the
hierarchy (the casino level and the slot machine level), winnings in the
casinos were not based directly on the number of points obtained in slot
machines, but instead were thresholded according to the target points
required by the casino. In this way, two simultaneous events, learning the
outcome of the last slot machine and determining whether sufficient

Open Open

Exi�ng casino. Total earned 10c

Le� casino is selected (self-paced, 2s �meout)

Target is displayed and a�er a 2.5-3.5s 
ji�er, the 4 slot machines are shown.

Slot machine is played and a�er 2.5-3.5 
ji�er, outcome is displayed. Target is 

updated to show points accumulated and 
s�ll required.

Second slot machine is 
played, and par�cipant 
accumulated enough 

points to win 10c in this 
casino.

4

4

3

Figure 1. Sample trial: the participant chooses to play in the left casino, the door opens and displays a target number of points
(indicated by red bar). After 2.5–3.5 s, the four slot machines appear. The participant plays upper-left slot and, after another
2.5–3.5 s, the points obtained in that machine are shown inside the machine (as a green bar plus a roman numeral). The
corresponding part of the target points turns yellow, indicating the points accumulated with the first slot machine play. The rest is
still red, indicating the points still necessary to win the casino. The participant plays the bottom-right slot machine and obtains
sufficient points to win the casino. The target bar turns green and a message appears indicating the casino win (10¢).
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points were obtained to win in the casino, induced two uncorrelated
reward prediction errors. This is because a slot machine could be worse
than expected but still lead to an overall win in the casino and vice versa.

Data analysis
Behavioral data
Logistic regression. We first sought to confirm that participants learned at
both levels of the task hierarchy and made decisions accordingly. Specif-
ically, the question was whether participants learned in a hierarchical
fashion appropriate for this task, adjusting their casino choices based on
the outcomes of casino plays and not on the contingencies of slot ma-
chine outcomes and, conversely, basing their slot machine choices on slot
outcomes and not casino ones. For this purpose, we used a modified
logistic regression to estimate the contribution of past outcomes in both
levels (slot machines and casino) to behavioral choices. Specifically, we
regressed casino choice on a linear combination of the outcomes of the
past 4 choices of this casino (�1 for a win and �1 for a loss) and the total
number of slot machine points accrued in each of those past 4 casino
choices. One can view this as estimating a “value” for each casino as
follows:

Vcasino�i� � �
j�1

4

�j
casino Rcasino�i�

t�j � �
j�1

4

�j
slot Rslots�i�

t�j

where Rcasino�i�
t�j is �1 (�1) if the participant won (lost) in casino(i) the last

jth time she played in it and Rslots�i�
t�j is the total number of points obtained

in the slot machines during that trial. Casino choices were then logisti-
cally regressed on these values using a soft-max action selection function:

p� A� �
eV� A�

�
j � Actions

eV� j�

where p( A) is the probability of choosing casino A, and j enumerates all
possible actions.

In a similar fashion, values for each slot machine were computed as a
linear combination of the points outcome on the last 4 times this ma-
chine was played and the casino outcome (�1 or �1) on each of these
trials. These were then logistically regressed on slot machine choices
using soft-max as above.

For each logistic regression, we optimized the eight parameters �1..4

for casinos and �1.4 for slot machines by minimizing the negative log
likelihood of the data given different parameter settings using MATLAB’s
fminunc function. This function performs unconstrained linear optimi-
zation over the space of possible parameter values. The resulting � values
were then subjected to between-participants Student’s t tests to deter-
mine the significance of prior outcomes’ influences on action selection.

We used Bonferroni correction for multiple
comparisons, determining significance at a
level of p � 0.05/8 � 0.00625.

Temporal difference learning. After confirm-
ing learning at each level of the task (see
Results), we fit a set of alternative temporal-
difference RL models to the data to obtain
model-based, trial-by-trial prediction-error
regressors to be used in our neuroimaging
analysis. Temporal difference (TD) RL (Sutton
and Barto, 1998) provides a general framework
for understanding trial-by-trial learning and
decision making in simple tasks. A number of
extensions have been proposed to the case
where tasks involve HRL structure (Sutton et
al., 1999; Barto and Mahadevan, 2003). Central
to these HRL algorithms is the notion of tem-
porally extended action sequences. The impli-
cation for human behavior is that some
decisions no longer involve a single action, but
commit the behaving agent to a sequence of
actions over an extended period of time. Play-

ing a casino is one such temporally extended action, which involves a
series of subsequent slot machine plays (Fig. 2).

Following the “Options” model from HRL (Sutton et al., 1999), we
assumed that participants maintain a value Vcasino for each of the casinos
that directs their choice of casinos. We contrasted two possible models
for how this value is learned:

The “Outcome Model” posits that casino values are (correctly) based on
the probability of winning 10¢ in each casino, as should be the case for
participants learning in a hierarchical fashion. In this way, casino values are
(implicitly) based on both the target points and the quality of the slot ma-
chines in the casino (as well as the policy used to play the slot machines).
According to this model, once the participant observes a casino-level out-
come rcasino (either �10¢ or �10¢) after playing the second slot machine, a
prediction error �casino � rcasino � Vcasino(i) is computed and the value of the
casino is updated based on Vcasino�i�

new � Vcasino�i�
old � �casino�, where �casino is

a casino-level learning rate or step-size parameter.
The alternative, straightforward but suboptimal “Target Model” pos-

its that casino values are based on the target number of points required to
win each casino. This simple model ignores the fact that the quality of a
casino also depends on the expected quality of its slot machines and, in a
sense, ignores the hierarchical nature of the task. Using this model, once
the casino door opens and the target points pcasino are revealed, a casino
prediction error �casino � pcasino � Vcasino(i) is computed and the value of
the casino is updated according to Vcasino�i�

new � Vcasino�i�
old � �casino� as

above.
For both models, to fit the free model parameters to behavioral choice

at the casino level, we assumed a soft-max action selection function:

p� A� �
e�casinoV� A�

�
j � Actions

e�casinoV� j�

where p( A) is the probability of choosing casino A, �casino is an inverse
temperature parameter, and j enumerates all currently possible actions at
this level of the hierarchy.

At the slot machine level of the hierarchy, we also compared two
possible learning models:

The “Slot-Points Model” posits that separate values Vslot(i) are main-
tained for each of the eight slot machines in the game (four in each
casino). This enables fast and adaptive learning, especially in light of the
fact that slot-machine-expected outcomes drift over time. According to
this model, after a slot machine is played and its reward (the number of
points obtained, rslot) is observed, a prediction error �slot � rslot � Vslot(i)

is computed and the value of the slot machine is updated according to
Vslot�i�

new � Vslot�i�
old � �slots�, where �slots is a learning rate or step-size

parameter specific to learning at the slot machine level (potentially dif-
ferent from the learning rate for casinos). Because the order in which the

Play Le� Casino

PELe�-Casino

PEslot-3PEslot-1

(You won 10 cents!)

Figure 2. HRL representation of the casino task. The top level shows the task of playing a casino, and the bottom level
decomposes this task into the subtasks of playing slot machines. Prediction errors under the Outcome Model and Slot-Points Model
are shown (in this example, “slot-3” indicates the name of the slot machine just played). Note that the prediction error for playing
the left casino and the second slot machine occur simultaneously.
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two slot machines are chosen within a casino is not relevant (i.e., it is
equally optimal to choose the best and second-best slot machines in this
order or in the opposite order), we modeled the value-based choice of
slot machines as if participants chose a pair of slot machines i and j based
on the sum of their values, so that Vpair(i,j) � Vslot(i) � Vslot(j). Therefore,
each trial involves six possible options for choosing two slot machines.

The alternative “Six-Armed Bandit Model” (which is suboptimal in
our setting) posits that participants do not learn values for individual
machines, but rather reinforce their slot machine choices directly based
on the overall casino outcome. That is, according to this model partici-
pants simply tend to repeat actions that led to monetary gains in the past,
as in Thorndike’s “Law of Effect” (Thorndike, 1991). Formally, we as-
sumed a value Vpair(i,j) for each of six possible pairs of slot machines. After
a choice of two slot machines in a casino, we computed a prediction error
�pair � rpair � Vpair(i,j) according to the outcome of the casino (rpair � 1
or rpair � �1) and updated the value of the pair of slot machines accord-
ing to Vpair�i, j�

new � Vpair�i, j�
old � �slots�.

To fit the parameters of both slot-machine-level models to behavioral
choices, we again assumed a soft-max action selection function (see
above), albeit with six possible (pair) choices on each trial. The inverse
temperature parameters were allowed to differ from that of the casino
choices.

For each of the 4 models (2 � 2 casino level and slot-machine-level
learning models) we used each participant’s behavioral data to fit the
models’ free parameters (�slots and �slots for the slot machine level and
�casino and �casino for the casino-level choice). Model likelihoods were
computed by assigning probabilities to each choice for each participant,
according to the soft-max function specified above. In the case of the slot
machines, there were 120 choice trials (each modeled as a choice of one of
six possible pairs of slot machines). In the case of the casinos, likelihood
was only estimated based on the 70 trials in which both casinos were
“open” and thus choice behavior was available, although we modeled
learning of casino values on all 120 trials. Note that each level of our task
could be fit independently because, given the actual slot machine choices,
there was no interaction between slot machine values and learning at the
casino level.

We optimized model parameters by minimizing the negative log like-
lihood of the data given different parameter settings using MATLAB’s
fmincon function. This function performs constrained linear optimiza-
tion over the space of possible parameter values. We constrained �slots

and �casino to be between 0 and 1 and �slots and �casino to be positive. To
facilitate finding the global minimum of the negative log likelihood, for
each model and each participant we ran the routine four times from
different, randomly chosen initial values for the two parameters in each
fit and kept track of the best fit over the four runs. We compared the two
alternative casino and slot-machine-level models by comparing the like-
lihoods of the models directly, because in both the casino- and slot-
machine-level cases, the compared models have the same number of free
parameters determined by the same number of data points, so no penal-
ties for model complexity and potential overfitting needed to be estab-
lished. For a general reference on our approach to model fitting, see Daw
(2009).

Our models included one learning rate per hierarchy level, thereby
assuming that participants learned equally from the outcomes of free-
choice trials (when both casinos were open) as from those of forced trials
(when one of the casinos was closed). To test the validity of this assump-
tion, we also fit models with two distinct learning rates, one for forced
and one for free choice trials. Models with two learning rates did not
explain the behavioral data better than models with a single rate after
accounting for the extra degree of freedom afforded by the extra param-
eters. Using both the Bayesian Information Criterion and the more le-
nient Akaike’s Information Criterion, we found that models with a single
learning rate were favored for all 28 participants. As a result, models with
separate learning rates for forced and free-choice trials will not be dis-
cussed further.

Imaging data
Preprocessing. Preprocessing of the images and whole-brain image anal-
ysis were performed using SPM8 (Wellcome Department of Imaging

Neuroscience, Institute of Neurology, London, UK). Preprocessing of
EPI images included motion correction (rigid-body realignment of all
images to the first volume), and spatial normalization to a standard T2*
template in Montreal Neurological Institute space. Anatomical regions
of interest (ROIs) were marked for each participant using MRIcron
(Center for Advanced Brain Imaging, Georgia State University and Geor-
gia Tech University, Atlanta). Whole-brain images were then further
preprocessed by spatially smoothing the images using a Gaussian kernel
with a full width at half maximum of 8 mm to allow for statistical para-
metric mapping analysis.

Region of interest analysis. Based on the extensive existing literature on
BOLD correlates of prediction error signals in the human brain, we fo-
cused our analysis on two a priori anatomically defined ROIs in the VS
(McClure et al, 2003; O’Doherty et al., 2003; O’Doherty et al., 2004;
Delgado et al., 2005; Abler et al., 2006; Li et al., 2006; Preuschoff et al.,
2006; Hare et al., 2008; Glimcher, 2011; Niv et al., 2012) and VTA
(D’Ardenne et al., 2008; Klein-Flügge et al., 2011).

The VS (nucleus accumbens) ROI was delineated separately for each
participant using their structural brain image. The nucleus accumbens
was anatomically defined as the area bordered superiorly by the internal
capsule, caudate, and putamen; inferiorly by white matter or, in its most
posterior extent, by the subcallosal gyrus; medially by the septal nuclei
and/or the lateral ventricle; and laterally by the putamen. The border
with the caudate was taken to be at the inferior margin of the lateral
ventricle and with the putamen at the thinnest part of gray matter. We
considered the anterior-most border to be at the axial slice in which the
caudate and putamen were fully separated and the posterior border
where the anterior commissure was fully attached between hemispheres.
Only voxels wholly within these boundaries were considered part of the
ROI. According to Klein-Flügge et al. (2011), the VTA ROI was defined
as the anatomical region within Montreal Neurological Institute coordi-
nates: x: �8 to �6; y: �26 to �14; and z: �20 to �12.

To analyze ROI time courses, we used the methods of Niv et al. (2012).
We first averaged, for each participant and each ROI (VS and VTA,
combining bilateral ROIs to one), the BOLD signal in all the ROI voxels
using singular value decomposition. This resulted in a single time course
per ROI per participant. We then removed from the time courses effects
of no interest due to scanner drift and participant motion by estimating
and subtracting from the data, for each session separately, a linear regres-
sion model that included the six motion regressors (3D translation and
rotation), two trend regressors (linear and quadratic), and a baseline. To
determine whether the resulting signal corresponded to prediction error
signals, we regressed against each ROI time course a linear model that
included three regressors of interest: FirstSlot, LastSlot, and Casino.
These regressors were obtained from the model fits described previously.
Although FirstSlot always included the prediction error corresponding to
the outcome of the first slot machine chosen, LastSlot included the pre-
diction error corresponding to the outcome of either the second slot
machine chosen or the first slot machine in those trials in which one slot
machine was sufficient to win the whole casino (this occurred in �10%
of the trials). In all cases, the prediction error regressors corresponded to
the onsets of the relevant outcome events and the casino prediction er-
rors corresponded to the onset of the LastSlot outcome. To conclude that
BOLD activity corresponds to a prediction-error regressor, we required
significant correlations at p � 0.05 across participants and that these
correlations be positive.

To search for potential anatomical separation between activations for
casino and slot machine prediction errors, we regressed against each
voxel in the VS ROI, a linear model with two regressors from the best
fitting models (see Results below): a “CombinedSlot” regressor that com-
bined prediction errors for both slot machine plays from the Slot-Points
Model, and a Casino regressor (with casino-level prediction errors from
the Outcome Model). We defined the CombinedSlot regressor to in-
crease power in our analysis of slot-machine-related activity. For each
regressor, we then identified the peak activation voxel for each partici-
pant in each of the two bilateral ROIs. For each side of the brain, we
computed a within-participant coordinate difference between the peak
voxels for the Casino and CombinedSlot regressors, resulting in three
values representing the distances along each coordinate: 	x, 	y, and 	z,
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and performed three t tests, one for each coordinate, to test for significant
anatomical differences in any of the dimensions.

Whole-brain analysis. We used SPM8 to conduct a supplemental
whole-brain analysis in which we searched for brain areas in which
BOLD activity was correlated with the prediction error signals induced
by our models. The design matrix comprised, for each of the four ses-
sions: (1) three parametric regressors for slot machine prediction errors
(FirstSlot and LastSlot) and casino prediction errors according to the
Slot-Points Model and Outcome Model, respectively, similar to those
used for the ROI analysis; (2) two stick-function regressors, one for the
onsets of the casino door opening and one for the onsets of all slot
machine outcomes; and (3) nuisance covariate regressors for motion,
linear and quadratic drift, and baseline. The prediction error regressors
were added as covariate regressors by convolving the punctate prediction
errors as assigned by the model with the canonical hemodynamic
response function. Other stick regressors were convolved with the
hemodynamic response function, as is usual in SPM8. The six scan-
to-scan motion parameters produced during preprocessing were used
as nuisance motion regressors to account for residual effects of move-
ment. This design matrix was entered into a regression analysis of the
fMRI data of each participant. A linear contrast of regressor coeffi-
cients was then computed at the single-participant level for each re-
gressor of interest. Each contrast was analyzed separately as a random
effect at a second, between-participants level by including the con-
trast images of each participant in a one-way ANOVA with no mean
term. Group-level activations were localized using a group-averaged
structural scan and visualizations were generated using xjView
(http://www.alivelearn.net/xjview8/).

Results
Behavioral results: participants learn at multiple levels of
the hierarchy
We first tested in a model-free way, using modified logistic re-
gression, whether participants learned at both levels of the task
and whether they used the hierarchical structure of the task cor-
rectly in their learning; that is, we tested whether choices of casi-
nos were informed by previous outcomes at the casino level,
regardless of the specific slot machine outcomes during those
plays (note that slot machine outcomes were, by design, uncor-
related from casino outcomes). Similarly, we tested whether slot
machine choices were informed by previous slot machine out-
comes and not the casino-level outcome on trials in which the slot
machine had been chosen. The resulting regression weights re-
vealed that casino choices were influenced by the outcome of the
past three trials in which that casino was chosen (between partic-
ipants, p � 0.005, Bonferroni corrected), but not by slot machine
points obtained on those trials (p 
 0.05; Fig. 3, left). Conversely,
slot machine choices were influenced by the prior three slot ma-

chine outcomes (between participants, p � 0.005, Bonferroni
corrected) but not by the casino outcomes on those trials (p 

0.05; Fig. 3, right).

Having established this hierarchical decomposition of learn-
ing in the task to two levels, we next used a model-based analysis
to test for correct temporal-difference learning at both levels of
the hierarchy. For this, we fit the choice data at each level to a
learning model prescribed by the HRL framework and an alter-
native, simpler but suboptimal model (see Materials and Meth-
ods for details of all models).

At the casino level, we compared an Outcome Model that
assumes that the participant updated the expected value of a ca-
sino based on the casino’s true outcomes after playing the two slot
machines and a Target Model that assumes that the participant
updated the expected values of the casinos based only on the
point target of the casino. Formal model comparison showed
strong support for the Outcome Model, which provided a better
fit for the choices of 22 of the 28 participants (Fig. 4; p � 0.002,
one-tailed paired Student’s t test on the difference in log-
likelihoods of the Outcome Model and the Target Model). We
thus used the Outcome Model in all our further fMRI analyses:
for each participant, we generated regressors for expected casino-
level prediction error activations by using that individual’s best fit
learning rate and inverse temperature parameters (mean across
participants, 0.31 and 1.69, respectively; median, 0.19 and 0.3,
respectively).

At the slot machine level, we compared a Slot-Points Model,
which assumes that participants chose which two slot machines
to play based on the sum of their expected outcomes and updated
the expected value of each slot machine after observing its out-
come according to a slot-level prediction error, and a Six-Armed
Bandit Model, which treated each of the six possible pairs of slot
machines as a distinct option (an “arm” in a bandit problem),
with the value of the option updated at the end of the trial based
on the overall casino outcome (win or lose). The first model
represents a standard TD learning model, but accounts for the
fact that the order of the two chosen slot machines is inconse-
quential. The second model also uses TD learning, but reinforces
compound actions directly without learning about each of the
slot machine outcomes. Again, formal model comparison fa-
vored the optimal Slot-Points Model: this model provided a bet-
ter fit for the choices of 25 of the 28 participants, with the
remaining three participants equally well fit by the two models
(Fig. 5; p � 10�6, one-tailed paired Student’s t test on the differ-
ence in log-likelihoods of the Slot-Points Model and the Six-
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Figure 3. Logistic regression on casino (left) and slot machine (right) choices. We estimated
the relationship between casino choices and the outcome of the casino on the last four times it
was chosen, as well as the total slot machine points obtained in the corresponding trials. We
similarly estimated the relationship between choices of each slot machine and the outcomes of
the last four plays of this slot machine, as well as the casino outcomes during those same trials.
Plotted are the regression weights for the last four outcomes of each type. Stars indicate signif-
icance at a between-participants Bonferroni-corrected level ( p � 0.0063).
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Figure 4. Average posterior probability per choice trial for the Outcome Model and the
Target Model per participant. The Outcome Model assigns a higher average probability per trial
to the choices of 22 of 28 participants (points lying above the solid equal-likelihood line). The
average probability of a choice trial was calculated as the likelihood of the whole sequence of
choice data divided by the number of choice trials. Dashed lines indicate chance.
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Armed-Bandit Model). Once again, the resulting parameter fits
from the Slot-Points Model were used to generate slot-level pre-
diction error regressors that were tailored to each individual’s
learning parameters for further fMRI analyses. The mean learn-
ing rates and inverse temperatures across participants were 0.37
(median 0.4) and 12.25 (median 0.98), respectively.

These results suggest that participants were simultaneously
learning about slot machines and casinos based on separate pre-
diction errors at each level of the hierarchy. Therefore, we should
expect concurrent, distinct prediction errors, at least at the time
of the last slot machine play, at which point information about
that slot machine and about the overall worth of the casino be-
came available simultaneously.

fMRI results: two different prediction error signals in VS
Supported by the behavioral results described above, we used the
framework of HRL to model the participants’ learning (see Ma-
terials and Methods for details) and to generate prediction error
regressors for analysis of the fMRI data. At the lower, slot ma-
chine level, we modeled standard TD learning of separate values
for each slot machine as in the Slot-Points Model, in which value
estimates were updated when the outcome of a slot machine was
encountered, according to the difference between the expected
value of that slot machine and the actual number of points ob-
tained. At the higher, casino level, a separate TD learning mech-
anism kept track of the value of each casino, and this value was
updated when the casino outcome was revealed as per the Out-
come Model.

This hierarchical model thus induced three regressors of in-
terest in each trial for each participant: (1) a prediction error for
the first slot machine played (“FirstSlot”), (2) a prediction error
for the second slot machine played (“LastSlot”), and (3) a predic-
tion error for the chosen casino (“Casino”). We modeled each
regressor at the onset of the outcome that led to that prediction
error, with LastSlot and Casino occurring simultaneously.
Through the design of the task, these regressors were nearly or-
thogonal (mean correlation coefficient, �0.029, std 0.07) allow-
ing us to search for neural correlates of each despite their
temporal cooccurrence.

All three regressors of interest were significantly correlated
with VS BOLD activity (FirstSlot, p � 0.004; LastSlot, p � 0.0269;
Casino, p � 5.5 � 10�5), indicating that indeed two distinct, but
temporally coincident prediction error signals, LastSlot and Ca-
sino, can coexist in the VS. To verify the result from our behav-
ioral model comparison, we also tested whether the VS signal

correlated with a prediction error regressor based on target only
(from the Target Model) and found no significant effect (p �
0.22). In the VTA, our analysis involved a much smaller and less
well defined ROI and a noisy signal due to pulsatility (D’Ardenne
et al., 2008). We therefore performed one-tailed t tests looking
for positive correlations. We found that VTA BOLD activity
was significantly correlated with the FirstSlot regressor ( p �
0.0336; one-tailed) and a trend in the case of Casino ( p �
0.051; one-tailed). We did not find significant correlation with
LastSlot ( p � 0.19).

Testing for anatomical separation between slot and
casino activations
The presence of two simultaneous prediction error signals in the
VS led us to investigate whether there is an anatomical separation
within striatum between areas activated by the slot machine pre-
diction errors and areas activated by casino prediction errors.
Visual inspection of the relative magnitudes of activation within
VS suggested that slot machine activations might be more
medial and casino activations more lateral. However, we did
not find significant separation along any coordinate (between-
participant, two-tailed t tests on each of x-, y-, and z-coordinate
differences between peak voxels on each side of the brain were all
p 
 0.3). This null result could imply that there is indeed no
anatomical separation, and that a single neural population is in-
volved in producing an additive prediction error signal, making
credit assignment a difficult problem. Alternatively, prediction
errors at the two levels may be intertwined (or separable only at a
subvoxel resolution) or participants may allocate each level of the
task to a separate anatomical location idiosyncratically such that
the allocation is inconsistent across participants (e.g., the casino
level may be more laterally represented for some and more me-
dially for others and vice versa for the slot level).

Whole-brain analysis
Our previous analysis concentrated on a priori, anatomically de-
fined ROIs in the VS and VTA. To supplement this, we conducted
a whole-brain analysis searching for areas correlating with two
regressors of interest (CombinedSlot and Casino). At a whole-
brain corrected threshold of p � 0.05, the only significant positive
correlation found was between the Casino regressor and bilateral
VS (ventral putamen; Fig. 6A). We also observed large clusters
negatively correlated with the Casino regressor in visual areas
(Table 1). Although the origin of this correlation is not clear, we
speculate that losing in a casino caused an increase in attentive
visual processing (when participants lost, the achieved points
were denoted on the points bar by the color yellow and the num-
ber of remaining points was indicated in red; in contrast, if they
won the casino, the entire points bar turned green), leading to
correlation between negative prediction errors and visual cortical
activation. A combined slot machine prediction– error regressor
did not reveal any activation that survived whole-brain correc-
tion. However, bilateral ventral striatal activations did survive the
widely used uncorrected p � 0.001 threshold (O’Doherty et al.,
2004; Li and Daw, 2011), as expected (Fig. 6B).

The relatively weaker activations for the CombinedSlot re-
gressor compared with the Casino regressor may have been be
due to the fact that outcomes at the casino level were binary,
whereas slot machine outcomes were distributed normally. As a
result, the variance of the Casino regressor was an order of mag-
nitude larger than that of the slot machine regressors. This spec-
ulation is consistent with previous work showing that prediction
errors due to binary outcomes are easier to detect in ventral stri-
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Figure 5. Average posterior probability per choice trial for the Slot-Points Model and Six-
Armed-Bandit Model per participant. The Slot-Points Model assigns a higher average probabil-
ity per trial to the choices of 25 of 28 participants (points lying above the solid equal-likelihood
line). Chance � 0.16, indicated by dashed lines.
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atal BOLD signals than those derived from normally distributed
outcomes (compare Fig. 2A in Schönberg et al., 2007 with the
activations in supplemental Table 3 in Daw et al., 2006). We
verified this hypothesis in a companion experiment (Diuk et al.,
2010) in which slot machine outcomes were binary (win/lose)
and the casino outcome was multiple valued (specifically, partic-
ipants could play up to four slot machines each costing 5¢ to play,
and had to win at least two slot machines to earn a certain amount
of money the casino offered, which varied in each trial according
to a casino-specific distribution). In this companion experiment,
whole-brain analysis (FWE corrected at the p � 0.05 level) re-
vealed significant bilateral VS activation for the slot machine
prediction-error regressors, but a trend was only observed for the
casino regressor (p � 0.001, uncorrected). Because prediction
errors at level two of the hierarchy were not orthogonal in that
study by design, we have not reported its results here.

Another factor that might explain the difference in activation
strengths between casino and slot machine prediction errors is
that slot machine outcomes did not lead to direct monetary re-
ward, but rather acted as subgoals toward a reward that was only
obtained if the casino was won. Therefore, slot machine out-
comes and prediction errors might have been less salient. How-
ever, this was also the case in the companion experiment in which
slot machine prediction errors were stronger than casino predic-
tion errors despite the fact that the latter were the only ones
related to actual monetary outcomes.

Finally, correlations between prediction errors and outcomes
may have affected the relative strengths of our activations. These
correlations exist because prediction errors reflect the difference
between outcome and value and, by definition, the values are
correlated with previous outcomes due to learning. As a result,

dissociating outcomes from prediction
errors is difficult in our task, as was the
case in many tasks used previously (e.g.,
most variations of bandit tasks; but see
Hare et al., 2008 for a notable exception in
which the task was specifically designed to
dissociate these signals). Nevertheless, we
do not believe that these correlations
could explain the large difference in acti-
vations, because relatively strong correla-
tions occurred at both levels of the
hierarchy and in both the current task and
the companion task described above.

Discussion
We tested for the existence of simultane-
ous, orthogonal prediction errors sup-
porting learning on different levels of a
task hierarchy in the VS and VTA. To gen-
erate simultaneous prediction errors, we
made use of hierarchy and predictions

from the computational framework of HRL (Sutton et al., 1999;
Dietterich, 2000; Barto and Mahadevan, 2003). Despite differ-
ences between existing HRL models, common to most of them is
the existence of multiple prediction errors that occur when a
subtask ends and new knowledge about multiple levels of the
hierarchy becomes available. Recent work (Botvinick et al., 2009)
derived a set of predictions from the HRL framework, evaluating
the extent to which current scientific knowledge accorded with
each of the theory’s elements. Only recently, experimental data
have been produced that support some of these predictions di-
rectly (Ribas-Fernandes et al., 2011; Botvinick, 2012). Our results
add to this body of work, further demonstrating the plausibility
of HRL in the human brain.

Specifically, we investigated whether, when confronted with a
hierarchical task that requires learning in parallel about two levels
of task structure, the human brain is capable of generating two
concurrent but distinct reward prediction error signals. Our be-
havioral results showed that participants learned the task success-
fully at both levels of the hierarchy. Moreover, participants’
choice behavior at each level of the task (casino choice or slot
machine choice) showed dependence on the outcomes of that
level only and independence of the outcomes of the alternative
level, thereby confirming that the hierarchical structure of the
task was used and encapsulated correctly.

In our task, the high-level casino outcome was revealed at the
exact same time as an outcome of a lower-level task (second slot
machine play). Learning about these two events thus required the
presence of two separable but simultaneous reward prediction
errors. Using fMRI and anatomically defined ROIs, we found
that BOLD signals in the VS indeed were correlated with each
of these prediction error signals, with a trend in the case of
VTA. These results provide evidence for a key prediction of
HRL, namely the existence of coincident reward prediction
errors corresponding to the different levels of the hierarchy
and the existence of high-level prediction errors that span
lower-level actions and transition.

Our work adds to a growing body of evidence indicating the
existence of more than one prediction error signal in the brain.
Neuroimaging data have suggested the existence of functionally
distinct error signals. Gläscher et al. (2010) found evidence for a
distinct reward and a state prediction error signal in different
brain areas. Two recent studies in the social domain found dis-

B

A

Figure 6. A, Activations that survived a whole-brain FWE-corrected threshold of p � 0.05, cluster size 
5, in the random
effects contrast for the Casino regressor. Images are centered at voxel (18,14,�8) to better depict the extent of the activation. B,
Activations that survived an uncorrected threshold of p � 0.001, cluster size 
5, in the random effects contrast for the combined
Slot regressor. Images are centered at voxel (�9, 11, �5).

Table 1. All activations that survived a whole-brain FWE-corrected threshold of
p < 0.05 in the random-effects contrast for a casino prediction error signal

Anatomical location Peak x,y,z (mm) Cluster size Peak intensity (T)

Right ventral putamen 15, 11, �8 29 7.15
Left ventral putamen �18, 8, �11 17 7.05
Left lingual gyrus �3, �64, 1 31 �6.91
Right lingual gyrus 9, �73, �5 7 �6.66
Occipital lobe �12, �88, 25 485 �12.68

Anatomical locations were determined through inspection with respect to the average anatomical image of all 28
participants.
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tinct error signals in prefrontal areas for predictions about the
observed actions of others and the outcomes of such actions
(Burke et al., 2010; Suzuki et al., 2012). Other work has found
evidence of both a standard and a “fictive” reward prediction
error in VS (Lohrenz et al., 2007, but see Li and Daw, 2011).
Another result shows dual prediction errors for reward and social
reputation in striatum and prefrontal cortex (Behrens et al.,
2008). Finally, a recent study (Daw et al., 2011) indicated the
presence of a striatal prediction error signal based on combined
predictions from two learning systems (model-based and model-
free). In that work, however, the two signals were not orthogonal
and only their combined effect could be observed. Physiological
findings have also suggested that the population of dopaminergic
neurons may not be homogenous (Brischoux et al., 2009). Our
results extend beyond these previous studies by showing that
reward prediction error signals projecting into the same brain
area (VS and, slightly less compellingly, the VTA) can signal more
than one quantity at the same time. Our results are most similar
to those by Gershman et al. (2009), who showed the presence of
prediction errors from two simultaneously performed tasks in
the VS. That study concentrated on effector-specific decomposi-
tion of prediction errors rather than their superposition and
showed that activity was strongest for prediction errors from the
task performed by the contralateral hand. We add to these results
by showing that prediction errors are not only represented simul-
taneously, but can also span different temporal resolutions, al-
lowing hierarchical decomposition of learning and decision
making.

We provide functional evidence against the unitary nature of
prediction errors and suggest that, in more realistic learning sce-
narios, several prediction errors may be used to learn in parallel at
different levels of the task. This finding contrasts with previous
empirical work suggesting that prediction errors are scalar and
unitary, resulting from dopamine neurons signaling a single,
global difference between obtained and expected reward (Schultz
et al., 1997; Glimcher, 2011). However, it does not contradict
those previous data: in the simple tasks examined previously,
only one prediction error signal was available and required for
learning at each point in time. Our finding of two concurrent
prediction error signals suggests that these prior results are a
special case of the function of prediction errors in the RL machin-
ery of the basal ganglia, in which the VS and VTA are key players,
and that a more detailed parcellation may be uncovered by using
more complex tasks.

Indeed, our present results and previous results suggest that
the so-called “scalar prediction error signal” may be more of a
vector-valued signal, as required by a number of RL extensions
such as learning of successor representations (Dayan, 1993;
Hayes et al., 2011), factored representations (Koller and Parr,
1999), and HRL (Barto and Mahadevan, 2003; Botvinick et al.,
2009). However, this raises the problem of spatial credit assign-
ment: how are the different prediction error signals distinguished
in downstream areas to learn separate reward predictions? Does
this rely on a “hard-wired” anatomical separation of predictions
for different levels of task hierarchy (which implies a limit on the
number of nested levels that can be learned about at each given
time), or is the decomposition of prediction errors more flexible?
That we did not find a consistent anatomical separation of the
two prediction errors across participants may support the latter
option, but given the null effect nature of our results, more re-
search on this question is clearly warranted.

In conclusion, our results have two key implications: the first
is that more than one concurrent prediction error signal may be

calculated and used for learning in the brain. This may not be
surprising from a theoretical point of view, because learning
about two (or more) separate reward predictions within any
given scenario requires the calculation of two separate prediction
errors. Such a dual-task situation may be common in daily life.
However, RL tasks examined previously in laboratory settings did
not test this prediction directly. The second implication is that
the human brain can calculate prediction errors that temporally
span over several states and actions, a fundamental element in
existing HRL models (Botvinick et al., 2009). The fact that a
casino-level prediction error was apparent at the end of the casino
play suggests that the predicted value of the casino was main-
tained in memory throughout the casino play (which included
two lower-level slot machine plays) to be compared with the
actual outcome of the casino (see Materials and Methods and Fig.
2). Our task cannot determine whether the value, or rather the
state (which casino was chosen), was maintained in memory,
because these are equivalent from the point of view of prediction
errors. Moreover, our task design purposefully made it easy to
remember the current high-level state throughout the trial be-
cause we were interested in uncovering these temporally ex-
tended prediction errors. However, that a prediction error was
computed abstracting over intervening actions and state transi-
tions is of major interest to understanding how high-level deci-
sion making is accomplished in the brain.
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