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Efficient spatial navigation requires not only accurate spatial knowledge but also the selection of appropriate strategies. Using a novel
paradigm that allowed us to distinguish between beacon, associative cue, and place strategies, we investigated the effects of cognitive
aging on the selection and adoption of navigation strategies in humans. Participants were required to rejoin a previously learned route
encountered from an unfamiliar direction. Successful performance required the use of an allocentric place strategy, which was increas-
ingly observed in young participants over six experimental sessions. In contrast, older participants, who were able to recall the route when
approaching intersections from the same direction as during encoding, failed to use the correct place strategy when approaching
intersections from novel directions. Instead, they continuously used a beacon strategy and showed no evidence of changing their behavior
across the six sessions. Given that this bias was already apparent in the first experimental session, the inability to adopt the correct place
strategy is not related to an inability to switch from a firmly established response strategy to an allocentric place strategy. Rather, and in
line with previous research, age-related deficits in allocentric processing result in shifts in preferred navigation strategies and an overall
bias for response strategies. The specific preference for a beacon strategy is discussed in the context of a possible dissociation between
beacon-based and associative-cue-based response learning in the striatum, with the latter being more sensitive to age-related changes.

Introduction
Everyday navigation can be based on different strategies. The
hippocampus plays a key role in cognitive map or place strategies
that rely on allocentric processing, whereas the parietal cortex
and striatal circuits are involved in route or response strategies
(McDonald and White, 1994; Wolbers et al., 2004; Burgess,
2008). Aged rodents show deficits in tasks that rely on allocentric
cues, whereas response strategies are less affected (Begega et al.,
2001). Moreover, even when successfully trained on both place
and response strategies, aged mice still show a preference for
response strategies, suggesting an age-related increase in reliance
on extrahippocampal systems to guide navigation (Nicolle et al.,
2003).

Such age-related navigational impairments are likely to be
related to the vulnerability of the hippocampus and surrounding
structures to neurodegenerative processes (Lister and Barnes,
2009; Stranahan and Mattson, 2010). Given that similar physio-
logical and morphological changes have been documented in ag-

ing humans (Raz et al., 2005, Yankner et al., 2008), it is not
surprising that difficulties in using place strategies have been ob-
served in older adults (Moffat and Resnick, 2002, Moffat et al.,
2007, Iaria et al., 2009, Harris and Wolbers, 2012, Wiener et al.,
2012). However, at present, the precise consequences of these
changes in navigational computations are unknown.

In this study, we used a novel route-learning paradigm (1) to
test whether cognitive aging does indeed lead to a shift in pre-
ferred navigation strategy and (2) to precisely identify the type of
response strategy used by older adults. Response strategies are
often conceptualized as a series of stimulus–response pairs in
which landmarks serve as cues that become associated with mo-
tor responses defined relative to the body axis (“Turn left at the
post office”; associative cue strategy). However, humans also use
beacon-based strategies in which movement responses toward a
landmark brings one closer to the goal but that do not require
explicit encoding of directional information or motor responses
(“Go toward the post office”; Waller and Lippa, 2007). Although
both response strategies rely on striatal processing, some studies
suggest a dissociation, with the dorsal and dorsolateral striatum
implicated in associative-cue learning (Featherstone and
McDonald, 2004, 2005) and the ventral and dorsomedial stria-
tum involved in beacon-based strategies (Devan and White,
1999). Given that the dorsal striatum might be more sensitive to
age-related neurodegeneration (Tupala et al., 2003), aged hu-
mans could be expected to show a preference for beacon-based
over associative-cue-based strategy.

To test the hypothesis that cognitive aging not only results in a
shift away from allocentric strategies but in a specific preference
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for beacon-based strategies, we developed a novel experimental par-
adigm: participants first learned a route along a number of intersec-
tions and were then asked to rejoin the original route approaching
the intersections from different directions. Trials in which partici-
pants approached the intersections from a direction different from
that during training (see Fig. 1) allowed us (1) to compare the use
and adoption of route-learning strategies between young and
older participants and (2) to test for specific preferences for
beacon-based strategies in older participants.

Materials and Methods
Vizard 3.0 (WorldViz) was used to create the virtual environment and
the route-learning task, which were presented on a 24-inch widescreen
computer monitor.

Participants. Forty-seven participants [23 younger (12 females; mean
age, 20.8 years); 24 older (12 females; mean age, 73.8 years)] took part in
the experiment. The Montreal Cognitive Assessment (MoCA;
Nasreddine et al., 2005) was administered to all participants to screen for
mild cognitive impairment (MCI). One older participant was excluded
based on the recently recommended MoCA cutoff score for MCI of 23
(Luis et al., 2009). During the analysis, one young and an additional six
older participants were excluded because they did not successfully learn
the route (for details, see Results). Mean age of the remaining 17 older
participants (eight females) was 74.7 � 5.03 years, and their mean MoCA
score was 26.58 � 1.94; the mean age of the remaining 22 younger par-
ticipants (11 females) was 20.73 � 1.12 years, and their mean MoCA
score was 28.14 � 1.21. Participants were paid £6/h to partake in the
study, which took 60 –90 min to complete.

Procedure. Participants learned and were tested on one route that con-
sisted of four four-way intersections (two left turns, two right turns; Fig.
1). Each of six experimental sessions involved a training phase and a
subsequent test phase. During each training phase, participants were
twice passively transported along the route (speed, 5 m/s) and were in-
structed to memorize the route. Each intersection along the route was
characterized by two unique landmarks located in diagonally opposite
corners, unambiguously identifying the intersection as well as the direc-
tion from which it was approached (Fig. 1). Including black fog in the
environment ensured that only one intersection was visible at any time.
In the test phase, participants were guided toward the intersections
within the route and were asked to indicate the direction in which the
original route proceeded by pressing the left, right, or up (i.e., straight)
arrow key. Both responses and response times were recorded. In the test
phase, each of the four intersections was either approached from the

same arm as during training (resulting in four
same-direction trials) or— excluding the arm
where the route proceeded during training—
from the two remaining arms (resulting in
eight different-direction trials), adding up to
12 trials per session. To avoid participants
memorizing a series of movement directions
during training (right–left–left–right), the 12
test trials were presented in randomized order.
Crucially, same- and different-direction trials
test different abilities: same-direction trials test
participants’ ability to successfully replicate the
route, i.e., to replicate the direction changes
experienced during the learning phase. These
trials can therefore be considered a typical
measure of route knowledge (Head and Isom,
2010) and can be solved using any of the three
navigation strategies discussed above (beacon,
associative cue, and configuration). In con-
trast, different-direction trials cannot be solved
simply by associative cue-based or beacon-
based strategies (Wiener et al., 2012). Instead,
to unambiguously identify the direction in
which the original route proceeded, these trials
require allocentric place learning, i.e., the pro-
cessing of the spatial configuration of local cues

(landmarks) in relation to the goal arm. We refer to this allocentric place
strategy as the configuration strategy. For two of the different-direction
trials (see example depicted in Fig. 1), all three strategies produced a
different response. By analyzing participants’ responses for these
different-direction trials for each of the six experimental blocks, we cal-
culated the number of responses in line with each strategy, which allowed
us to assess individual strategy preferences and changes thereof over the
course of the experiment.

Before the experiment, participants were informed that they would
approach the intersections from different directions and that they should
respond as quickly and accurately as possible. To prevent learning from
feedback, participants did not receive immediate feedback after making a
decision in the test phase. However, repeated training sessions allowed
participants to learn the spatial relationship of the local landmarks and
the goal arm over the course of the experiment.

Results
Route-learning performance—i.e., the ability to repeat the
learned route—was assessed in same-direction trials in which
young participants performed better than older participants
(81.13 vs 64.07% correct responses; t(35.64) � 3.01, p � 0.01). The
fact that variance in the older age group was higher than in the
younger age group (Levene’s test, F(44) � 6.19, p � 0.02) suggests
that some of the older participants found the task hard, whereas
others performed well. Using � 2 tests, we tested whether individ-
ual participants’ performance for same-direction trials signifi-
cantly exceeded chance-level performance (with three possible
movement directions, chance level was 33% or 8 of 24 same-
direction trials). In fact, performance for six older participants
did not exceed chance level, whereas performance of only one
younger participant did not exceed chance level. Given that the
aim of this study was the investigation of aging-induced shifts in
route-learning strategies and the identification of the exact type
of strategy used, we excluded these participants because they did
not successfully learn the routes in the first place.

Because participants were selected based on their perfor-
mance on the same-direction trials, included participants in both
age groups were able to learn the route (Fig. 2). However, the
older participant group showed specific deficits when approach-
ing an intersection from an arm different from that experienced
during encoding (Fig. 2). A general linear model with age (young,

Figure 1. Left, Screenshot of one intersection; middle, schematic overview of the training route; right, two of the test trials. In
same-direction trials, the intersections are approached from the same arm as during training: all strategies result in correct
responses. In different-direction trials, the intersection is approached from an arm different from that of training. In the depicted
example, the three strategies generate different responses; the associative cue strategy [“Turn right at A (or B)”] leads to a right
turn, the beacon strategy (“Turn toward B”) produces a left turn, whereas only the configuration strategy, relating the goal arm to
the configuration of local landmarks, yields the correct response. Note that our definition of beacon strategy involves a turning
response (“Turn toward”), whereas other definitions use more general responses (“Move toward”; Waller and Lippa, 2007).
However, in the current paradigm, in which single landmarks are always adjacent to two arms, this would lead to ambiguity.
Specifically, participants should also make “straight” responses on same-direction trials, which only happened in 3% of the
same-direction trials, strongly suggesting that they adopted a “Turn toward” beacon strategy, thus eliminating any ambiguity.
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old) and gender as between-group factors
and approach direction (same, different)
and session (1– 6) as within-subjects fac-
tors revealed that younger participants
performed better than older participants
(main effect of age, F(1) � 20.601, p �
0.001), that performance was better when
approaching intersections from the same
direction as during training than from a
different direction (main effect of ap-
proach direction, F(1) � 142.49, p �
0.001), and that performance increased
across sessions (main effect of session,
F(5) � 18.981, p � 0.001). In contrast, we
did not observe a significant effect of gen-
der (F(1) � 0.012, p � 0.91).

Of the two-way interactions, the ses-
sion � age (F(5) � 5.682, p � 0.001) and the approach � age
(F(1) � 16.961, p � 0.001) interactions were significant. Impor-
tantly, a significant three-way approach direction � session �
age interaction (F(5) � 5.356, p � 0.001) suggested that both
groups differed in how performance differences between same
and different-direction trials evolved across the six sessions.
Planned contrasts revealed that both groups showed a linear per-
formance increase on same-direction trials (young, F(35) � 16.56,
p � 0.001; old, F(35) � 7.675, p � 0.009), whereas only the young
group showed this effect for the different-direction trials (young,
F(35) � 80.026, p � 0.001; old, F(35) � 0.147, p � 0.70; interaction
between linear increase and age, F(35) � 31.492, p � 0.001). To-
gether, these results demonstrate that performance differences
between age groups cannot be explained by a nonspecific perfor-
mance decrement or inattentiveness in the older group. Rather,
older adults exhibited selective problems with using the correct
allocentric place strategy throughout the experiment.

To assess strategy preferences, we calculated the percentage of
responses in line with the three strategies (Fig. 2, right) for those
different-direction trials that distinguished between all strategies
(see example in Fig. 1). Because performance for different-
direction trials improved over experimental sessions for young
participants, so did usage of the correct allocentric navigation
strategy. In contrast, the older participant group showed very
little change in strategy use over the six experimental sessions. To
quantify strategy preferences and changes thereof, we ran sepa-
rate ANOVAs for each of the three strategies with age (young,
old) as a between-group factor and session (1– 6) as a within-
subjects factor, and the percentage of trials the corresponding
strategy was used as the dependent variable. Young participants
relied more strongly on the configuration strategy than older
participants (F(1,37) � 38.42, p � 0.001). The main effect of ses-
sion (F(5,37) � 15.32, p � 0.001) was driven by the strong increase
in configuration strategy use by the younger participants, which
is reflected in the significant age � session interaction (F(5,37) �
8.63, p � 0.001). The older participant group, compared with
young participants, relied more strongly on the beacon strategy
(F(1,37) � 19.59, p � 0.001). Although there was a significant
main effect of session for beacon strategy usage (F(3.62,133.90) �
2.99, p � 0.03), the interaction did not reach statistical signifi-
cance (F(3.62,133.90) � 2.37, p � 0.06). The older participants also
used the associative cue strategy more than the young partici-
pants (F(1,37) � 6.30, p � 0.02). However, usage of the associative
cue strategy did not change over experimental sessions
(F(3.92,145.10) � 1.25, p � 0.29), and there was no significant in-

teraction between age group and session (F(3.92,145.10) � 0.99,
p � 0.41).

To investigate which of the two response strategies the older
group preferred, we compared the percentage of responses in line
with the beacon strategy with those in line with the associative cue
strategy. This revealed that, as a group, older participants showed
an overall preference for the beacon strategy (t(16) � 3.54, p �
0.01). This preference already existed in the first experimental
session (t(16) � 3.16, p � 0.01) and did not change across the
experiment (Fig. 2). Such a systematic preference for one strategy
strongly suggests that the poor performance of the older group
for different-direction trials was not unspecific or a result of
different-direction trials being more difficult than the same-
direction trials: in this case, we would have expected random
behavior but no systematic bias.

Finally, the use of different navigation strategies by the two age
groups should lead to a specific response time pattern: both the
beacon and the associative cue strategy state that a turning re-
sponse (beacon, “Turn toward …”; associative cue, “Turn left/
right at …”) is activated on the recognition of the corresponding
place or landmark. As long as the place is identified, this process
is independent of approach direction. In contrast, the configura-
tion strategy requires the arrangement of the landmarks at the
intersections to be encoded. If a place is approached from a dif-
ferent direction, the observer needs to use the landmark config-
uration to determine their facing direction. In addition,
computing the correct movement direction involves a second
step: either the direct computation of the correct response from
an allocentric representation of the intersection or a mental
transformation of the observer’s current viewpoint to match the
one experienced during encoding. These additional processing
steps should lead to an increase in response time when approach-
ing intersections from a novel direction, which should be greater
for the young because more participants in that group used the
configuration strategy. In accordance with this prediction, a
repeated-measures ANOVA not only revealed significant main
effects of approach direction (F(1,37) � 42.79, p � 0.001) and age
(F(1,37) � 26.53, p � 0.001) on response time but also a significant
interaction between age group and approach direction (F(1,37) �
9.80, p � 0.01; Fig. 3). Post hoc t tests revealed shorter response
times for same-direction trials than different-direction trials
for the young and old participant groups (young, p � 0.001;
old, p � 0.02). Although it may seem surprising that overall
older participants responded more quickly than younger par-
ticipants, this can be explained by the larger proportion of

Figure 2. Left, Performance for same- and different-direction trials and both age groups for the six experimental sessions
(mean � SE); right, strategy use for different-direction trials for both age groups over the course of the experiment.
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younger participants using the more time-consuming allocen-
tric place strategy.

Discussion
We used a novel paradigm to investigate the effects of cognitive
aging on the selection and adoption of navigation strategies. Our
paradigm differs from other paradigms used in aging research,
such as the (human) Morris water maze and the Y-maze (Rodgers
et al. 2012), in a number of important aspects. First, participants
learn a route consisting of multiple intersections, which makes it
a somewhat more natural task. Second, our task not only allows
for the investigation of initial strategy selection biases but also of
shifts in bias, which are particularly sensitive measures in detect-
ing age-related neurodegeneration (Nicolle et al., 2003). Finally,
in contrast to previous studies (Rodgers et al., 2012) addressing
strategy preferences in older adults, our paradigm allows distin-
guishing between associative cue-based and beacon-based re-
sponse strategies.

In the experiment, participants were required to follow a pre-
viously learned route encountered from an unfamiliar direction,
and, to do so successfully, they needed to use an allocentric place
strategy. Our younger participants showed clear evidence for
adopting this superior navigation strategy. In contrast, those
older participants who were able to successfully recall the route
when approaching intersections from the same direction as dur-
ing training showed a consistent preference for a beacon-based
strategy and were unable to use the appropriate place strategy,
resulting in poor performance when rejoining the learned route
from a novel direction. Given that allocentric spatial processing
required for place strategies is thought to critically depend on
hippocampal computations, we propose that age-related hip-
pocampal degeneration (Raz et al., 2005) induced a shift in pre-
ferred navigation strategies toward beacon-based strategy in
older participants.

In contrast to the rapid learning for the same-direction trials,
initial performance in young participants was poor on trials when
an intersection was approached from an unfamiliar direction.
However, the subsequent improvement demonstrates that this

group gradually developed an understanding of the spatial con-
figuration of each intersection and the position of the goal arm,
which enabled them to use the correct configuration strategy.
This strategy might have involved additional mental transforma-
tions of one’s viewpoint or a direct access of the allocentric location
of the goal arm, both of which have been linked to observer-
independent spatial computations in the hippocampal formation
(King et al., 2002; Wolbers and Büchel, 2005).

Consistent with recent findings (Head and Isom, 2010), the
old age group showed an overall route-learning deficit, i.e., when
repeating the route as experienced during training. A higher per-
formance variability across participants suggested that this effect
was primarily driven by a subgroup who were unable to learn the
route. These underperforming older participants were removed
from the final dataset, after which both age groups performed
well on same-direction trials, indicating similar route-learning
abilities. However, in sharp contrast, the performance of the
older group on the different-direction trials remained at chance
throughout the experiment, demonstrating that even the older
participants who reproduced the route successfully were unable
to use a place strategy. Instead, they showed a preference for a
beacon-based strategy and showed no evidence of changing their
behavior across the six sessions.

Rodgers et al. (2012) recently showed a similar age-related
bias for response strategies in a virtual Y-maze. Critically, the
probe trial was administered after subjects had shown consistent
performance over five learning trials. As a consequence, the re-
sponse bias could be based on the suggested inability to use place
strategies. However, given that age-related deficits in strategy
switching are well established in various cognitive domains (Kray
and Lindenberger, 2000), it could also reflect an inability to
switch from a firmly established response strategy to a place strat-
egy in the probe trial. In our study, we observed a bias for a
beacon strategy from the first session onward, with very little
change occurring over the course of the experiment. These results
make the strategy switching account unlikely and point instead to
an age-related deficit in processing allocentric cues.

Response strategies are thought to rely on striatal circuits,
whereas allocentric processing relies heavily on spatial computa-
tions in the hippocampal formation (Hartley et al., 2003; Doeller
et al., 2008). Critically, the hippocampus has been shown to take
over route-based navigation when the caudate is dysfunctional
(Voermans et al., 2004), but the striatum is unable to take over
allocentric navigation after hippocampal lesions (Goodrich-
Hunsaker et al., 2010). As a consequence, because the hippocam-
pus is particularly sensitive to the deleterious effects of aging
(Yankner et al., 2008), the preferred use of response strategies
might reflect an inability to successfully compensate for impaired
hippocampal computations that are necessary for processing al-
locentric cues. Instead, our older participants relied on naviga-
tional strategies mediated by extrahippocampal structures, which
we presume include the striatum.

Going beyond a general bias toward response strategies, older
adults showed a consistent preference for a beacon-based strategy
over an associative-cue-based strategy. This specific preference
might be related to a functional dissociation between the medial/
ventral and the lateral/dorsal striatum (Voorn et al., 2004). In
rodents, the ventral and dorsomedial striatum receives extensive
convergent input from multiple sensory and association areas of
the neocortex and the limbic system, whereas the dorsal and dor-
solateral striatum has a distinct topographic pattern of connec-
tions with somatosensory and motor areas (McGeorge and Faull,
1989). Similarly, in primates, the ventral striatum encompasses

Figure 3. Average response times for same- and different-direction trials and both age
groups. Data are collapsed across the experimental sessions (mean � SE).

Wiener et al. • Bias for Response Navigation Strategies in Aging Humans J. Neurosci., April 3, 2013 • 33(14):6012– 6017 • 6015



the medial wall of the caudate nucleus because of its inputs from
regions such as the orbitofrontal cortex but not from primary or
secondary motor cortices (Nakano et al., 2000; Haber, 2003). In
contrast, the lateral part of the caudate receives cortical afferents
from motor cortical areas as well as the somatosensory cortex.
Hence, it is commonly thought of as part of the dorsal (or senso-
rimotor) striatum (Nakano et al., 2000). Although some func-
tional neuroimaging studies point to a different homology
(Balleine and O’Doherty, 2010), the patterns of connectivity in-
dicate that the dorsal/dorsolateral striatum is more important for
motor response learning as required for the associative cue strat-
egy, whereas the ventral/dorsomedial striatum could be more
important for beacon strategies.

Consistent with this anatomical dissociation, lesion studies in
rodents implicate the dorsolateral striatum in stimulus–motor
response learning (Packard and McGaugh 1996). Moreover, dor-
somedial/ventral striatum lesions do not affect stimulus–motor
response learning to the same extent as dorsal/dorsolateral le-
sions (Yin and Knowlton, 2004). Finally, dorsomedial lesions
affect the learning of a beacon strategy, whereas dorsolateral le-
sions do not (Devan and White, 1999). However, these findings
are reversed once the animal has been overtrained on the task,
which suggests that the dorsomedial striatum might only be im-
portant for learning a beacon strategy, which was addressed in
our experiment as well. In summary, there is ample evidence for
a role of the dorsal/dorsolateral striatum in stimulus–motor re-
sponse learning and somewhat weaker evidence for a role of the
dorsomedial/ventral striatum in beacon-based navigation.

Given this anatomical and functional dissociation within the
striatum, what could explain the bias for beacon over associative
cue strategies in older adults? In humans, the caudate shows sig-
nificant age-related neurodegeneration at similar rates compared
with the hippocampus (Raz et al., 2005). Furthermore, dorsal
striatal dopamine transporters and receptors appear to be more
vulnerable to age-related decline than their ventral striatal coun-
terparts (Tupala et al., 2003; Kim et al., 2011). Although we are
not aware of any studies testing for a potential dissociation
between the dorsolateral and dorsomedial striatum, we spec-
ulate that stimulus–motor response learning processes as re-
quired for the associative cue strategy might be similarly
affected by aging as hippocampus-dependent place-based
processes, whereas beacon-based navigation might be more
resistant to age-related change.

To our knowledge, our study is the first to directly investigate
the effects of cognitive aging on different response strategies.
Older adults have been reported to be more likely to point out
landmarks than turns as providing the most useful information
for route navigation (Lipman, 1991). In addition, Alzheimer’s
disease patients appear to have intact representations of objects
encountered during route learning, but they fail to integrate ob-
ject and spatial information (Kessels et al., 2011). These findings
are consistent with our findings, indicating that using landmarks
as beacons—without the need to associate any directional/motor
information— could be more resistant to age-related decline.
This would also explain correlations between route-learning per-
formance and changes in caudate volume during aging in route-
learning paradigms that do not allow for beacon-based strategies
(Head and Isom, 2010).

Together, we demonstrated an age-related deficit in allocen-
tric processing, which may severely impair navigation when ap-
proaching a location on a known route from an unfamiliar
direction. Importantly, of the egocentric response strategies that
our novel task allowed us to study, older people showed a prefer-

ence for the beacon strategy over the associative cue strategy. In
support of animal findings, this preference points to a dissocia-
tion between beacon- and associative-cue-based learning in the
striatum, with the latter being more sensitive to age-related
changes. These findings not only provide additional insight into
the navigational difficulties observed in normal cognitive aging,
but they could also suggest directions for the development of
novel navigational aids for elderly users.
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