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Imbalance between Excitation and Inhibition in the
Somatosensory Cortex Produces Postadaptation Facilitation

Katayun Cohen-Kashi Malina, Muna Jubran, Yonatan Katz, and Ilan Lampl
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel

Adaptation is typically associated with attenuation of the neuronal response during sustained or repetitive sensory stimulation, followed
by a gradual recovery of the response to its baseline level thereafter. Here, we examined the process of recovery from sensory adaptation
in layer IV cells of the rat barrel cortex using in vivo intracellular recordings. Surprisingly, in approximately one-third of the cells, the
response to a test stimulus delivered a few hundred milliseconds after the adapting stimulation was significantly facilitated. Recordings
under different holding potentials revealed that the enhanced response was the result of an imbalance between excitation and inhibition,
where a faster recovery of excitation compared with inhibition facilitated the response. Hence, our data provide the first mechanistic
explanation of sensory facilitation after adaptation and suggest that adaptation increases the sensitivity of cortical neurons to sensory
stimulation by altering the balance between excitation and inhibition.

Introduction

Adaptation is a prevalent property of sensory systems across dif-
ferent species and modalities and is typically associated with an
attenuation of neural activity in response to sustained or repeti-
tive stimulation. Although the precise functional role of adapta-
tion is unclear, it is thought to play a fundamental role in
information processing (Wark et al., 2007) and in behavioral
habituation (Gutfreund, 2012). Adaptation allows optimal re-
sponse tuning to particular aspects of the stimulus by shifting the
input—output relations of sensory circuits even when the overall
conditions of the sensory environment are changing (Adorjan et
al., 1999; Muller et al., 1999; Maravall et al., 2007). In addition, by
suppressing responses to familiar stimuli, adaptation enhances
the detection of novelty (Dragoi et al., 2002; Ulanovsky et al.,
2003). These views support the notion that adaptation acts to
suppress neuronal responses when stimulation persists.

The degree of adaptation and the time course for its recovery
are very dynamic (Kohn, 2007) and may change across different
cell types and in a manner that depends on both the intensity and
duration of the adapting stimulation (Bonds, 1991; Greenlee et
al., 1991; Nelson, 1991; Muller et al., 1999; Fairhall et al., 2001;
Lundstrom et al., 2008; Wark et al., 2009; Abolafia et al., 2010;
Ganmor et al., 2010; Lundstrom et al., 2010). Interestingly, psy-
chophysical studies have shown that periodic tactile stimulation
enhances human performance in amplitude, frequency, and spa-
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tial discrimination tasks when a test stimulus closely follows re-
petitive stimulation (Goble and Hollins, 1993, 1994; Harris et al.,
2002; Tannan etal., 2006). This implicates a role for adaptation in
increasing rather than suppressing the sensitivity of the somato-
sensory system to a test stimulus presented after adaptation.

Here, we investigated the time course of neuronal recovery
from adaptation in the rodent’s vibrissal system. This system
serves as a model for studying neuronal processes in sensory sys-
tems in general and in the somatosensory system in particular
(Petersen, 2007). Rats gather tactile information by sweeping
their whiskers against objects at a rate of 5-20 Hz (Carvell and
Simons, 1990; Dassonville, 1995). Within this frequency range,
neuronal cells in the barrel cortex exhibit slow and quite substan-
tial adaptation (Ahissar et al., 2000; Khatri et al., 2004; Katz et al.,
2006; Heiss et al., 2008; Ganmor et al., 2010), which probably
results from short-term depression of thalamocortical synapses
(Chung et al., 2002; Katz et al., 2006).

In whole-cell patched neurons from layer IV and its vicinity in
the barrel cortex of anesthetized rats, we studied neuronal re-
sponses to a sensory stimulant after repetitive whisker deflection.
Surprisingly, despite the adaptation induced by repetitive
stimulation of the principal whisker, we found not only that
the response to subsequent whisker deflection recovered
shortly afterward, but also that ~30% of the neurons exhib-
ited a significantly enhanced response during the first few
hundred milliseconds after adaptation. By recording the cells
under different holding currents, we found that the facilitated
test response was associated with delayed recovery of inhibi-
tion relative to excitation.

Materials and Methods

Animal preparation. All procedures involving animals were reviewed and
approved by the Weizmann Institutional Animals Care Committee. An-
imal surgeries and in vivo recordings were performed as previously de-
scribed (Katz et al., 2006). Briefly, recordings were made on young adult



8464 - J. Neurosci., May 8, 2013 - 33(19):8463— 8471

Wistar female rats (4—7 weeks old). For intracellular recording from the
barrel cortex, after initial anesthesia with ketamine (100 mg/kg) and
xylazine (10 mg/kg), a tracheotomy was made and the animals were
mounted in a stereotaxic device and artificially respirated with a mixture
of halothane (0.5-1%) and oxygen-enriched air. In a few experiments (6
cells recorded from 3 animals), isofluorane (0.5-1.5%) was used. As no
qualitative differences were found, these cells were pooled together with
the rest of the recorded neurons. A craniotomy (~1 mm in diameter) was
made above the barrel cortex (centered 2.5 mm posterior and 5.5 mm
lateral to the bregma) and a portion of the dura mater was carefully
removed. For intracellular thalamic recordings, animals were main-
tained under ketamine anesthesia (50 mg/kg, administrated at a rate of
0.3 ml/h). The levels of end-tidal CO, and heart rate (250—450 beats/
min) were monitored throughout the experiments. Body temperature
was kept at 37°C using a heating blanket and rectal thermometer.

Cortical patch recordings. Borosilicate micropipettes were pulled to
produce electrodes with a resistance of 4—10 M) when filled with an
intracellular solution containing (in mm) as follows: 136 K-gluconate, 10
KCI, 5 NaCl, 10 HEPES, 1 MgATP, 0.3 NaGTP, and 10 phosphocreatine
(310 mOsm). For experiments in which current was injected to reveal
inhibitory synaptic potentials, QX-314 (2 mMm) was added to prevent
action potentials. Intracellular signals were acquired using an Axoclamp-
900A amplifier (Molecular Devices) and low passed at 3 kHz before being
digitized at 10 kHz.

Thalamic recordings. Intracellular recordings were performed using
sharp electrodes filled with 2 M K-acetate and 20 mm QX-314 with a
resistance of 60—100 M(). The craniotomy was centered 3 mm lateral and
3 mm posterior of the bregma over the ventral posteromedial nucleus
(VPM). Signals were amplified using an Axoclamp-2B amplifier, low
passed at 3 kHz, and digitized at 20 kHz.

Whisker stimulation and protocols. Whiskers were trimmed to a length
of 1020 mm. The principal whisker was inserted into a 2-mm-plastic
cone glued to a needle attached to the piezoelectric wafer (T220-H4—
203Y; Piezosystems), which was driven by a homemade controller. Whis-
ker displacement near the tip of the needle was measured off-line using
an optical displacement measuring system (optoNCDT 1605; Micro-
Epsilon). A fast-rising voltage command was used to evoke a fast whisker
deflection with a constant rise time of ~1 ms followed by a 20 ms ramp-
down signal. Because of the fixed rise time, amplitude and speed of
deflection grow together with the magnitude of the voltage command,
following a quasi-linear relationship. The stimulation velocity and the
corresponding deflection amplitude (15-65 mm/s, 15-75 wm ampli-
tude) were adjusted to evoke clear subthreshold responses in the cortical
cells.

In each trial, a train of 10 stimuli at 20 Hz (50 ms interstimulus inter-
val) was applied. The final stimulus in the train was followed 50-1250 ms
later by a single test stimulus (Fig. 1A4).

Data analysis. The recordings were analyzed using custom software
written in MATLAB (The MathWorks). Postsynaptic potential (PSP)
amplitude was measured as the difference between the peak membrane
potential response and the mean baseline value obtained over the 10 ms
before stimulation. Spike counts were calculated as the sum of spikes
observed during the 5-45 ms period after whisker stimulation. For
neurons in which QX-314 was not used, subthreshold responses were
calculated after digital removal of the spikes, which were replaced
with a spline interpolation based on the 5 samples on each side of the
action potential.

As explained above, for each cell, we applied a test stimulus at different
time intervals after termination of the adapting stimuli and selected the
time interval in which the test response was the largest. To prevent bias in
determining whether the largest test response (of 712 others) was higher
than the control response, we used the bootstrap method to calculate the
average response to the control stimulus. Briefly, all responses to the first
deflection of the adapting train stimuli (“control stimulus”) were pooled
(e.g., the 140 values that were taken from 20 repeats of seven test trials).
From this set, we randomly drew (with repetitions) seven equal groups,
and their means were computed. The largest mean was selected before
performing a new iteration of 500 values. The largest average test re-
sponse was considered significant if its value exceeded the confidence
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limits of the average control response, computed from the 500 values
selected. To establish the significance level when comparing two sets of
magnitudes, we used either the Wilcoxon signed rank test for paired data
or the Mann—Whitney U test (Wilcoxon rank—sum test) for nonpaired
values. A p value of <0.05 was considered to indicate a statistically sig-
nificant difference. Based on the above measurements, a recovery index
was calculated as follows:

Rt — Rc
Rt + Rc

where Rt is the test response and Rc is the control response.
Except where otherwise indicated, data are presented as mean * SEM.

Results

Facilitation of sensory response after an adapting stimulus
Intracellular recordings were obtained from 29 neurons in the
primary somatosensory cortex of anesthetized rats. The aver-
age recording depth was 878 * 22 um from the pia surface
(range, 760-1200 wm), well within layer 4 and its vicinity
(Brecht and Sakmann, 2002; Heiss et al., 2008). The principal
whisker was mechanically stimulated at 20 Hz (adapting stim-
ulus), with the first stimulation in the train considered the
control stimulus. The test stimulus had the same shape and
amplitude of the adapting stimuli and was delivered 50-1250
ms after they were completed.

The average responses of a neuron to a test stimulus presented
at four different time intervals after the repetitive train are pre-
sented in Figure 1A, B. As expected from previous studies, repet-
itive stimulation induced profound adaptation of both the
synaptic response (Fig. 1A) and the firing response (Fig. 1B) of
the cell. For this cell, the sensory response fully recovered 250—
350 ms after the adaptive train (Fig. 1C,D). For each recorded
neuron, a recovery index was calculated at each time interval by
subtracting the average amplitude of the control response from
the average amplitude of the synaptic response to the test stimu-
lation and dividing the difference by the sum of both (Fig. 1E; see
Materials and Methods). The time course of this index, when
averaged across the population (Fig. 1E, black circles), displayed
afast response recovery after adaptation and was similar to that of
the cell shown in Figure 1A-D. However, when looking at the
entire time course of each neuron separately (Fig. 1E, colored
circles), we found that, in some cells, the recovery index at par-
ticular time intervals was >0, indicating that the test response
exceeded the control response and suggesting that, for some of
the neurons, the response was facilitated. For different neurons,
the facilitation occurred at different time intervals after termina-
tion of the adapting stimuli.

Figure 2 presents two cells that demonstrated a significantly
facilitated response to a test stimulus after repetitive stimulation
of the principal whisker. Facilitation at particular time intervals
was clearly evident both in the subthreshold responses (increases
of 109% and 21%, as shown Figure 2A and Figure 2E, middle
rows, p = 8*10™'* and p = 0.005, respectively) and in the peak
spike count (reaching an increase of 119% and 42% for the time
intervals showed in Figure 2B and Figure 2F, respectively). In
neurons where a facilitated response to the test stimulation was
found, the time interval for maximal facilitation was, in most
cases, the same for both the subthreshold responses and the spike
count. See Figure 2C, D and Figure 2G, H for the response curves
of the neurons illustrated in Figure 2A, B and Figure 2E, F, re-
spectively. Test responses peaked at different times for these two
cells as well as for others (Fig. 1E), and this may explain why the
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Figure 1. Rapid recovery of sensory response after adaptation. A, An average subthreshold response of a neuron during 20 Hz

adapting whisker stimulation (vertical black lines) followed, at four different time intervals, by a single test whisker stimulus
(vertical gray line). Spikes were removed digitally before the data were averaged. B, Corresponding average spike peristimulus
time histograms extracted from the same neuron as shown in A. Bin size, 10 ms. €, Average peak voltage of the response to a test
stimulus delivered at different time intervals after termination of the adapting stimuli (mean == SEM, the same cell as A; recovery
time was measured from the last stimulus of the adapting train). D, Average spike count (sum of spikes in a window of 5—45 ms
after whisker stimulation) calculated for control whisker stimulation (gray line) and test stimulation delivered at different time
intervals after the adapting train. E, Recovery indices for the population average (black circles) and for all cells (colored circles)

calculated for a test stimulus delivered at different time intervals after the adapting train.

population-averaged data showed no clear peak at a particular
time interval after the adapting stimulation (Fig. 1E).

We compared the control response with the maximal test re-
sponse, rather than with the response at a fixed recovery time,
because of the variability in the time at which maximum facilita-
tion occurred in different neurons (Fig. 3A; n = 29). To prevent
any statistical bias when comparing the maximal test response
with the control response, the control response was calculated
using bootstrap analysis (see Materials and Methods). Our anal-
ysis indicated that, for 62% (18 cells) of the cells, the maximal

Recovery time (ms)

nomenon in individual neurons, we found
that the time interval varied considerably,
between 250 and 1150 ms, across the popu-
lation (Fig. 3C). Despite this wide range of
time intervals, a higher magnitude of facili-
tation tends to occur after shorter time in-
tervals (p = 0.012).

It is not clear why facilitation appears
in some neurons and not others. To ad-
dress this question, we examined various
factors that could possibly have intro-
duced variability. Cortical neurons were
recorded at different depths (760-1200
pm below the pia) and showed a large
range of response latencies (8—16 ms) to
principal whisker deflection. However, no
correlation was found between the depth
of the recorded neurons or the latency of
the control response and the magnitude of
facilitation at the subthreshold level (p =
0.45 and p = 0.47, respectively). Likewise,
no significant difference was found be-
tween the average depths of the recordings
(908 = 50 pm vs 862 = 20 wm; p = 0.56)
or the latency of the control response of the neurons (11 = 0.8 ms
vs 10.5 £ 0.7 ms; p = 0.5) between neurons exhibiting significant
versus nonsignificant facilitated response to the test stimulus,
respectively. In addition, no correlation was found between the
half-width response to control stimulation and the magnitude of
the facilitatory response to the test stimulus (p = 0.23). More-
over, the prestimulus membrane potentials of control and test
stimuli were compared within cells, and no significant difference
was found within all recorded neurons. To test whether postad-
aptation facilitation is robust to changes in stimulation features,
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such as the magnitude and frequency of
the adapting train, additional experi-
ments were conducted in a subset of neu-
rons (n = 8). Doubling the magnitude of
whisker deflection or changing its fre-
quency (10, 20, and 30 Hz) did not quali-
tatively change the nature of the test
response (data not shown); namely, all the
examined cells maintained their facilitatory
behavior regardless of the frequency or
magnitude of whisker stimulation. Only a
weak negative correlation was found be-
tween the magnitude of facilitation and the
degree of adaptation (the adaptation index
was calculated by subtracting the averaged
response to the last three whisker deflections
of the repetitive train from the control re-
sponse and dividing the difference by the
sum of both, = 0.4, p = 0.03; Fig. 3D).

Thalamic cells do not show facilitation
after adaptation

Sensory inputs from the whiskers ascend
to layer 4 of the primary somatosensory
cortex in the lemniscal pathway through
the VPM of the thalamus (Gil et al., 1999;
Pierret et al., 2000; Bruno and Sakmann,
2006; Yu et al., 2006; Wang et al., 2010).
Although our recordings were not con-
fined to a specific layer, they were centered
on layer 4; thus, the observed cortical fa-
cilitation could result from the response
of VPM neurons. To address this possibil-
ity, we made intracellular recordings in
the VPM (1 = 9) and used a similar stim-
ulation protocol as in our cortical record-
ings. We found that, although thalamic
cells responses clearly adapted to repeti-
tive stimulation (Fig. 4 A, B for two repre-
sentative cells and Fig. 4C for the maximal
response across the population), they
exhibited no postadaptation synaptic facili-
tation. Indeed, the response of most tha-
lamic cells to test stimulus did not fully
recover to baseline levels after adaptation
within the time intervals we examined (Fig.
4C; mean maximal recovered response *
SEM, 6.9 £ 0.8 mV; control response =
SEM, 7.5 = 0.8 mV; p = 0.004). Likewise,
we found no significant difference between
the jitter of control and test thalamic re-
sponses (p = 0.2, data not shown), suggest-
ing that cortical facilitation is unlikely to be
explained by changes in the synchronization
of thalamic cells. In summary, these results
imply that subcortical mechanisms are un-
likely to account for the observed facilitation
in the cortex.

Slow recovery from adaptation of inhibitory inputs compared
with excitatory inputs may explain the facilitation

As our thalamic recordings strongly suggest that the observed
cortical facilitation is not the result of the facilitation of thalamic
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neurons during 20 Hz adapting whisker stimulation (vertical black lines) followed by delivery of a single test whisker stimulus
(vertical gray line) at three different time intervals and their corresponding average peristimulus time histograms (B, F; bin size, 10
ms). A clearly facilitated response to the test stimulus was found in these cells (middle rows). Subthreshold data were averaged
after digital removal of spikes from the raw traces. €, G, Average peak voltage of the subthreshold response to test stimuli delivered
at different time intervals after termination of the adapting stimulus (mean = SEM) and average spike count (sum of spikesin a
window of 5— 45 ms after whisker stimulation) calculated for control whisker stimulation (gray line) and test stimulation delivered
at different time intervals (D, H). The data correspond to the presented cells.

inputs, it most likely emerged through intracortical mechanisms.
In particular, we tested whether the enhanced recovery response

was the result of synaptic mechanisms. The enhanced response
could result from either facilitation of evoked excitation or re-
duced inhibitory inputs. To distinguish between these possibili-
ties, the responses of a subset of cells were recorded at different
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holding currents; depolarizing the cells to reduce the driving
force of excitation while increasing the driving force of inhibi-
tion, or by hyperpolarizing the cells to increase the driving force
of excitation while decreasing that of inhibition. In addition, to
examine the response of the cells at their resting potential, trials
were also recorded with no current injection. In these cells (n =
14), recordings were made with pipettes filled with QX-314 to
prevent the neurons from firing action potentials (Connors and
Prince, 1982). In these experiments, after an adapting train of
whisker stimuli, a single test stimulus was applied at a fixed time
interval (Fig. 5A-C). This interval was predetermined for each
cell by examining its maximal test response, similarly to the for-
mer experiments.

Figure 5A shows an example cell recorded at its resting poten-
tial. In this cell, the response to a test stimulus applied 250 ms
after termination of the first adapting train was facilitated by
~60%. An average facilitation of ~30% was measured at the
resting potential for 14 neurons (Fig. 5D, mean control PSP *
SEM, 7.34 = 1 mV; mean test PSP = SEM, 9.6 £ 1.3 mV, p =
0.0004). However, when the example cell was hyperpolarized to
unveil its excitatory inputs, no significant difference was found
between its control and test responses (Fig. 5B), and this was also
the case for the whole population (Fig. 5E, mean PSP = SEM of
whole population for the control, 19.6 == 3.1 mV and for the test,
19.9 +3.2mV, p = 0.46). Hence, the facilitation that we observed
at the resting potential was not a result of facilitating excitatory
inputs. In contrast, when the example cell was depolarized, the
inhibitory test response was reduced by ~36% compared with its
control inhibitory response (Fig. 5C), and the average inhibitory
response across the population was significantly reduced by
~27% (mean test response = SEM, 5.8 = 0.9 vs mean control
response * SEM, 8.4 = 1 mV, p = 0.0002, Fig. 5F). This strongly

suggests that the facilitation observed at the resting potential re-
sults from reduced inhibition. For most cells (10 of 14), the base-
line potential just before the control and test stimuli was not
significantly affected by adaptation in the absence of current in-
jection or when positive or negative currents were applied, which
indicates that a change in the input resistance of the cells is not a
major player in the facilitation of the response.

Discussion

To the best of our knowledge, this is the first report of postadap-
tation facilitation in the somatosensory system and the first study
in which the mechanism underlying such behavior in any sensory
system is unveiled. We found that the firing and synaptic re-
sponses to a sensory stimulus after adapting stimulation of the
primary vibrissa are enhanced. The subthreshold postadaptation
response was significantly enhanced in 34% of the intracellularly
recorded neurons of the rat barrel cortex located in layer IV and
its vicinity. Importantly, the time at which the response was fa-
cilitated varied across the population, ranging between 250 and
1150 ms after the adapting stimulation. Recordings from a subset
of cells strongly suggest that the underlying mechanism is slower
recovery of evoked inhibitory inputs compared with excitatory
ones.

Mechanisms of adaptation

The degree of tactile adaptation of cortical neurons strongly de-
pends on the frequency of stimulation (Ahissar et al., 2000;
Castro-Alamancos, 2002; Chung et al., 2002; Khatri et al., 2004;
Webber and Stanley, 2006), laminar location (Ahissar etal., 2001;
Ego-Stengel et al., 2005; Katz et al., 2006), and cell type (Zhu and
Connors, 1999; Brecht and Sakmann, 2002; Heiss et al., 2008).
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Because blind patch recordings were used
in this study, some of these factors may
explain the variability in the amount of
adaptation we observed (Figs. 1, 2, and 5,
example cells). Adaptation is also affected
by stimulation strength (Ganmor et al.,
2010) and the depth of anesthesia (Katz et
al., 2012). Nevertheless, the dynamics of
adaptation in our recordings are similar to
that found in other in vivo intracellular
recording studies (Brecht and Sakmann,
2002; Heiss et al., 2008), showing a widen-
ing of the postsynaptic response during
the train and, in some cells, an increased
response to the second stimulus in the
train (Fig. 2A). Widening of the synaptic
response increases firing jitter during the
train (Fig. 2A, B) (Garabedian et al., 2003;
Gabernetetal., 2005; Webber and Stanley,
2006). The widening of the response dur-
ing the train partially reflects reduced syn-
chrony and a weakening of thalamic
inputs (Khatri et al., 2004; Heiss et al.,
2008; Ganmor et al., 2010; Wang et al,,
2010) but may also result from greater ad-
aptation of inhibitory compared with ex-
citatory inputs (Gabernet et al., 2005; Heiss
et al., 2008), a process that increases the in-
tegration time window of excitation. Al-
though the mechanisms responsible for the
adaptation of inhibitory inputs are unclear,
they may include reduced presynaptic exci-
tation of the inhibitory neurons and/or de-
pression of their output inhibitory synaptic
transmission, which we previously pro-
posed as the main mechanism based on
measurements of synaptic delay (Heiss etal.,
2008). This conjecture is in accordance with
the maintained firing of inhibitory cells dur-
ing repetitive whisker stimulation observed
in both in vivo and in vitro studies (Khatri et
al., 2004; Gabernet et al., 2005), even when
whiskers were stimulated at higher frequen-
cies than those used here.

-

e

Figure 4.

Materials and Methods).

Recovery from adaptation

Only a few studies (Chung et al., 2002; Ganmor et al., 2010) have
explored recovery from adaptation in the vibrissa system. Our
data indicate that recovery from adaptation is at least one order of
magnitude more rapid than was previously reported by Chung et
al. (2002). This discrepancy may stem from the different experi-
mental conditions applied in each study, such as the depth and
type of anesthesia (urethane vs halothane used in our study) as
well as the intensity of the stimulation. Thalamic cells are known
to adapt profoundly more when the depth of anesthesia is in-
creased (Katz et al., 2012), which may cause a slower recovery. In
addition, we previously showed that stimulus intensity substan-
tially affects both the degree of adaptation and its recovery rate
(Ganmor et al., 2010). In particular, at a low stimulation inten-
sity, the thalamic cell response fully recovered from adaptation
only after several seconds, whereas at a much higher intensity
(similar to that used in this study) the response recovered in less
than 1s.
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different time intervals. C, Average maximal response of nine thalamic cells to test stimulation plotted against their corresponding
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Mechanisms of enhanced recovery response

Adaptation usually reduces the neuronal response to subsequent
stimulation. However, in the primary visual cortex, the firing
response may be enhanced after adaptation (Dhruv et al., 2011;
Wissig and Kohn, 2012). The mechanisms for this phenomenon
remain unknown, and as far as we know such behavior was not
previously reported in other sensory modalities. In approxi-
mately one-third of the cells that we recorded from the barrel
cortex, we found a significant facilitation of the response during
the recovery period from adaptation. A priori, several possibili-
ties could explain this behavior. Facilitation could result from
increased input resistance during the recovery period. Increased
input resistance will produce a larger response, even when the
strength of sensory-evoked synaptic input after the test stimulus
is similar to or even smaller than that evoked by the control
stimulus. In such a case, a larger change in membrane potential is
expected upon injection of positive or negative currents after the
adapting stimulation compared with that measured just before it.
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However, we found no significant change in the postadaptation
membrane potential (at rest and under injected current) in the
majority of the cells, suggesting that the facilitation we observed
was not the result of an increased input resistance after
adaptation.

Direct thalamic inputs are also unlikely to contribute to facil-
itation during the recovery period. This conclusion is supported
not only by our thalamic recordings (Fig. 4), but also by in vitro
studies indicating that these inputs are profoundly depressed (Gil
et al., 1997; Gabernet et al., 2005) and do not show any paired
pulse facilitation, as well as by the recovery response of thalamic
cells after repetitive whisker stimulation in the study by Chung
et al. (2002).

The enhanced response during the recovery period from ad-
aptation may also result from increased evoked excitation or
from reduced evoked inhibition. Several in vitro studies suggested
that intracortical excitatory synapses in the granular, infragranu-
lar, and supragranular layers undergo synaptic facilitation (Gil et
al., 1997; Varela et al., 1997; Beierlein and Connors, 2002; Lee and
Sherman, 2008), whereas others showed that these synapses are
mostly depressed (Feldmeyer et al., 2002; Petersen, 2002; Williams
and Atkinson, 2007). Interestingly, monosynaptic connections in
the prefrontal cortex, studied in brain slices, show similar appar-
ent dynamics to those described in this study using sensory stim-
ulation; namely, some facilitation during the early part of the
train stimulation, followed by clear depression, and finally an
enhanced response to test stimulation delivered several hundred
milliseconds later (Markram et al., 1998; Wang et al., 2006). In
addition, both facilitation and depression of monosynaptic
connections between inhibitory neurons in the somatosensory
cortex, depending on the presynaptic interneuron type, were

described in vitro (Ma et al., 2012). Finally, despite the domi-
nant depressing behavior of excitatory synapses in S1, as was
described in brain slices, synaptic dynamics in the intact ani-
mal might be modulated by the presence of neuromodulators
(Gil et al., 1997; Tsodyks and Markram, 1997; Oldford and
Castro-Alamancos, 2003).

We found no evidence to support the possibility that facilita-
tion of excitation could have caused the observed facilitated post-
adaptation response. Indeed, the recovery response under
hyperpolarization, which unveiled the excitatory inputs, was sim-
ilar in amplitude to the control response (Fig. 5E). However, we
found that the recovery of inhibitory inputs was slower than that
of excitatory inputs, and this imbalance led to facilitation during
the recovery period from adaptation (Fig. 5C,F).

It remains unclear why facilitation was found only in approx-
imately one-third of the cells and why it peaked at different times.
We suggest that the optimal time for facilitation depends on the
recovery dynamics of evoked excitatory and inhibitory inputs,
their maximum strength, and the baseline conductance. If the test
stimulation is applied too early, excitation may be too weak to
evoke a large response, whereas if it is delivered too late, recov-
ered inhibitory inputs may suppress the evoked excitatory inputs.
Variability in the dynamic properties of the synapses across dif-
ferent cells will affect the time of maximal facilitation, and this
may explain the large variability in the time of maximal recovery
response (Fig. 3).

Another intriguing and probably related question is why
evoked excitation of the facilitated response is not amplified by
the recurrent cortical circuits despite the reduction in inhibition
and the observed facilitation in cortical firing (Figs. 2 and 3). The
reason is probably that, at any given time point during the recov-
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ery period, only a small fraction of the population exhibits en-
hanced responses (Fig. 3) and their contribution is insufficient to
produce a large change in cortical excitation.

Possible functions of adaptation enhanced response

Although it remains unclear whether the priming effect of adap-
tation on subsequent cortical response has any perceptual effect
in rodents, repetitive tactile stimulation in humans enhances am-
plitude and frequency discrimination (Goble and Hollins, 1993,
1994; Harris et al., 2002; Tannan et al., 2006) as well as spatial
discrimination (Tannan et al., 2006). It was suggested that in-
creased discriminability in the somatosensory system results
from changes in thalamic synchrony that affect the thalamocor-
tical transformations without increasing the responsiveness of
cortical cells (Wang et al., 2010). Our data suggest that enhanced
perception after adaptation may also be caused by an additional
intracortical mechanism in which the altered balance between
excitation and inhibition increases the responsiveness of cortical
neurons in the somatosensory system. Importantly, it was pro-
posed (Harris et al., 2002) that the primary somatosensory cor-
tex, which is probably involved in enhanced human performance
after adapting tactile stimulation (as mentioned above), is also
related to working memory tasks. If so, postadaptation facilita-
tion arising from the imbalance between excitation and inhibi-
tion and caused by short-term synaptic plasticity may be an
essential component of the storage of working memory in the
primary somatosensory cortex.
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