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Disease Focus

Editor’s Note: Disease Focus articles provide brief overviews of a neural disease or syndrome, emphasizing potential links to basic
neural mechanisms. They are presented in the hope of helping researchers identify clinical implications of their research. For more
information, see http://www.jneurosci.org/misc/ifa_minireviews.dtl.
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Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes,
involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular traffick-
ing. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively
in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses
have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes,
they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal
catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective
hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of
ganglioside hydrolases, e.g., of B-galactosidase and 3-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis,
dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small
residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology.
Apart from patients’ differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities
and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by
membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse

models and patients with juvenile forms of gangliosidoses are discussed.

Introduction

!Gangliosides had been discovered by
Ernst Klenk in the 1930s (Klenk, 1937,
1939) when he analyzed postmortem
brain tissues of patients with Tay—Sachs
disease, a fatal infantile form of amaurotic
idiocy. At that time the clinical diagnosis
“amaurotic idiocy” comprised an inher-
ited disease characterized by high num-
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bers of lipid-laden cells in the nervous
system and the visceral organs, mental re-
tardation, and impaired vision or blind-
ness. With the help of biochemical,
enzymatic, molecular genetic, morpho-
logical, and animal studies, the clinical
picture of amaurotic idiocy has been re-
solved in the last five decades into two ma-
jor groups of diseases at the molecular
level: lysosomal ganglioside storage dis-
eases, comprising GMI-gangliosidoses
and 4 forms of GM2-gangliosidoses, and
10 forms of neuronal ceroid lipofuscino-
ses poorly characterized so far (Jalanko
and Braulke, 2009).

Gangliosides are typical components of
neuronal plasma membranes. The first gan-
glioside structure, that of ganglioside GM1
(Fig. 1), was elucidated by Kuhn and Wie-

gand (1963). Six major and many minor
ganglioside species have been identified in
mammalian brains (Yu et al., 2011). Inher-
ited defects in ganglioside metabolism can
cause fatal neurodegenerative diseases. Best
known so far are inherited defects in lyso-
somal ganglioside catabolism, the GMI-
and GM2-gangliosidoses.

Up to now, no defects in ganglioside
biosynthesis have been described in hu-
mans with the exception of two reports on
three patients with an infantile onset re-
fractory epilepsy (Simpson et al., 2004;
Fragaki et al., 2013), caused by a defi-
ciency of ganglioside GM3-synthase. It
is associated with psychomotor delay,
blindness, deafness, and respiratory chain
dysfunction. In addition, one patient with
a genetically undisclosed basis of infantile
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Figure1. Pathway of lysosomal sphingolipid degradation. The eponyms of known metaholic diseases and those of SAPs (red) necessary for in vivo degradation are indicated. Hydrolases are given
in green. Heterogeneity in the lipid part of the sphingolipids is not indicated. Variant AB, Variant AB of GM2-gangliosidosis [ deficiency of GM2-activator protein (GM2-AP)]; Sap, sphingolipid
activator protein (modified from Sandhoff and Kolter, 1995).
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GM2-synthase deficiency, a ganglioside
GM3 storage and loss of higher ganglio-
sides has been described, passed away at
age 3.5 months (Fishman et al., 1975).

However, blocks in ganglioside bio-
synthesis generated in gene-manipulated
mice cause a broad spectrum of patholog-
ical phenotypes (Proia, 2003).

Ganglioside biosynthesis and its defects
in genetically manipulated mice
Glycolipids are expressed in a cell-type-
and stage-specific manner, gangliosides
being the main glycolipids of neuronal
surfaces. Their surface patterns are gener-
ated by coordinated processes, involving
biosynthetic and catabolic steps and intra-
cellular trafficking.

Their hydrophobic membrane an-
chors, the ceramide residues, are formed
in the endoplasmic reticulum (ER), glyco-
sylation of ceramide takes place at the
Golgi and trans-Golgi network (TGN),
and their constitutive degradation mainly
in the endolysosomal compartment (Kolter
and Sandhoff, 1999). After formation of
glucosylceramide (GlcCer) from cer-
amide (Cer) at the cytosolic surface of
Golgi membranes and its flip to the lumi-
nal surface of Golgi membranes, GlcCer
gets converted to lactosylceramide (Lac-
Cer). At the luminal surfaces of Golgi and
TGN membranes, LacCer is sialylated to
form small precursor gangliosides (GM3,
GD3, and GT3). They are then converted
by membrane-bound promiscuous glyco-
syltransferases to complex ganglioside
structures, which reach cellular surfaces
by vesicular transport of the secretory
pathway. This concept of “combinatorial
ganglioside biosynthesis” (Kolter et al.,
2002) allows the generation of cell-
specific patterns on neuronal surfaces de-
pending on the availability of precursor
molecules, expression of biosynthetic en-
zymes and their regulation. Generation
and analysis of mutant mice with defects
in the pathways of ganglioside biosynthe-
sis supported this model (Kolter et al,,
2002; Sandhoff and Kolter, 2003). Mutant
mice defective in b-series gangliosides
were viable and without apparent neuro-
logical abnormalities (Kawai et al., 2001;
Okada et al., 2002) and reach an almost
normal life span. Mice defective in
GalNAc-transferase, missing the major
brain gangliosides, were viable but suf-
fered from instability of brain structures
with detachment of myelin sheets from
axonal membranes (Schnaar, 2010) and
male infertility. A combined defect of
GM3-synthase and GM2-synthase causes
an early fatal disease. Here, the absence of

all a-series and b-series gangliosides triggers
the formation of 0-series gangliosides,
which are not observed in the wild-type
brain. Their additional synthesis, however,
cannot compensate the loss of all the major
neuronal ganglioside structures. Surprising
was that the total ganglioside content in the
brains of the various mutant mice stayed al-
most unchanged at the wild-type level
(Sandhoff, 2012).

The ubiquitous block of GlcCer syn-
thesis, the precursor of the main glyco-
sphingolipids (GSLs), is lethal in mice at
embryonic day 6 (Yamashita et al., 1999).
However, its cell-type-specific knock out
in neurons (Jennemann et al., 2005),
hepatocytes (Jennemann et al., 2010), or
keratinocytes (Jennemann et al., 2007)
still allowed complete embryogenesis but
with the birth of fatally sick animals.
Apparently, some complex glycolipids de-
rived from GlcCer such as the stage-
specific embryonic antigens (Kannagi et
al., 1983; Eggens et al., 1989) involved in
cellular adhesion processes are needed at
early embryonic stages for development
of a multicellular organism (Kolter et al.,
2000).

Gangliosides have been discovered as
GSLs of neuronal membranes by lipid
analysis of Tay-Sachs disease (Klenk,
1937, 1939), but their complex chemical
structure was elucidated only later in the
1960s (Kuhn and Wiegandt, 1963). Their
storage in neuronal lysosomes paved the
way for the analysis of their cellular
metabolism and lysosomal catabolism
(Sandhoff et al., 1969; Sandhoft, 1977)

Clinical phenotypes, correlations to
pathological and biochemical
phenotypes

All types of gangliosidoses are caused by
inherited defects in ganglioside catabo-
lism (Fig. 1) and can manifest with severe,
extremely variable clinical symptoms (Ta-
ble 1) in almost any age group, although
most patients have an early infantile onset
and a late infantile or juvenile, fatal end of
their disease, which is dominated by the
central nervous involvement (Fig. 2A)
(Lyon et al., 1996a). The cerebral degen-
eration is marked by the lipid storage
present in neurons with the ultrastruc-
turally characteristic “membranous cy-
toplasmic bodies,” which are secondary,
“storage” lysosomes (Fig. 2B). These stor-
age bodies distend the neurons (Fig. 2C),
which eventually are lost, but the exact
reason is unclear (for example, cell inac-
tivity by ganglioside-induced impairment
of synaptic transmission is discussed).
The peripheral and autonomous nerve
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systems are also involved, but with minor
clinical relevance, though lysosomal stor-
age bodies are demonstrable at places.

In addition to the neuronal involve-
ment, an extraneural involvement (Table
1) is striking in infantile and partly present
in juvenile patients with GMI-gangli-
osidosis; even an intrauterine manifesta-
tion with hydrops fetalis is possible, and a
dysmorphic (gargoyle-like) face is regular
in early infantile patients. Juvenile and
adult GM1-gangliosidosis patients have a
predominant or almost pure neurologic
picture (Suzuki et al., 2001). Extraneural
manifestations are absent in GM2-
gangliosidosis with the exception of vari-
ant 0, also called Sandhoff disease, in
which slight visceromegaly is frequent
(Gravel et al., 2001) and some involve-
ment of bones and even the heart can oc-
cur (Venugopalan and Joshi, 2002).

The clinical phenotypes in the gangli-
osidoses can, though with some caveats,
be correlated to the different types and
numbers of substrates, which are accumu-
lated in these diseases. Examples of the
substrates of the acid hydrolases whose
deficiencies define the diseases are ganglio-
sides, asialogangliosides, other glycolipids,
specific oligosaccharides and, in case of acid
B-galactosidase, mucopolysaccharides. In
the deficiencies, the patterns of accumulated
substrates can be explained in a simplified
format as follows. The main substrates
of the acid B-galactosidase, which are
deficient in GM1-gangliosidosis, are GM1-
ganglioside (Fig. 1), specific oligosaccha-
rides, and keratan sulfate, so that this disease
is marked not only by ganglioside storage
(whose main pathologic correlate is neuro-
nal degeneration) but also by oligosacchari-
dosis and mucopolysaccharidosis, with the
extraneuronal clinical involvement due
to the latter. The main substrate of the
B-hexosaminidase A deficient in GM2-
gangliosidosis variant B (also called
Tay—Sachs disease) or suppressed in the
GM2-activator-deficient variant AB, is
GM2-ganglioside, so the disease is “only” a
ganglioside storing disorder. The main sub-
strates of the B-hexosaminidases A and B
deficient in GM2-gangliosidosis variant 0
are GM2-ganglioside and oligosaccharides,
so the disease includes gangliosidosis and
oligosaccharidosis, with some visceral in-
volvement due to the latter.

Another correlation can, though with
some reasonable doubts, be assumed be-
tween the time (as patients’ age) of onset
or manifestation, or the duration (chro-
nicity) of the disease, and the rudimentary
catabolic functions of the defective (if not
completely absent) acid hydrolases in the
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Table 1. The main clinical hallmarks and symptoms in gangliosidoses
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Regular symptoms/signs

Facultative symptoms/signs

Remarks

Disease Manifestation

GM1-gangliosidosis Infantile®?
Juvenile?
Adult®
Chronic

GM2-gangliosidosis, variants B,  Infantile®

Bland0

Juvenile/subacute

Adult

Chronic
GM2-gangliosidosis, variant AB

Dysmorphic face, severe dysostosis, hepato-
megaly, unable to sit, muscle hypotonia,
later on spasticity, visual failure, foam cells
in bone marrow, oligosacchariduria,
mucopolysacchariduria

By 4 years or later: dysarthria, extrapyramidal
signs including dystonia

Asin juvenile disease, but with more insidious
onset

Loss of head/trunk control, smiling, by about 6
months, cherry-red macular spot ¢, high
startle response to noise, muscle hypotonia
by 1year, epilepsy, tetraparesis with some
spasticity, dementia, blindness

Onset by 3 to 6 years, dysarthria, loss of
speech, spastic paraparesis, later on
paraplegy’, pyramidal signs’, cerebellar
ataxia, mental deterioration

Clumsiness, lower motor neuron disease,
denervation muscle atrophy, cerebellar
ataxia

Most as in variants B, B1, 0

Cherry-red macular spot‘, nystagmus,
seizures, splenomegaly, joint contrac-
tures, hematologic signs, vacuolated
blood lymphocytes?

Slight intellectual impairment, mild bone

changes, foam cells in bone marrow

Psychosis

Megalencephaly, visceral involvement and
oligosacchariduria only in variant 0

Seizures, irritability, psychiatric signs,
denervation muscle atrophy (EMG),
areflexia, cherry red macular spot‘

Psychosis

Cherry red macular spot*

Rapid or 1-2 year downhill course with
psychomotor deterioration, general
dystrophy, feeding problems

Some patients have also parts or attenu-
ated forms of the symptoms listed for
the infantile disease, other patients
belong to the chronic group

Disease is chronic rather than with only
adult manifestation

Combines late infantile, juvenile, and
sometimes adult manifestations in
which the above listed symptoms are
partly or gradually developed

Downbill course mostly less rapid than in
early GM1-gangliosidosis

Clinical variability even in siblings?, above
remark to juvenile GM1-gangliosidosis
here also apt

High clinical variability, oldest patient was
76 years

See remark to chronic GM1-gangliosidosis
No adult patients known

“Grouping of GM1-gangliosidosis patients as type |, Il, and I1l of the disease according to the age at clinical onset is questionable by the often ambiguous onset or insidious or chronic manifestation through all, except the early infantile, age
groups (Lyon et al, 1996b). °Earlier named “generalized gangliosidosis.” ‘See Fig. 20. “See Fig. 2F. “Earlier named “infantile amaurotic idiocy”; relatively high prevalence of variant B (Tay—Sachs disease) in Ashkenazim. See Fig. 24. ‘Many

patients are Ashkenazim, but a genetic isolate of variant BT is in Spain.

patients. This “residual activity hypothe-
sis” postulates higher residual functions
for late starting/manifesting or chronic
forms of gangliosidoses than for early (in-
fantile) disease forms (see Protracted clin-
ical forms of gangliosidoses and the
threshold theory, below). Although the
low residual, probably pathophysiologi-
cally relevant activities of the defective hy-
drolases cannot always reliably be assessed
under laboratory conditions in vitro, that
hypothesis seemed to be acceptable for
many patients who were studied enzymat-
ically. As to those residual functions, it is
interesting that in late manifesting GM1-
gangliosidosis the almost only substrate
relevant for the biochemical phenotype is
the ganglioside accumulation, particu-
larly in neurons, while for the breakdown
of other substrates the residual functions
seem to be nearly sufficient.

However, in a certain type of genetic
acid B-galactosidase deficiency, also a suf-
ficient catabolism of GM1-ganglioside is
possible, whereas the breakdown of other
substrates is severely impaired, and the re-
sulting disease is not gangliosidosis but mu-
copolysaccharidosis IV (Morquio) type B
(Suzuki et al., 2001). This indicates different

substrate (e.g., the ganglioside/activator
protein complex) binding sites, protein-
folding-relevant sites, or subdomains in the
enzyme, which are required for the catabo-
lism of different substrates, and suggests
that these sites are differentially or alterna-
tively defective in different patients who
have then very variable diseases caused by
their B-galactosidase defects. On the other
hand, a special GM1-ganglioside-storing
disease (associated with oligosaccharide
storage) results from an indirect deficiency
of acid B-galactosidase (and sialidase, and a
specific sulfatase) in galactosialidosis, which
is caused by the genetic deficiency of the so-
called protective protein (identical to car-
boxypeptidase A) (d’Azzo et al, 2001).
When this protein is defective, the func-
tional complex of the normal protein with
acid B-galactosidase and sialidase (and the
sulfatase) cannot be formed, and these en-
zymes, though having a normal structure,
are subject to rapid decay. The resulting
clinical phenotype is very similar to that in
classic GM1-gangliosidosis (and to that in
the genetic sialidase defect, sialidosis). So an
enzymatic diagnosis of GM 1-gangliosidosis
has always to be confirmed by demonstrat-

ing the presence of normal sialidase activity,
or by molecular gene analysis.

Summary outline of

clinical symptomatology

The main symptomatology of the gangli-
osidoses is given as a partially simplified
summary in Table 1. Clinical details
should be found in the special literature
(Lyon et al., 1996a, b; Gravel et al., 2001;
Suzuki et al., 2001). Pathologists have
found that in gangliosidosis the brain is
sometimes slightly infiltrated with inflam-
matory cells considered to be a response
to the dysfunction of the lipid-laden neu-
rons and to the abundance of antigeni-
cally acting gangliosides. Here follow
some supplementary clinical remarks.
Neuroimaging has no essential role in the
characterization of gangliosidoses, but in
late disease stages cerebral and cerebellar
atrophy can often be documented and
slight T2-weighted hyperintensities may
appear earlier in the brainstem and white
matter (Wilken et al., 2008). Magnetic
resonance spectroscopy (N-acetyl aspar-
tate, myoinositol, and other signals) may
be helpful in documenting neuronal loss
and inflammation (Assadi et al., 2008).
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Figure2.

Clinical and morphological observations in gangliosidoses. 4, Near end stage in a Spanish 13-year-old patient with GM2-gangliosidosis variant B1 (photograph courtesy of H.H. Goebel,

Mainz). B, GM2-gangliosidosis variant 0 in a 23-week-old fetus; and part of a cortical neuron; early stage of membranous cytoplasmic bodies (two clusters marked by crosses), i.e., lipid storing
secondary lysosomes, ><36,000 (courtesy W. Schlote, Tiibingen). (, The large cells are neurons distended by lysosomal storage in the medulla oblongata of a 1.5-year-old patient with GM1-
gangliosidosis. The small dark bodies are nuclei from increased numbers of glial cells (“reactive gliosis”). Cresyl violet stain X300 (courtesy of H.U. Benz, Tiibingen). D, Cherry red macular spot in an
infantile patient with GM2-gangliosidosis variant B (Tay—Sachs disease). The dark red spot in the middle of the light central area is secondary to lipid storage in neuronal cells in this area; the storing
cells have lost their processes that normally cover the fovea centralis. The fovea normally appears as yellow, but is changed to the red macular spot showing the color of the choroidea behind the
retina. E, Lymphocytes with clusters of vacuoles (storage lysosomes) in blood smear of an early infantile patient with GM1-gangliosidosis, indicating the “generalized storage disorder.” May-

Griinwald stain; X 1500 (courtesy of H.U. Benz, Tiibingen).

The prenatal and postnatal laboratory di-
agnosis of gangliosidoses is usually made
enzyme biochemically (e.g., in blood sam-
ples), and/or molecularly. Many aspects
of genotype—phenotype correlation in
these diseases were described in the special
literature. Therapeutic strategies such as
bone marrow transplantation (BMT),
use of drugs with substrate reducing,
chaperon-like and anti-inflammatory ef-
fects, and intracerebral or intrathecal en-
zyme replacement are under investigation
(see Therapeutic approaches, below).

Pathway of ganglioside degradation
Topology of endocytosis and lysosomal
digestion of gangliosides

Lysosomes are intracellular stomachs. They
degrade macromolecules and release their
components as nutrients into the cytosol for
salvage pathways and energy metabolism.

Macromolecules and membrane compo-
nents reach the lysosomal compartment for
digestion by autophagy (Florey and Over-
holtzer, 2012), phagocytosis (Delves et al.,
2006; Florey and Overholtzer, 2012), and by
endocytotic pathways (Kolter and Sandhoff,
2005). Whereas water-soluble lysosomal
hydrolases can attack water-soluble macro-
molecules directly, the digestion of ganglio-
sides, GSLs, and membranes needs a more
complex cooperation between soluble hydro-
lases, lipid binding and transfer proteins, and
luminal intra-endolysosomal vesicles (Kolter
and Sandhoff, 2005; Kolter and Sandhoff,
2010). Due to the lipid phase problem, water-
soluble glycosidases hardly attack amphiphilic
GSLs as components of vesicular membranes,
but need the help of membrane perturbing
and lipid binding proteins, the sphingolipid
activator proteins (SAPs).

Our view of the topology of lysosomal
ganglioside digestion

For their digestion, gangliosides of cellular
surfaces reach luminal intra-endolysosomal
vesicles or intra-endosomal membranes
(IMs) (Fig. 3; Burkhardt et al., 1997; Mobius
etal., 1999), which are generated during en-
docytosis. Luminal vesicles are formed by
successive steps of vesicle budding and fis-
sion controlled by the endosomal-sorting
complex proteins (Wollert and Hurley,
2010). The vesicles are prepared for lyso-
somal digestion by a lipid-sorting process
beginning at the level of endosomes (Kolter
and Sandhoff, 2005; Gallala et al., 2011).
Cholesterol is sorted out by two sterol bind-
ing proteins, NPC-2 and NPC-1 (Abdul-
Hammed et al,, 2010), and sphingomyelin
is degraded by acid sphingomyelinase
(ASM; V. Oninla, B. Breiden, K. Sandhoff,
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Proposed topology of endocytosis and lysosomal lipid and membrane digestion (Gallala et al., 2011). “A section of the plasma membrane is internalized by way of coated pits or

caveolae. These membrane patches include GSLs (red) and receptors such as epidermal growth factor receptor (EGFR; blue). These vesicles fuse with the early endosomes, which mature to late
endosomes. Endosomal perimeter membranes form invaginations, controlled by ESCRT proteins (Wollert and Hurley, 2010), which bud off, forming intra-endosomal vesicles. Lipid sorting occurs at
this stage. The pH of the lumen is ~5. At this pH, ASM is active and degrades sphingomyelin of the intra-endosomal vesicles to ceramide, whereas the perimeter membrane is protected against the
action of ASM by the glycocalyx facing the lumen. This decrease in sphingomyelin, coupled with the increase in ceramide, facilitates the binding of cholesterol to NPC2 and its transport to the
perimeter membrane of the late endosome where it is transferred to NPC1 (Kwon et al., 2009). This protein mediates the export of cholesterol through the glycocalyx, eventually reaching cholesterol
binding proteinsin the cytosol. Ultimately, late endosomes fuse with lysosomes. The GSLs are harbored in intralysosomal vesicles that face the lumen of the lysosome, and are degraded by hydrolases
with the assistance of SAPs. The products of this degradation are exported to the cytosol or loaded on CD1b immunoreceptors and exported to the plasma membrane for antigen presentation.
Gradients of pH in the lysosol, and intra-endolysosomal vesicle content of cholesterol (Chol), BMP, sphingomyelin (SM, hypothetical), and ceramide (Cer, hypothetical) are shown” (modified from

Kolter and Sandhoff, 2010).

unpublished observations). Anionic bis-
(monoacylglycero)phosphate (BMP) that
stimulates ganglioside catabolic steps sub-
stantially is formed from phosphatidyl glyc-
erol in the IMs (Gallala and Sandhoff, 2011;
Gallala et al., 2011). Whereas the lysosomal
perimeter membrane seems to be quite re-
sistant against lysosomal degradation, IMs
are digested with the help of lipid binding
proteins (SAPs) and hydrolytic enzymes.
Perimeter membranes are protected by
a thick glycocalyx enriched in polylac-
tosamine structures, and by a high choles-
terol level (Hay, 1989; Appelqvist et al.,
2012), the chaperon HSP70 (Kirkegaard et
al., 2010), and presumably also by a high
lateral pressure attenuating the interaction
with GM2AP, a lipid binding protein essen-
tial for ganglioside catabolism (Giehl et al.,
1999).

Biochemistry of ganglioside catabolism
and its diseases

Ganglioside catabolism proceeds in a stepwise
procedure (Fig. 1) at the surface of luminal in-

tralysosomal vesicle and membrane struc-
tures. These are enriched with anionic BMP,
which attracts polycationic proteins, glycosi-
dases, and SAPs, to the ganglioside-containing
membrane surfaces in the acidic intralyso-
somal environment. Whereas GM1 hydrolyz-
ing B-galactosidase and GM2 splitting HexA
bind to these anionic surfaces, they do not at-
tack the membrane bound ganglioside sub-
strates in the absence of membrane perturbing
lipid binding and transfer proteins. The first
case of GM 1 storage was described in 1963 as a
special form of infantile amaurotic idiocy
(Jatzkewitz and Sandhoff, 1963). Hydrolysis of
vesicle-bound GM1 by lysosomal ganglioside
B-galactosidase needs the presence of
GM2AP or saposin B (Sap-B; Wilkening et
al., 2000). Anionic lipids like BMP in the
GMI carrying vesicles stimulate GM1 hy-
drolysis efficiently. Inherited defects of the
GM1 degrading B-galactosidase cause
GM1-gangliosidoses (Okada and O’Brien,
1968).

The nonspecific and versatile GM1 de-
grading -galactosidase occurs as part of a
lysosomal multi-enzyme complex, contain-
ing sialidase, cathepsin A (the so-called pro-
tective protein) (d’Azzo et al., 2001), and
N-acetylaminogalacto-6-sulfate  sulfa-
tase (Pshezhetsky and Ashmarina, 2001).
Due to changes of the substrate specificity
of variant patient enzymes, an inherited
defect of GM1-B-galactosidase may also
lead to a major accumulation of galac-
tose containing keratan sulfate and oligo-
saccharides, a phenotype called Morquio
syndrome, type B (mucopolysaccharido-
sis IV B) (Neufeld and Muenzer, 2001;
Okumiya et al., 2003).

Hydrolysis of GM2 is facilitated at an-
ionic vesicular surfaces by the cooperation
of two proteins, HexA (o,3) and the
membrane perturbing and lipid binding
protein GM2AP (Fig. 4) (Kolter and
Sandhoff, 2006). At acidic pH values, the
latter one is a protonated cationic amphi-
philic protein and can bind to the anionic,
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Wendeler etal., 2004a). “GM2-AP interacts with the membrane by dipping the two exposed hydrophobic loops, V90 —W94 and V153—L163, into the apolar part of the membrane. Ganglioside GM2
is recognized by specific sites at the rim of the cavity. In the open protein conformation, the large hydrophobic area reaching from the apolar phase of the membrane to the activator's cavity lowers
the energy barrier for lipids leaving the membrane in an upward direction. After the ceramide tail has arrived inside the activator’s cavity, the inward-bending of the hydrophobic loop V153-L163
is favored, and the conformation changes to the closed form (Wright et al., 2003). This folding in of the hydrophobic loop leaves a more polar patch close to the membrane. The activator is then
anchored only by the loop V90 —W94. It may now rotate slightly upward to expose all polar patches more fully to the solvent, and it may also leave the membrane and interact with the degrading
enzyme. The photoaffinity label analogs C;, _ 5 ;,-TPD-GM2 were photo-incorporated specifically into the region V153-L163" (Sandhoff, 2012). B, BMP and GM2-AP stimulate the hydrolysis of
LUV-bound ganglioside GM2. The degradation of ganglioside GM2 inserted into LUVs doped with 0 mol % BMP (O), 5 mol % BMP([_]), 10 mol % BMP (-), 20 mol % BMP (A), or 25 mol % BMP ()
was measured in the presence of increasing concentrations of GM2-AP (0—2.2 pum) (Werth et al., 2001).

BMP-rich membrane surfaces, and lift a
ganglioside molecule (Fig. 4). A HexA
binding helix of the GM2AP facilitates
formation of the Michaelis-Menten com-
plex for the degradation of GM2, the Tay—
Sachs ganglioside, and glycolipid GA2.
Inherited defects of either of the proteins
result in fatal neurodegenerative diseases
(Kolter and Sandhoff, 2006). Tay-Sachs
disease is caused by mutations in the
HexA gene with loss of HexA (a,8) and S
(a,) activity. HexA mutations that still
allow the formation of the heterodimeric
HexA (a,) and affect only its activity
against anionic substrates result in Bl
variant of GM2-gangliosidosis (Kytzia et
al., 1983; Kytzia and Sandhoft, 1985). On
the other hand, inherited defects in HexB
gene cause the loss of HexA (a,3) and
HexB (3,B) activities in Sandhoff disease.
Here, the combined deficiency of both
major hexosaminidase isoenzymes causes

the additional storage of neutral glycolip-
ids, especially of globoside in the visceral
organs, and of oligosaccharides. The rare
defect of GM2AP results in AB-variant of
GM2-gangliosidoses  (Sandhoff et al,
1989; Sandhoff and Kolter, 2003). Genet-
ically manipulated knock-out mice are
available as models for these diseases to
study their course and pathogenesis, and
to investigate therapeutic approaches.

Protracted clinical forms of

gangliosidoses and the threshold theory
Complete or nearly complete loss of GM1
or GM2 catabolic activities results in fatal
infantile forms of storage diseases. How-
ever, allelic mutations, which produce
proteins with some residual catabolic ac-
tivities, give rise to protracted clinical
forms often described as late infantile, ju-
venile, or chronic diseases (Sandhoffet al.,
1989) with a wide range of clinical symp-

tomatology. At the biochemical level, the
clinical heterogeneity is paralleled by a
variation of the extent and the pattern of
glycolipid accumulation and by different
levels of residual catabolic activities de-
tected in cultures of patients’ fibroblasts
(Fig. 5). Catabolic activities were assayed
in cell cultures using the physiological, ra-
diolabeled lipid substrates instead of the
water-soluble synthetic substrates, which
serve widely for diagnostic purposes. The
water-soluble substrates may well lead to
erroneous data because of the lipid phase
problem and the absent control by
GM2AP (and other activators) of the ca-
tabolism of physiological lipid substrates
such as GM2 ganglioside. According to
Figure 5, GM2 cleavage by HexA was al-
most absent in fibroblasts of infantile pa-
tients, and significantly higher in those of
juvenile and adult patients (Kytzia et al.,
1984; Leinekugel et al., 1992). This obser-
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concentration and activity (Conzelmann and Sandhoff, 1983). The model underlying this theoretical calculation assumes influx of the substrate into the lysosomal compartment at a constant rate
(v} andits subsequent utilization by the catabolicenzyme. Blueline = [S],,, steady-state substrate concentration; =~ = theoretical threshold of enzyme activity; ——- = critical threshold
value, taking limited solubility of substrate into account; red line = turnover rate of substrate (flux rate). B, To experimentally verify the basic assumptions for this model, studies were performed
in cell culture (Leinekugel et al., 1992). The radiolabeled substrate ganglioside GM2 was added to cultures of skin fibroblasts with different activities of 3-hexosaminidase A and its uptake and
turnover measured. The correlation between residual enzyme activity and the turnover rate of the substrate was essentially as predicted: degradation rate of ganglioside GM2 increased steeply with
residual activity, to reach the control level at a residual activity of ~10 —15% of normal. All cells with an activity above this critical threshold had a normal turnover. Comparison of the results of these
feeding studies with the clinical status of the donor of each cell line basically confirmed our notions but also revealed the limitations of the cell culture approach.

vation can well be modeled on the basis of
a greatly simplified kinetic model (Con-
zelmann and Sandhoff, 1983, 1991;
Leinekugel et al., 1992) presented in Fig-
ure 5. A nice correlation was observed be-
tween the predicted and the measured
lipid substrate turnover, and also between
the decrease of the ganglioside GM2 turn-
over and the clinical course of the disease.
Ten to 20% of normal GM2 cleaving ac-
tivity appear already compatible with
normal life. Similar observations were
reported for metachromatic leukodystro-
phy (MLD), Gaucher, Sandhoff, and
ASM-deficient Niemann—Pick disease
(Kudoh et al., 1983; Kytzia et al., 1984;
Leinekugel et al., 1992; Graber et al,
1994).

Of course, additional factors induced
by the mutation and the storage process in

the disease will also contribute to the clin-
ical course and disease pathogenesis, e.g.,
misregulation of proteins and intracellu-
lar trafficking, formation of Iytic and toxic
compounds (Nilsson et al., 1982; Igisu
and Suzuki, 1984), depletion of precursor
pools, alterations of composition and
function of membranes, mislocalized
storage compounds like GM1, which acti-
vate ER-chaperons and trigger neuronal
apoptosis (Tessitore et al., 2004), and al-
tered regulation of endolysosomal pro-
teins and enzymes by an increased load of
lipids (see below). Also the formation of
meganeurites and an increase in synaptic
spines may well disturb the connectivity
in the nervous system (Purpura and Su-
zuki, 1976).

A genetic mutation and loss of a cata-
bolic activity may not only result in accu-

mulation of nondegradable substrates but
also affect the transcription rate of many
other genes. Mutations in the HexB gene
and the subsequent loss of HexA and
HexB activity in genetically manipulated
mice trigger a significant downregulation
of ~300 transcripts and a significant up-
regulation of another ~250 transcripts in-
cluding genes of the immune system
(Myerowitz et al., 2002).

Genetically manipulated mice are not
always faithful copies of the human dis-
ease. In contrast to Tay—Sachs patients,
HexA knock-out mice reach an almost
normal life span and hardly get sick. The
reason seems to be a small difference in
the substrate specificity of murine and hu-
man sialidase. Whereas human sialidase is
almost inactive, murine sialidase has a mi-
nor but significant cleaving activity on the
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storage compound ganglioside GM2 and
thereby opens a catabolic bypass (Sand-
hoff and Jatzkewitz, 1967; Sango et al.,
1995). Mutant mice develop only a minor
storage process in some neurons, e.g., in
the pyramidal cells of the cortex (Taniike
etal, 1995). Apparently, the catabolic ac-
tivity of the bypass (sequential action of
murine sialidase to convert GM2 to GA2,
and hex B to convert GA2 to LacCer) is
sufficient in almost all neurons of the ce-
rebral cortex except in the murine pyra-
midal cells and in a few others. These cells
probably have a rather high biosynthetic
rate for gangliosides, thereby slightly ex-
ceeding their maximal catabolic capacity
(Vmax Of the catabolic system; Fig. 5) in
case of hex A knocked out. Further patho-
genetic cascades activated in these dis-
eases, altered lipid trafficking, altered
autophagy, and induction of inflamma-
tion, have been reviewed (Vitner et al.,
2010; Xu et al., 2010).

Many proteins involved in ganglioside
metabolism are nonspecific

The inherited defect of an endolysosomal
protein usually affects only one step in
ganglioside and sphingolipid catabolism.
However, a more careful investigation of
the proteins revealed that many of them
have rather promiscuous functions and,
therefore, have a broader effect on metab-
olism than originally expected. For glyco-
sidases this has been known for a long
time, and it was no surprise to find out
that GM1-B-galactosidase hydrolyzes
many other B-galactosides in addition to
ganglioside GM1 and GA1l (Kolter and
Sandhoff, 2006). Mutations in the
[B-galactosidase gene can even change the
enzyme’s substrate specificity and affect
the catabolism of GSLs and glycosamino-
glycans differently.

It was also no surprise to realize that
human B-hexosaminidases have broad
and partially overlapping substrate speci-
ficities. Again some mutations in the
HexA gene may also change substrate
specificity of the patients’ HexA. Those
that disrupt enzyme activity only against
anionic substrates (like GM2) and not
against neutral substrates (like globoside)
cause Bl variant of GM2-gangliosidosis
(Kytzia et al., 1983), whereas those that
affect HexA activity against all substrates
including neutral substrates cause Tay—
Sachs disease (variant B of GM2-
gangliosidosis). Active B-hexosaminidases
are the homodimers HexB (3,8) and HexS
(a,a), and the heterodimer HexA («,f3).
Each of them carries two active sites at the
domain interfaces (Maier et al., 2003; Le-

mieux et al., 2006). Therefore, mutations
affecting the dimer formation produce inac-
tive monomeric subunits causing infantile
diseases. The broad and overlapping speci-
ficity of murine hexosaminidases A, B,and S
is highlighted by mice lacking both subunits
of B-hexosaminidase. They store ganglio-
sides and glycosaminoglycans and display
phenotypic, pathologic, and biochemical
features of mucopolysaccharidoses, not
seen in Tay-Sachs and Sandhoff disease
(Sango et al., 1996).

The first activator protein described,
the sulfatide activator protein, is now
called Sap-B. It was discovered as an es-
sential cofactor for the lysosomal catabo-
lism of sulfatides (Mehl and Jatzkewitz,
1964). Its deficiency causes a late infantile
form of MLD with a pronounced sulfatide
storage (Mehl and Jatzkewitz, 1964; Ste-
vens et al., 1981). Sap-B combines with
sulfatides, and the formed stoichiometric
soluble complex then forms a Michaelis—
Menten complex with arylsulfatase A
(Mehl and Jatzkewitz, 1964; Mraz et al.,
1976). Though this suggested a high lipid
binding specificity of Sap-B, we now
know that the human Sap-B is not specific
for sulfatide binding, but rather a promis-
cuous lipid binding protein (Girtner et
al., 1983; Sun et al., 2008). It even stimu-
lates the hydrolysis of bacterial lipids by
bacterial hydrolases (Li et al., 1988). Also
the other saposins have broad functions
(Doering et al., 1999) and are rather un-
specific lipid binding proteins, like the
GM2AP (Wendeler et al., 2004b). Even the
glycosyltransferases involved in the biosyn-
thesis of complex gangliosides at Golgi
membranes are rather versatile. There are
only one GalNAc-, one Gal-, and two sialyl-
transferases available in Golgi membranes
to convert the precursors LacCer, GM3,
GD3, and GT3 into the different complex
gangliosides of the 0-, a-, b-, and c-series
(Kolter et al., 2002).

Membrane lipids are regulators of
ganglioside catabolism

Promiscuous functions of endolysosomal
proteins and enzymes make it difficult to
understand the precise molecular pathol-
ogy of the diseases caused by a defect of
any of these proteins. The complexity is
further increased by the strong lipid de-
pendency of many endolysosomal pro-
teins, given that the lipid composition of
many organelle membranes is mostly un-
known, especially in patients’ tissues. In
vitro experiments have shown that cata-
bolic steps at surfaces of substrate carrying
liposomes—simulating luminal endoly-
sosomal vesicles—not only need low pH
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values, enzymes, and SAPs for significant
degradation rates, but also a sufficient
concentration of anionic lipids such as
BMP in the liposomal membranes.

Both, GM2AP and Sap-B, allow that
B-galactosidase hydrolyzes GM1. There-
fore, neither a defect of GM2AP nor of
Sap-B causes a GM1 accumulation, since
the other one left efficiently facilitates the
reaction. However, the reaction is rather
slow in neutral liposomes and is stimu-
lated 2- to 9-fold in the presence of an
anionic phospholipid such as BMP, phos-
phatidylinositol, dolicholphosphate, and
phosphatidylserine (Wilkening et al.,
2000). Even at acidic, lysosomal pH val-
ues, these phospholipids convey negative
charges to the vesicular surfaces, which at-
tract and bind the protonated and posi-
tively charged hydrolases and SAPs to
catalyze the hydrolytic reaction. This view
also applies to the degradation of lipo-
somal ganglioside GM2 by HexA in the
presence of GM2AP. GM2AP is essential
for the enzymatic hydrolysis of ganglio-
side GM2, even in the presence of high
BMP concentrations. Its absence causes
the fatal neurodegenerative AB variant of
GM2-gangliosidosis in vivo. Still, the reac-
tion is stimulated by anionic BMP >100-
fold (Werth et al., 2001) (Fig. 4B). Also
downstream reactions (Fig. 1) are stimu-
lated by anionic membrane lipids. At con-
centrations of anionic phospholipids >10
mol% in the liposomal membranes, the
cleavage of GlcCer by p-glucosidase
(Wilkening et al., 1998) and that of cer-
amide by acid ceramidase (Linke et al.,
2001) proceeds even in the absence of a
SAP.

Therapeutic approaches

Currently, there is no treatment available
for patients with ganglioside storage dis-
eases (van Gelder et al., 2012). A main ob-
stacle is the blood—brain barrier, which
prevents the passage of therapeutic en-
zymes and proteins into the brain. For the
prevention of substrate storage, substrate
influx into the lysosomal compartment
must not exceed this compartment’s cat-
abolic capacity (see Protracted clinical
forms of gangliosidoses and the threshold
theory, above; Conzelmann and Sand-
hoff, 1983, 1991; Leinekugel et al., 1992).
This means that therapeutic methods
should either increase the catabolic rate
above the threshold or decrease the influx
rate of substrates below the maximum
catabolic capacity of the affected cells, e.g.,
by reducing the cellular substrate biosyn-
thetic rate (Fig. 6). Therapeutic strategies
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in use such as enzyme replacement therapy
(ERT) for adult Gaucher disease and those
under study in animal models such as BMT
yielded so far no substantial and long-
lasting improvements in mouse models
with GM1- and GM2-gangliosidosis. How-
ever, intracerebroventricular administra-
tion of a modified recombinant HexB
(Matsuoka et al., 2011) and a highly phos-
phomannosylated recombinant human
HexA reduced the level of storage com-
pounds (Tsujietal., 2011) in the HexA- and
HexB-deficient mouse brain efficiently.
Additional approaches using low
molecular compounds penetrating the
blood-brain barrier have been evaluated
in murine models of gangliosidoses, but
so far without substantial success. They
include the use of chemical chaperons,
substrate analogs, or active site inhibitors
(Matsuda et al., 2003; Tropak et al., 2004)
to stabilize variant patient hydrolases dur-
ing their biosynthesis and folding, and
thereby enhance their hydrolytic activity
as introduced by Fan et al. (1999).
Another approach is the substrate reduc-
tion therapy. It uses inhibitors of the biosyn-
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thetic pathway, such as iminosugars of the
nojirimycin type (Butters et al., 2005; Fantur
et al., 2012; Suzuki et al., 2012) and reduces
the influx of substrates into the lysosomes
(Kolter and Sandhoff, 1999). However,
treatment of two Tay—Sachs patients with
N-butyldeoxynojirimycin (Miglustat) did
not arrest their clinical deterioration (Bembi
et al., 2006), whereas a stable neurological
picture was reported for two patients with
Sandhoff disease after Miglustat treatment
(Tallaksen and Berg, 2009; Wortmann et al.,
2009).

However, reducing the ganglioside bio-
synthesis with inhibitors of the ceramide
glucosyltransferase, N-butyldeoxynojirimy-
cin or N-butyldeoxygalactonojirimycin, led
to an increased survival of Sandhoff mice up
to 2 months (Andersson et al., 2004; Jeyaku-
mar et al., 2004).

In a clinical Phase I/1I trial, treatment of
late onset GM2-gangliosidosis patients with
a presumed chaperon of B-hexosamini-
dases, pyrimethamine, for a 4 month period
enhanced their leukocyte HexA levels, but
clinical efficacy could not be assessed
(Clarke et al., 2011).
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A combination of different methods for
patients with significant residual enzymatic
activity, e.g., substrate reduction together
with enzyme enhancement therapy, non-
steroidal anti-inflammatory drugs, and an-
tioxidants is expected to yield better results.

Gene therapy

To circumvent the blood—brain barrier,
functional copies of the mutant gene were
directly inserted into murine brain cells
with the help of retroviral and lentiviral
vectors (Biffi and Naldini, 2005). The
functional enzyme should be stably over-
expressed in the transfected mutant cells
and secreted, thereby cross-correcting ad-
jacent cells (Arfietal., 2005; Martino et al.,
2005).

Intracerebral injection of an adenovi-
ral vector encoding the B-subunit of
HexA increased HexA activity to nearly
normal levels in HexB-deficient mice
(Bourgoin et al., 2003). Also, the intracra-
nial inoculation of recombinant adeno-
associated viral (AAV) vectors encoding
both, human a- and 8 Hex-subunit genes,
resulted in an almost generalized correc-
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tion of the catabolic lysosomal defect in
the same mice (Cach6n-Gonzalez et al.,
2006). Animals survived more than a year
with delayed onset of the disease, reduced
ganglioside storage and inflammation,
preserved motor function, and rescue of
acute neurodegenerative illness (Sargeant
et al., 2012).

AAV-mediated neonatal gene delivery
by intracerebroventricular injection seems
to be an effective approach to treat GM1-
gangliosidoses. It resulted in a widespread
appearance of the missing [3-galactosidase
activity in the murine brain and a normal-
ization of all GSL levels (Broekman et al.,
2007; Baek et al., 2010).

Though these results are promising, it
will take many more investigations and
progress to develop a real gene therapy for
GSL and sphingolipid storage diseases.

Conclusions and outlook

To identify the molecular basis of amau-
roticidiocy of the lipid accumulating type,
it was important to isolate the storage
compounds and clarify their chemical
structures. This allowed a search for the
defective catabolic steps to identify the en-
zymes and lipid binding proteins in-
volved, their genomic structures, and the
mutations causing the different gangli-
osidoses. The fact that the main storage
compounds (gangliosides GM1 and
GM2) are preferentially synthesized in
neuronal cells is crucial for the start of
neurodegenerative diseases and compli-
cates all therapeutic approaches. So far,
efficient ERT is not feasible, since the
blood-Dbrain barrier prevents cerebral up-
take of therapeutic proteins. Also genetic
approaches that appeared to be promising
in mouse models are still not reliable
(Cach6n-Gonzalez et al., 2006).

There is no simple model to under-
stand the complex pathogenesis of mono-
genetic gangliosidoses. The primary lipid
storage affects the endolysosomal system
of neurons and obviously does not trigger
an effective feedback inhibition of the stor-
age compounds’ biosynthesis. However, the
storage may well impair the turnover of
membranes and macromolecules, affecting
neuronal metabolism and function.

Degradation of gangliosides requires
the interaction of rather unspecific hydro-
lases and lipid binding proteins at surfaces
of intraluminal vesicles and membrane
structures. These complex interactions,
including the substantial dependency of
many catabolic steps on lipid binding co-
factors (SAPs) and the lipid composition
of the intraluminal, lysosomal mem-
branes, seem to prevent an exact and

quantitative understanding of the degra-
dative sphingolipid pathways.

We also do not know to what extent
the lipid load of the affected lysosomes
disturbs their primary functions as cellu-
lar stomachs (Tamboli et al., 2011) to de-
grade macromolecules and release the
products into the cytosol as nutrients
for biosynthetic pathways and energy me-
tabolism. One should also keep in mind
that the cellular uptake of essential factors,
for example, the uptake of vitamin B12
involving several proteins, and that of
Fe®" via transferrin and the transferrin
receptor, may well be impaired by the
lipid load causing a traffic jam in the en-
dolysosomal system (Jeyakumar et al.,
2009). The storage of GSLs in gangli-
osidoses also triggers side effects such as
the accumulation of hydrophobic mate-
rial including phospholipids and hydro-
phobic protein fragments in the storage
granules (“membranous cytoplasmic
bodies”) (Samuels et al., 1963), but also
transmembrane spans of mitochondrial
ATP synthase and amyloid-B-peptide
(Keilani et al., 2012). As in multiple sclero-
sis, functionally impaired neurons give
rise to an immune response, and are
prone to digestion by microglia and in-
vaded macrophages (Wada et al., 2000;
Wekerle, 2005).

Although we have learned a lot about
the function of gangliosides, their bio-
chemistry, enzymology, and cell biology,
we are still far away from a real under-
standing of the molecular and cellular
pathogenesis of ganglioside storage dis-
eases and the development of therapeutic
approaches. However, the successful dis-
section of the clinical picture of amaurotic
idiocy into 5 different ganglioside storage
diseases involving 4 different genes, and a
group of 10 so far not extensively analyzed
neuronal ceroidlipofuscinoses, may en-
courage the search for similar clinical en-
tities of monogenetic diseases but with
causative diversity, among the high num-
ber of endemic inherited diseases, the mo-
lecular basis of which still has to be
elucidated.
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