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The comprehensive relations between healthy adult human brain white matter (WM) microstructure and gray matter (GM) function, and their
joint relations to cognitive performance, remain poorly understood. We investigated these associations in 27 younger and 28 older healthy adults
by linking diffusion tensor imaging (DTI) with functional magnetic resonance imaging (fMRI) data collected during an n-back working memory
task. We present a novel application of multivariate Partial Least Squares (PLS) analysis that permitted the simultaneous modeling of relations
between WM integrity values from all major WM tracts and patterns of condition-related BOLD signal across all GM regions. Our results indicate
that greater microstructural integrity of the major WM tracts was negatively related to condition-related blood oxygenation level-dependent
(BOLD) signal in task-positive GM regions. This negative relationship suggests that better quality of structural connections allows for more
efficient use of task-related GM processing resources. Individuals with more intact WM further showed greater BOLD signal increases in typical
“task-negative” regions during fixation, and notably exhibited a balanced magnitude of BOLD response across task-positive and -negative states.
Structure—function relations also predicted task performance, including accuracy and speed of responding. Finally, structure-function-
behavior relations reflected individual differences over and above chronological age. Our findings provide evidence for the role of WM micro-
structure as a scaffold for the context-relevant utilization of GM regions.

Introduction

Cognitive performance necessarily relies on the integrity of white
matter (WM) fibers (that provide a skeleton for neural signal
transmission), and the quality of neural processing in gray matter
(GM). However, the specific relations between WM microstruc-
ture and GM functioning in the healthy adult brain, and their
joint relations to cognitive abilities, remain understudied. Al-
though better structural connectivity is linked to higher cognitive
functioning (Johansen-Berg, 2010; Burzynska et al., 2011; Fjell et
al., 2011; Madden et al., 2012), it is unclear whether greater WM
integrity is associated with higher or lower GM activity, and how
this relation is modulated within regions activated on (“task-
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positive”) and off (“task-negative”) task (Fox et al., 2005; Buck-
ner et al., 2008; Raichle, 2010).

Many functional neuroimaging studies suggest that better
performers require less brain activity (relative to baseline) to suc-
cessfully perform a task of a given difficulty level (Neubauer and
Fink, 2009). Convergent with neural efficiency theory (Haier et
al., 1988), fast-performing young adults often show lower and
less extensive activity than slow performers in select task-positive
regions, such as dorsal lateral prefrontal cortex (Rypma and
D’Esposito, 1999; Rypma et al., 2002). Sparsely available univar-
iate studies on healthy older adults report negative relations be-
tween structural integrity in restricted regions in WM and neural
activity in task-positive frontoparietal regions (Persson et al.,
2006; Madden et al., 2007; Schulze et al., 2011). However, the role
of WM integrity in global, whole-brain processing efficiency is
still unknown. We predict that greater WM integrity should gen-
erally be linked to lower (more efficient) brain activity in task-
positive regions. Conversely, the exact opposite effect may exist
between WM integrity and the magnitude of “task-negative” ac-
tivity at fixation. Canonical task-negative (default mode) regions
are typically more active during fixation relative to task (and thus,
these same regions are necessarily “deactivated” on task), a phe-
nomenon that is reduced in poorer performers, older adults, and
especially in those with dementia (Lustig et al., 2003; Grady et al.,
2006, 2010; Sperling et al., 2009; Sambataro et al., 2010). Given
known links between cognitive performance, aging, and WM
integrity (for a review, see Madden et al., 2012), those with high
WM integrity may also have higher activation magnitude in task-
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negative regions during fixation. Accordingly, higher WM integ-
rity should promote a clearer differentiation in BOLD signal
between fixation and task in typical task-negative regions.

To test these hypotheses we combined diffusion tensor imag-
ing and working-memory fMRI data from a sample of 55 healthy
adults. Using a novel application of multivariate Partial Least
Squares [PLS (McIntosh et al., 1996)], we simultaneously mod-
eled the relations between all major WM tracts and whole-GM
patterns of condition-related neural activity. We then examined
the covariation between these multivariate effects and cognitive
performance. Detecting robust structure—function relation-
ships required a sample with a sufficiently broad distribution of
WM integrity, fMRI, and behavioral data. Thus, we recruited
younger and older adults, as normal aging magnifies individual
heterogeneity in healthy adult lifespan samples (Nyberg et al.,
2012; Lindenberger et al., 2013). Finally, as chronological age is
an indirect proxy for both neural and non-neural factors, we
further predicted that WM structure-GM function relations and
WM-GM effects on cognitive performance would not be fully
accounted for by age group.

Materials and Methods

Participants

The sample consisted of 27 younger (YA; age range 20—31, mean *= SD
24.3 = 3.2, 14 female, years of education 16.4 = 3.1) and 28 older (OA;
age range 60—70, mean * SD 63.2 = 2.5, 13 female, years of education
15.4 * 3.8) adults. The current participants were a subsample of partic-
ipants recruited for prior studies (Burzynska et al., 2011; Nagel et al.,
2011), from whom high quality diffusion tensor imaging (DTI) and fMRI
data were available. All participants were right-handed, with normal or
corrected-to-normal vision, and reported to be psychiatrically and neu-
rologically healthy. Participants showed age-typical performance levels
on measures of perceptual speed (items completed in Digit-Symbol Sub-
stitution; YA: 64.4 * 11.4; OA: 49.1 * 10.0; p < 0.001) and verbal
knowledge (correct responses on the Spot-a-Word task; YA: 18.9 * 4.7
OA: 22.8 = 6.3; p = 0.012). All OA were nondemented, community
dwelling, and scored >25 points on the Mini Mental Status Examination.
The Ethics Committee of the Charité University Medicine Berlin ap-
proved the study, and written informed consent was obtained from all
participants. All of them received financial reimbursement.

MRI acquisition and analysis

DTI. DTT allows inferences about WM microstructure in vivo by quan-
tifying the magnitude and directionality of diffusion of water within a
tissue (Beaulieu, 2002). Fractional anisotropy (FA), a measure of the
directional dependence of diffusion, reflects the level of WM integrity
within a voxel [i.e., fiber size, density, coherence, degree of myelination,
and myelin integrity (Beaulieu, 2002)], in which higher FA serves as a
proxy measure of faster and more reliable information transfer along
axons.

We acquired DTT images on a 1.5 T Siemens Sonata with 40 mT/m
gradients and 200 T/m/s slew rates (Siemens) on average 57 d after our
fMRI data collection. All images were obtained parallel to the anterior—
posterior commissure plane with no interslice gap. Eddy current-
induced image distortions were minimized by using a twice-refocused
spin echo single-shot Echo Planar Imaging sequence (Reese et al., 2003),
with TR/TE = 8500/96 ms, 128 X 128 matrix, 2.5 mm?> in-plane resolu-
tion, and receiver bandwidth of 1502 Hz, comprising 52 2.5-mm-thick
slices. The protocol consisted of a set of 12 noncollinear diffusion-
weighted acquisitions, with b-value = 1000 s/mm? and a T2-weighted,
b-value = 0 s/mm? acquisition, each repeated four times.

DTI data were processed using the FSL 4.1 Diffusion Toolbox (FDT:
http://www.fmrib.ox.ac.uk/fsl) in a standard multistep procedure, in-
cluding: (1) motion and eddy current correction of the images and cor-
responding b-vectors, (2) removal of the skull and nonbrain tissue using
the Brain Extraction Tool (Smith, 2002), and (3) voxel-by-voxel calcula-
tion of the diffusion tensors. Using the diffusion tensor information, FA
maps were computed using DTIFit.
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We used TBSS v1.2 (Smith et al., 2006, 2007), a toolbox within FSL
(Smith et al., 2004), to create a representation of main WM tracts com-
mon to all participants (WM “skeleton”). This included: (1) nonlinear
alignment of each participant’s FA volume to the 1 X 1 X 1 mm? stan-
dard Montreal Neurological Institute (MNI152) space via the
FMRIB58_FA template using the FMRIB’s Nonlinear Registration Tool
[ENIRT (Rueckert et al., 1999); http://www.doc.ic.ac.uk/~dr/software],
(2) calculation of the mean of all aligned FA images, (3) creation of the
WM skeleton by perpendicular nonmaximum-suppression of the mean
FA image and setting the FA threshold to 0.25, and (4) perpendicular
projection of the highest FA value (local center of the tract) onto the
skeleton, separately for each participant.

To obtain the measure of global WM integrity, we averaged the FA
values from the entire skeleton for each participant (global FA). To verify
how different tracts contribute to the multivariate structure—function
relationships, we extracted mean FA values from 22 regions (Fig. 1A)
representing core parts of main association, projection, and commissural
fibers. The regions were identified on the TBSS skeleton using the DTT
white-matter atlas (Mori et al., 2005).

Functional MRI. While undergoing fMRI, participants performed a
letter n-back task adjusted to reduce switch costs in older participants
(Nagel et al., 2011). A series of letters was presented and the task was to
compare the currently presented letter with the letter seen one, two, or
three letters earlier (1-, 2- and 3-back conditions, respectively). We ac-
quired three runs for each participant, where each run consisted of two
successive blocks of each condition (a blocked-design), all alternating
between 20-s-long fixation blocks. The order of conditions was different
in each run. Fifteen letters were presented during each condition block
and therefore there were 14 1-back trials, 13 2-back trials, and 12 3-back
trials in each block (total number of trials was 84, 78, and 72, respec-
tively). Each block began with 5000 ms presentation of the condition cue
(1-, 2-, or 3-back). Each letter stimulus was presented for 1500 ms, sep-
arated by a 500 ms fixation cross (total of 14 fixation crosses was pre-
sented in each block). Participants responded “yes” (i.e., the current
letter is the same as the n-back letter) or ”no” (the current letter is not the
same as n-back letter) with a button press. Before entering the scanner,
participants were verbally instructed about the task, practiced three runs,
and received feedback on their performance. N-back performance in the
scanner was assessed by percentage of correct responses, including both
hits and correct rejections, to best represent performance across each task
block (accuracy) and by the average response latency during correct trials
[reaction time (RT)]. Trials of RT < 200 ms were excluded.

Whole-brain functional MRI data were collected using a 1.5 T Siemens
Vision MRI system with a standard EPI sequence (TR/TE = 2500/40 ms,
flip angle 90°, voxel size 4 X 4 X 4.6 mm 3 interslice gap 0.15, 26 slices
acquired in ascending order approximately axial to the bicommissural
plane). Three dummy volumes preceded each of the three experimental
runs to achieve a steady state of tissue magnetization. Each run lasted ~5
min. Two structural scans (proton-density-weighted sequence: TR/TE =
4350/15 ms; flip angle 180° 252 X 256 matrix; 1 X 1 X 4 mm voxel size,
and a sagitally oriented high resolution T1-weighted sequence: TR/TE =
20/5 ms; flip angle 30° matrix 256 X 256; voxel size 1 mm?>) were ac-
quired in the same orientation as the functional EPIs to aid coregistration
of the functional images.

fMRI data were preprocessed with FSL 4.1 (Smith et al., 2004). Pre-
processing included the following: motion-correction with spatial
smoothing (8 mm full-width at half-maximum Gaussian kernel), high-
pass filtering (o = 108 s), and modeling of intrinsic autocorrelations
using prewhitening. Registration of functional images to high-resolution
participant-specific T1 images, and from T1 to standard space (MNI
152_T1) was performed using FLIRT (Jenkinson and Smith, 2001; Jen-
kinson etal., 2002), followed by further refinement of registration of high
resolution structural to standard MNI 152_T1 space using FNIRT non-
linear registration (Andersson et al., 2007). The registration matrices
were then used to transform the functional data of each run to the MNI
152_T1 template. To restrict all multivariate analyses to the GM, we
masked our functional data with the GM tissue prior provided in FSL,
thresholded at probability >0.37. Our blocked-design BOLD signal was
expressed as a percent change within an entire block (task or fixation)
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from the mean of the final three scans of the
preceding block. Referring to the preceding
block effectively acts as a local high-pass filter
on the data, avoiding the need to detrend. To
calculate mean BOLD signals for each voxel
and experimental condition, we averaged
mean percent change within each block across
all blocks for a given condition.
Blocked-designs necessarily involve exam-
ining condition-based BOLD data without dif-
ferentiating into correct and incorrect trials.
This design was most suitable for the current /
study as we were interested in BOLD signal re-
flecting average sustained brain activity for a }f
given working memory load (and its relations VCING
to WM integrity and task performance), rather \LF/I FO/
than single trial activity. In addition, trial
length increased with task difficulty, resulting
in different numbers of total trials (1-back >

vy)

2-back > 3back). Excluding incorrect trials (or 18 -
blocks containing them) would further in- 16 -
crease the disproportion in number of trials 2 14 A
between conditions. Importantly, although we -rSO 12 A
did observe the expected decrease in accuracy £ 107
from 1- to 3-back (see Results), even older 2 81
adults performed well above chance level dur- ..g 67
ing 3-back. Therefore, we expect that the mea- = 41
sured BOLD signal reflected continuous 2 |
encoding and maintenance of items in working 0 055 0.60
memory in the vast majority of blocks. How-

ever, precisely how structure—function—behav- 18 -
ior relations differ between correct and 16 -

incorrect trails requires investigation within an
event-related design, which we do not pursue
here. Future studies using imaging techniques
with higher temporal resolution (e.g., EEG)
may also help tease apart structure—function
relations with respect to different processes un-
derlying working memory performance, such
as encoding, maintenance, and retrieval. 040 0.42
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-
o
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PLS multivariate analysis of relations
among FA, BOLD signal, and age group
Our sample included both younger and older
adults to ensure sufficient range of individual
differences in FA values and n-back perfor-
mance. As depicted in Figure 1B, the distribu-
tions of FA and behavioral measures were
unimodal and overlapping for the combined
YA and OA sample. This indicates that both the
WM integrity and behavioral data represent a
continuum across adulthood, and splitting the sample based only on age
group would be artificial from both biological and statistical
perspectives. We therefore considered our participants as a single sample
for various analyses of links between WM, BOLD, and performance. To
account for any covariation among the measures of interest and age, we
also tested possible effects of age group using several subsequent analyses
(see below).

To identify multivariate patterns of relations between WM integrity
and GM functional activity, we performed behavioral PLS analysis
(McIntosh et al., 1996; Krishnan et al., 2011). This approach permits the
analysis of the relations between FA from all major WM tracts and BOLD
signal in all GM regions in one model, without the need of restricting the
analyses to specific regions-of-interest. The behavioral PLS analysis be-
gins with a correlation matrix (CORR) between our variables of interest
(FA values from 22 WM regions and global FA) and each voxel’s signal on
each task condition (1-, 2-, 3-back, and fixation); correlations are calcu-
lated across participants. Then, this CORR matrix is decomposed via
singular value decomposition (SVD):

Figure1.
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A, WMregions of interest. Superior corona radiata (SCR), superior longitudinal fasciculus (SLF), anterior and posterior
limb of theinternal capsule (ALICand PLIC), external capsule (EC), fornix (FX), 5 regions of the corpus callosum [reg1, 2, 3,4, 5 (Hofer
and Frahm, 2006)], forceps major (fMAJ), forceps minor (fMIN), dorsal (dCING), and ventral cingulum (vCING), WM containing
occipital portion of inferior longitudinal fasciculi and inferior fronto-occipital fasciculi (ILF/IFOF), ventral prefrontal part of uncinate
(UNC_VPFC), WM containing uncinate and inferior fronto-occipital fasciculi (UNC_IFOF), medial temporal lobe WM (MTL), WM of
the medial PFC (mPFC), WM of the temporal pole related to inferior longitudinal fasciculus (TEMP), and cerebral peduncles (CP). B,
Histograms of region 2 of corpus callosum and global FA, mean RT, and mean accuracy in YA and OA. Note the overlapping
distributions despite mean group differences.

SVDcorr = USV’ (1)

This decomposition produces a left singular vector of FA weights (U), a
right singular vector of BOLD weights (V), and a diagonal matrix of
singular values (S). In other words, this analysis produces orthogonal
latent variables (LVs) that optimally represent relations between FA val-
ues and BOLD in GM voxels. Each LV contains a spatial pattern depicting
the brain regions where the activity shows the strongest relation to FA. To
obtain a summary measure of each participant’s expression of a particu-
lar LV pattern, we calculated within-person “brain scores” by multiply-
ing each voxel’s (i) weight (V) from each LV ( j) produced from the SVD
in Equation 1 by the BOLD value in that voxel for person (k), and sum-
ming over all (n) brain voxels:

>V, BOLD )

i=1

Thus, in a single measure, a brain score indicates the degree to which a
participant expresses the multivariate spatial pattern captured by a given
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Figure 2.

Multivariate relationships between WM integrity and BOLD signal. A, Spatial pattern where higher FA was related to less BOLD signal during task but more BOLD signal during fixation

(blue-light blue). Only in one small cluster higher FA was related to higher BOLD signal at task and lower at fixation (red). Significant regions: bootstrap ratio > =3. PCC, Posterior cingulate cortex;
DLPFC, dorsolateral prefrontal cortex; other labels are listed in Table 1. B, Correlation magnitudes (Pearson r) between FA in the 23 WM regions and BOLD signal during 1-, 2-, 3-back, and fixation

(permuted p << 0.0071, error bars represent bootstrapped 95% confidence intervals).

FA-driven latent variable. Significance of detected relations between
multivariate spatial patterns and experimental conditions was assessed
using 1000 permutation tests of the singular value corresponding to each
LV. A subsequent bootstrapping procedure revealed the robustness of
voxel saliences across 1000 bootstrapped resamples of our data (Efron
and Tibshirani, 1993). By dividing each voxel’s mean salience by its boot-
strapped SE, we obtained “bootstrap ratios” as normalized estimates of
robustness. We thresholded bootstrap ratios at a value of =3.00, which
approximates a 99% confidence interval. Because we examined FA values
from 23 regions across four conditions, 92 LVs were possible.

To test whether the observed structure—function relationships were
fully collinear with the effects of age group on WM integrity, we per-
formed a separate behavioral PLS analysis relating age group (YA vs OA)
to BOLD activity. This single variable (age group) examined across four
conditions yielded four possible LVs.

To identify regions involved during fixation and task, we performed a
separate mean-centering task PLS analysis (McIntosh et al., 1996; McIn-
tosh and Lobaugh, 2004; Krishnan et al., 2011) that examined differences
in BOLD signal between fixation, 1-, 2-, and 3-back conditions (again,
four LVs possible). Akin to the behavioral PLS described above, task PLS
looks at how brain activity covaries with our experimental conditions.
This analysis was further used to put the multivariate pattern of struc-
ture—function relationships in the context of working memory- and
fixation-related modulations in BOLD signal (see Results for more
details).

General linear model analyses

All other statistical analyses were performed using SPSS (v.16, SPSS). The
values reported in correlations or general linear model analyses were
winsorized with respect to the distribution of the whole sample (2.5 =
SD) to reduce the effect of outliers. We used various general linear mod-
els to investigate the relationships between FA, BOLD, behavioral mea-
sures, and age group. For each model, we calculated Cook’s Distance,
which reflects the extent to which model residuals would change if a
particular data point (in multivariate space) were excluded from the
regression coefficient calculation. Larger Cook’s Distance values indicate
more influential data points. The threshold for determining influential
observations was set according to previous recommendations [ =4/num-
ber of observations (Bollen and Jackman, 1990)]. In the current study,
the number of observations was 55, yielding a Cook’s Distance threshold
of 0.07; observations exceeding this threshold were deemed overly influ-
ential to our model results, and were thus removed from the data, with
the additional constraint that not more than three cases per model were
excluded (~5% of the total sample).

Results

Whole-brain structure—function relationships

Our multivariate analysis of FA-BOLD relations yielded one sig-
nificant latent variable (permuted p < 0.001, 63.62% crossblock
covariance), suggesting that higher FA was related to lower
BOLD signal during task and higher BOLD signal during fixation
periods, in multiple regions (Fig. 2A; the corresponding analyses
within each age group yielded the same general direction of cor-
relations and multivariate spatial pattern). Importantly, the cor-
relation bars in Figure 2B indicate that, despite few nonsignificant
correlations (i.e., 95% bootstrapped confidence intervals that
crossed zero), structure—function relationships were consistent
across all conditions and WM tracts. Only FA of the PLIC did not
significantly contribute to the observed FA-BOLD correlation
pattern. Of the remaining 22 FA ROIs, the relationship between
FA and BOLD was always significant in the 2-back condition,
significant in 19 ROIs for the 3-back condition, and in nine ROIs
for the 1-back condition. This suggests that structure—function
relationships, for most WM tracts, were stronger when the task
involved sufficient working memory challenge (i.e., 2- and
3-back compared with 1-back) or when not engaging in the ex-
ternal task (during fixation). Peak voxels’ location and reliability
(bootstrap ratios) are reported in Table 1.

Contribution of age group to the FA-BOLD relationship

As there are well documented differences in FA between younger
and older adults (Burzynska et al., 2010; Madden et al., 2012), we
further investigated the contribution of age group to the FA-BOLD
relationship. To this end, we compared the FA-BOLD model de-
scribed above to a behavioral PLS model in which age group (YA vs
OA) was linked to BOLD activity. Only the first LV was significant
(p < 0.001, 74.76% crossblock covariance). We then overlaid the
FA-BOLD and age group-BOLD patterns to examine similarities
and differences (Fig. 3A). In many regions, such as right premotor
cortex, parts of anterior cingulate, thalamus, ventral posterior cin-
gulate gyrus, temporal pole, medial temporal lobe, and both primary
and higher visual regions, only FA-BOLD relationships were signif-
icant (Fig. 3B, blue regions). Age group model-only regions (Fig. 3B,
red) were far less prevalent and represented by clusters in supramar-



17154 - ). Neurosci., October 23, 2013 - 33(43):17150 17159 Burzynska, Garrett et al. o A Scaffold for Efficiency

Table 1. Peaks, coordinates, bootstrap ratios, and cluster sizes for the PLS models

MNI coordinates

Cluster size
Model Region HEM X Y z BSR (voxels)
FA-BOLD Visual cortex (V5/V2) L -2 —86 —14 —7.59 20713
Superior parietal lobule (SPL) R 28 —40 62 —7.15 7425
Thalamus (THA) L —14 —18 18 —6.12 438
Planum temporale (PT) R 64 —26 12 —5.06 1493
Anterior cingulate cortex (ACC) L -2 14 36 —5.00 328
Temporal pole (TP) R 50 2 —46 —4.73 32
Visual cortex (V1) LR 0 —9% 22 —4.55 60
Insular cortex (INS) L —32 -22 18 —437 198
Frontal orbital cortex (FOC) R 44 34 —18 —4.35 189
Temporal fusiform cortex (TFC) R 40 -8 —42 —4.28 100
Frontal pole (FP) R Y] 58 -8 —4.23 56
Visual cortex (V3-V5) L —36 =70 36 —4.22 9%
Premotor cortex (PMC) R 28 0 48 —4.21 364
Frontal Pole (FP) L —46 40 —14 —4.02 36
Medial temporal lobe (MTL) R 18 -4 —34 —4.00 60
Temporal fusiform cortex (TFC) L —-30 —14 —40 —3.65 12
Pons R 6 —34 —36 —3.51 20
Insular cortex (INS) R 30 —28 18 —3.51 29
Pallidum R 18 0 —4 —3.51 37
Middle temporal gyrus R 52 -8 —16 —3.48 60
Frontal Pole L —32 40 46 —3.46 n
Supramarginal gyrus (SMG) L —44 —52 30 —3.40 26
Visual cortex (V3-V5) L —48 —78 -8 —3.36 69
Temporal pole (TP) R 54 14 —14 —3.29 12
Pallidum R 26 —16 —6 —3.24 19
Middle temporal gyrus L —64 —58 6 —3.19 16
Angular gyrus R 40 —58 18 —3.12 14
Anterior cingulate cortex/caudate nucleus (ACC/CN) L —4 30 -2 418 86
Age group-BOLD Precuneus L —4 —36 50 7.75 7189
Dorsolateral prefrontal cortex L —46 28 14 7.20 1486
Temporal fusiform cortex L —34 =10 —40 6.89 1066
Visual cortex V1 R 12 —76 —24 6.48 4083
Dorsolateral prefrontal cortex R 58 12 10 6.16 1414
Temporal pole R 50 2 —46 5.63 21
Frontal Pole (FP) L —38 56 —14 5.08 333
Parahippocampal gyrus (pHIPP) R 20 —12 —34 498 428
Frontal pole R 42 58 -8 4.97 63
Postcentral gyrus R 60 =20 18 4.74 265
Frontal orbital cortex R 46 28 —18 4.54 43
Visual cortex V3-V5 R 38 —86 -8 433 86
Thalamus L —16 —20 18 418 122
Frontal pole L —32 36 40 3.82 107
Superior temporal gyrus R 68 —16 -2 3.81 13
Medial superior frontal gyrus (mSFG) L/R 0 30 48 3.79 80
Visual cortex V3-V5 L —36 —84 —6 3.77 59
Dorsolateral prefrontal cortex L —40 14 44 3.59 58
Midbrain L —10 —22 =12 3.57 36
Middle temporal gyrus L —56 —42 -8 3.51 27
Supramarginal gyrus (SMG) L —42 —52 40 3.51 184
Premotor cortex R 34 16 46 3.47 23
Temporal fusiform cortex L —32 —4 =10 3.45 99
Medial superior frontal gyrus (mSFG) L -2 24 64 3.40 21
Thalamus L =2 —20 10 3.36 19
Middle temporal gyrus R 68 —18 —16 3.34 1
Precuneous R 14 —60 22 3.34 23
Frontal orbital cortex (FOC) R 42 36 —6 333 50
Visual cortex R 18 —9% -8 3.29 26
Temporal pole L —60 -2 —14 3.28 17
Postcentral gyrus R 56 —18 36 3.20 23
Task PLS Medial superior frontal gyrus /anterior cingulate cortex (mSFG/ACC) L —4 4 56 15.89 27369
Visual cortex (VIS) L —48 =70 2 12.86 19115
Visual cortex (VIS) R 32 —90 2 12.46 748
Visual cortex (VIS) R 28 =70 34 7.64 120
Pons L -2 —28 —38 331 18
Thalamus (THA) L/R 0 —16 14 3N 10

(Table continues.)
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MNI coordinates

Cluster size
Model Region HEM X Y 7 BSR (voxels)
Posterior cingulate cortex (PCC) L —6 —50 28 —12.14 19444
Visual cortex (VIS) L —54 —62 32 —11.49 1717
Medial prefrontal cortex (mPFC) L -2 52 —8 —10.75 7702
Planum temporale (PT) R 58 —4 4 —9.07 8787
Visual cortex (VIS) R 52 —66 32 —7.69 826
Frontal pole (FP) R 52 38 0 —7.54 467
Superior parietal lobule R 26 —38 72 —4.51 12
Insular cortex (INS) R 36 4 8 —3.44 10

All peaks and clusters were determined using a voxel extent =10 and bootstrap ratio (BSR) =3.00. HEM, Hemisphere; MNI, Montreal Neurological Institute (mm); L, left; R, right.

. age group

Figure 3.

ginal, prefrontal, and parahippocampal regions. Regions where the
age group-BOLD and FA-BOLD models overlapped included
DLPEFC, visual cortex, posterior cingulate gyrus/precuneus, and su-
perior parietal lobule. Similar to the effect of FA on BOLD, the effect
of age group on BOLD was significant only in conditions with suffi-
cient working memory load (2- and 3-back; Fig. 3B). Though some
regions representing the FA-BOLD relationship overlapped with the
regions representing age group differences, the majority of the re-
gions expressing the FA-BOLD association were common to both
age groups.

FA-BOLD signal relationships during task and fixation

The results depicted in Figure 2 show that FA was negatively
related to BOLD signal during task and positively related to
BOLD signal during fixation. Corresponding regions included
the frontoparietal control and dorsal attention areas, in which
BOLD signal typically increases during task, as well as cingulopa-
rietal default regions, in which BOLD signal typically increases
during fixation relative to task (Spreng, 2012). To more precisely
identify n-back task-positive and -negative regions within this
single spatial pattern (Fig. 2A), we performed a mean-centered
task PLS analysis, which models how brain activity covaries with
experimental conditions. Only one LV described the BOLD sig-
nal differences between task and fixation (p < 0.001, 94.09%
crossblock covariance). Figure 4A shows that task-positive

| 1-back 2-back 3-back

FA + age group

Spatial differences and similarities between FA-BOLD and age group-BOLD multivariate models. A, Only FA-BOLD
relations were predominant in the premotor, temporal, and visual regions, as well as in parts of DLPFC and thalamus (in blue). Age
group-BOLD relations were robust in supramarginal, prefrontal, and parahippocampal regions (in red). FA-BOLD and age group-
BOLD models overlapped in parietal, lateral prefrontal, posterior cingulate/precuneus, and visual regions (in green). The voxelwise
spatial correlation of the first latent variables of the two models yielded Pearson r = 0.72, indicating that the two models shared
only 52% spatial similarities. Labels are listed in Table 1. B, Correlation magnitudes (Pearson r) between age group and BOLD signal
during 1-, 2-, 3-back, and fixation (permuted p << 0.001, error bars represent bootstrapped 95% confidence intervals).

regions included premotor, medial pre-
frontal, anterior cingulate, DLPFC, fron-
topolar cortex, insula, caudate, thalamus,
and visual areas, whereas the task-
negative regions included precuneus,
lateral occipital regions, medial PFC,
fronto-orbital and posterior cingulate
cortex, medial temporal lobe, and tempo-
ral pole. This pattern resembles closely
that observed in previous fMRI studies
on working memory (Rypma and
D’Esposito, 1999; Cabeza and Nyberg,
2000; Mazoyer et al., 2001; Owen et al.,
2005; Prakash et al., 2012b). To investi-
gate how the FA-BOLD relations corre-
spond to task-positive and task-negative
regions, we overlaid the pattern of FA-
BOLD correlations (Fig. 2A4) and the spa-
tial pattern map of the mean-centered
task PLS (Fig. 4A). Figure 4B depicts the
FA-BOLD relationship for task-positive
regions, whereas Figure 4C depicts FA-
BOLD correlations for task-negative
regions.

To interpret the meaning of “higher
BOLD signal” in these task-positive or
task-negative regions, we examined the magnitude (%) of BOLD
signal change. To this end, we used the clusters in Figure 4, Band
C, as masks to extract the percent BOLD signal change from the
functional images of each participant (i.e., from the three task
conditions from clusters shown in Fig. 4B, and from fixation
periods from clusters in Fig. 4C). We then regressed percent
BOLD signal change on representative FA values (global FA) to
visualize the sign and magnitude of BOLD signal change, as well
as its relationship to FA. Higher global FA was related to smaller
BOLD signal increases in task-positive regions (r = —0.64, p <
0.001, n = 52), and to greater BOLD signal increases in task-
negative regions (r = 0.51, p < 0.001, n = 52). To further visu-
alize discrete (i.e., task-positive and -negative) by continuous
variable (FA) interactions on percent BOLD, we calculated point
estimates based on =1 SD from the whole-sample FA value
(given the slope and intercept from the regression models) and
plotted the interaction with task-positive and -negative regions.
Figure 4E shows that BOLD signal changes during task and fixa-
tion were balanced in individuals with higher FA. In contrast,
individuals with lower FA showed greater BOLD signal change
during performance in task-positive regions, and reduced BOLD
signal change during fixation in task-negative regions.

Finally, we compared the independent effects of age group
and global FA on percent BOLD signal change. As shown in Table

fixation
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FA-BOLD relations for task-positive and task-negative BOLD signal. A, Mean-centered PLS revealed regions where BOLD signal increased on task (in red) or increased during fixation (in

blue). Task-positive regions included the typical frontoparietal working memory network, as well as visual, anterior cingulate, and subcortical regions, while task-negative regions revealed typical
default-mode network regions. Region abbreviations are listed in Table 1. B, FA-BOLD correlations within task-positive regions. ¢, FA-BOLD correlations within task-negative regions. D, Mean-
centered brain scores showing differences from the mean of 1-, 2-, 3-back, and fixation (error bars represent bootstrapped 95% confidence intervals). E, Schematic representation of the differences
in percent BOLD signal change between adults with higher and lower FA. The point estimates were calculated based on == 15D global FA values given the slope and intercept from regression Models

Tand2inTable 1.

Table 2. Regression models predicting brain activity and task performance

Table 3. Behavioral performance (n-back task)

Dependent variables Predictors t p Partial 17 Workin YA 0A YA + 0A
oring -, — 97 n=28 n="55

1.TP % change Global FA —3.58 0.00 0.21 memory

2.TN % change Global FA 297 0.01 0.15 Accuragy (% correct)  T-back 098 005 093 008 095  0.07
Age group —0.28 0.78 0.00 2-back 092 006 081 009 086  0.09

3. N-back accuracy Mean BS 3.53 0.00 0.20 3-back 084 006 077 0.10 081 0.09
Age group —3.46 0.00 0.20 RT (ms) 1-back 705 9% 815 120 761 121

4.N-back RT Mean BS =331 0.00 0.18 2-back 825 14 890 103 858 13
Age group 1.46 0.15 0.04 3-back 821 100 887 97 854 103

BS, Brain score; TP, task positive; TN, task negative. M, Mean.

2, for both the task-positive regions (Model 1) and task-negative
regions (Model 2), global FA predicted raw BOLD signal change
beyond age group differences. The same results were obtained
when using chronological age instead of age group in these anal-
yses. These results suggest that FA is a better predictor than age
group for BOLD signal changes either during fixation or during
working memory performance.

Structure—function relations predict cognitive performance

Finally, we investigated whether the observed structure—func-
tion associations are behaviorally relevant. Mean and SDs for
accuracy and reaction times are presented in Table 3. To relate
structure—function associations to behavior, we correlated the
average brain score (across the three n-back conditions) from our
FA-BOLD multivariate model (Fig. 2) with average RT and accu-
racy (across the three n-back conditions). We averaged the values
across conditions for two reasons. First, the error bars of the
FA-BOLD correlations were overlapping for all three n-back con-
ditions. Second, preliminary analyses (data not shown) showed a
positive relationship between the brain scores and performance
in each condition. Thus, correlating average n-back brain score
and performance values was representative for the three condi-
tions. Both correlations yielded significant results: Higher brain
scores (i.e., higher FA and lower BOLD) were related to faster and

more accurate n-back performance (Fig. 5)?. We then tested
whether brain scores were related to performance after statisti-
cally controlling for age group differences. Table 2 depicts two
general linear models with either accuracy (Model 3) or RT
(Model 4) as dependent variables and task brain scores and age
group as independent variables. Although both age group and
brain scores independently predicted n-back accuracy, only the
FA-BOLD brain scores accounted for a significant portion of the
variance in RT. Again, the outcome was identical when chrono-
logical age was used in these analyses”. This indicates that
FA-BOLD relations predict working memory performance inde-
pendently of (both models) and better than (RT model) age
group differences.

Discussion
We used a whole-brain, multivariate approach to investigate
structure—function associations in the healthy adult brain. We

“Within-age-group analyses revealed a similar direction of correlation between FA-BOLD-based task brain score
(BS) and mean n-back accuracy (YA: r = 0.25; 0A: r = 0.63) and FA-BOLD-based task BS and mean n-back RT (YA:
r = —.21; 0A:r = —.50). Although effects within the YA group were weaker, Fisher's r-to-z transformation
indicated that the correlation coefficients were not significantly different between the YA and OA groups (one-
tailed, p > 0.05).

®We performed additional analyses using hit rate, false alarm rate, A”, and hit minus false alarm rate as measures of
n-back performance, taking into account possible response bias and sensitivity. All these measures confirmed our
accuracy-based results reported above.
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2011), especially in the context of aging
(Madden et al., 2009, 2012), here we pro-
vide novel evidence for the link between
WM microstructure and GM processing
efficiency in general.

One conceptualization that helps re-
late WM integrity to higher processing ef-
ficiency may be the role of WM in
processing speed (Salthouse, 1996; Deary,
20005 Jensen, 2006). Specifically, if poor
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lower BOLD signal.

obtained three main findings. First, higher WM microstructural
integrity was related to BOLD signal in GM. Specifically, individ-
uals with more intact WM showed less BOLD signal increase in
task-positive regions (e.g., DLPFC) during task performance and
more BOLD signal increase in task-negative regions (e.g., precu-
neus) during fixation. This relation was consistent across condi-
tions and WM tracts, and spatially extended beyond age group
differences in BOLD. Previously (Burzynska et al., 2011), we
showed that task-specific adjustment of BOLD signal in restricted
task-positive regions is related to properties of specific frontopa-
rietal tracts in young adults. The current study extends these
findings by demonstrating that the degree of recruiting
whole-GM task-positive or -negative states is related to the integrity of all
major WM tracts, and in a far more heterogeneous sample. Second,
structure—function relations were reliable predictors of accuracy and
latency. Third, the observed structure—function—behavior associations
did not depend on variance related to age group. Together, our findings
suggest that the structure—function properties of the adult brain under-
lie individual differences in cognition, and that WM integrity appears to
be abetter proxy of GM function and task performance than age group,
even when using a broadly aged sample.

Higher FA and lower BOLD during task performance:

a signature of neural efficiency?

As predicted, adults with greater integrity of anatomical connec-
tions showed lower BOLD signal increase in task-positive re-
gions, and performed faster and more accurately on n-back. This
pattern supports neural efficiency theory (Haier et al., 1988),
indicating that better performing individuals use fewer brain en-
ergy resources to cope with task demands (Neubauer and Fink,
2009). This concept has been supported especially by working
memory fMRI studies reporting lower and less extensive prefron-
tal activation in faster or more accurate young healthy adult per-
formers (Rypma and D’Esposito, 1999; Rypma et al., 2002). Our
study extends this concept by providing initial evidence of struc-
tural brain correlates of neural efficiency unconstrained by par-
ticular ROIs. Specifically, better quality of structural connections
(higher FA) allows for more efficient use of GM resources on task
(lower task-positive BOLD signal increases). In mature WM
structures, higher FA is a proxy for larger axon caliber, higher
density of myelinated axons, and thicker myelin (Beaulieu, 2002),
which increase the speed of action potentials conduction along
axons, resulting in faster or more robust communication be-
tween different GM regions (Fields, 2008). Although a number of
studies showed a positive link between FA and cognitive perfor-
mance in healthy adults (Johansen-Berg, 2010; Burzynska et al.,

MEAN TASK BRAIN SCORE

Structure—function relations predict working memory performance. The scatterplots depict correlations of mean task
brain scores for FA-BOLD relations to RT and accuracy across the three n-back conditions. Higher brain scores refer to higher FA and

oo s00 100 100 WM integrity precludes fast and reliable
signal transduction, the outputs of previ-
ous cognitive operations may no longer be
synchronized with other outputs by the
time they are delivered to the target re-
gions via association fibers, thus inhibit-
ing successful execution of subsequent
cognitive operations [Salthouse’s (1996) simultaneity and lim-
ited time principles]. This should result in lower quality and/or
early degradation of mnemonic representations during encod-
ing, and thus require more processing effort to maintain the
memory contents during updating and retrieval (Myerson et al.,
1990; Rypma and D’Esposito, 1999). In this sense, our results
extend the simultaneity principle to individual differences in
neural efficiency and cognitive performance.

A related link between WM integrity and BOLD signal could
be that slower and less reliable signal transduction may exert
more demands on cognitive control to ensure the integrity of
interactions within task-related networks. For instance, Rypma et
al. (2006) reported that slower performers showed more cortical
activity especially in DLPFC and that PFC had more influence over
other brain regions. Prakash et al. (2012a) demonstrated that acquir-
ing complex skills by extensive videogame training resulted in im-
proved game performance and reduced frontoparietal activity
subserving attention and executive control. Similarly, we observed
negative FA-BOLD correlations in frontoparietal regions, anterior
cingulate, and frontopolar cortex, known as neural correlates of cog-
nitive control (Dosenbach et al., 2007). The mechanisms relating
WM structural connectivity to GM functional efficiency outlined
above are not mutually exclusive: effortful processing of unsynchro-
nized or lower quality representations may exert higher demands on
cognitive control.

Importantly, our arguments regarding neural efficiency do
not detract from our previous work showing that: (1) it is func-
tional for select task-positive ROIs to “respond” via increased
BOLD signal as working memory load increases; and, (2) the
ability to modulate BOLD signal in this way is generally reduced
in older/lower-performing adults. Importantly, older adults of-
ten exhibited higher ROI-based mean activation, possibly reflect-
ing lower processing efficiency (Nagel et al., 2009, 2011). The
direction of this effect converges with our current work, which
highlights that neural efficiency could be considered as a gener-
alized function of WM integrity (more so than age), GM func-
tion, and cognitive outcomes in a whole-brain context.

Neural efficiency as successful utilization of task-positive and
task-negative states

Increased BOLD signal in task-positive regions during task perfor-
mance, along with less BOLD signal during fixation, suggest a bias
toward greater task-related GM activity in adults with lower WM
integrity. McKiernan et al. (2003) demonstrated a greater magnitude
of task-negative BOLD with increasing task difficulty, suggesting
that task-induced “deactivations” represent reallocation of process-



17158 - J. Neurosci., October 23, 2013 - 33(43):17150-17159

ing resources to regions involved in performing the task. Later net-
work analyses showed that the competition between networks (e.g.,
frontoparietal control and default networks) is necessary for mental
flexibility and optimal performance (Raichle et al., 2001; Fox et al.,
2005; Raichle and Snyder, 2007; Spreng, 2012). Our findings extend
these observations by showing that individuals with better structural
connectivity show comparable magnitudes of BOLD signal increase
in task-positive regions during performance and in task-negative
regions during fixation. This magnitude-balanced differentiation
between states depending on cognitive demand may be a key feature
for proficient working memory performance. Conversely, lower
WM integrity may impair the communication between “compet-
ing” rest- and task-related states. This converges with higher
engagement of task-positive regions and lower task-related deactiva-
tions observed in older adults (Sperling et al., 2009; Grady et al.,
2010; Sambataro et al., 2010), who typically have reduced WM in-
tegrity (Burzynska et al., 2010).

Collectively, our results suggest that high quality of structural
connectivity is needed for maintaining an ideally balanced differ-
entiation between task-positive and task-negative neural activity.
Relatedly, recent neurocomputational models demonstrated that
there is an optimal range of conduction velocities that allows
emergence of a network’s spatiotemporal structure (Deco et al.,
2011). For example, prototypical couplings disintegrate and
global activity patterns reorganize when transmission velocities
via anatomical connections are varied below the optimum
(Ghosh et al., 2008; Deco et al., 2009), such as in case of compro-
mised WM integrity. Effectively, these models predict that struc-
tural variability or integrity can preclude healthy brain function,
perhaps serving as a generalized model under which our present
findings may be extended in future work.

WM integrity: a better proxy of function and performance
than age

We showed that WM integrity is a better proxy of GM activity
than age group, and structure—function brain properties predict
performance beyond age group. Thus, the adult lifespan could be
perceived as a condition of heterogeneity in neural efficiency,
resulting from individual differences in brain structural and
functional properties, as well as individual differences in the rate
of age-related degradation of biological resources (Lindenberger
et al., 2013; Nyberg et al., 2012). The predictive power of WM
integrity in our data converges with studies highlighting the im-
portance of defining “biological age” (for which FA could be a
proxy) to more appropriately describe developmental processes
of brain function and cognition, rather than more indirect prox-
ies such as chronological age (MacDonald et al., 2004, 2011).
Relatedly, the concept of cortical disconnection due to break-
down of WM tracts has been proposed as a mechanism account-
ing for age-related cognitive decline (Andrews-Hanna et al.,
2007; Kennedy and Raz, 2009), and could be extended to ideas
about structural connectivity-bound GM efficiency. Some spatial
overlap of the effects of age group and FA on BOLD signal could
be accounted for by other modulators of GM activity, such as
age-related depletion in the dopaminergic system (Bickman et
al., 2010); future work could consider this possibility.

Conclusions

Our study demonstrates that individual differences in the integ-
rity of major WM tracts are related to individual differences in
whole-GM task-positive and -negative activity. Negative rela-
tions between WM integrity and task-related BOLD signal sug-
gest that better quality of structural connections allows for more

Burzynska, Garrett et al. o A Scaffold for Efficiency

efficient use of GM-processing resources during performance
and optimal differentiation between task-positive and task-
negative states. Importantly, these structural-functional brain
properties continued to predict accuracy and latency after con-
trolling for age. Finally, our study demonstrated a viable ap-
proach for examining the whole-brain multivariate combination
of DTT and fMRI data. Our cross-sectional results should be
followed-up longitudinally to investigate lead-lag relations of
structural and functional brain changes, and their relations to
cognitive functioning, across the lifespan.
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