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A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes
next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation,
but the mapping between time course and localization— critical for separating automatic semantic facilitation from other mecha-
nisms— has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of
context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and func-
tional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across
techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demon-
strated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time
window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a
region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing
semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the
semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation
is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and
emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic
processing.

Introduction
The phenomenon of semantic priming—the faster response to
targets preceded by related versus unrelated primes— has been
widely used as a window into the role of context in extracting
meaning from incoming stimuli (Meyer and Schvaneveldt,
1971). Semantic priming manifests neurally as a reduced electro-
physiological response between 300 and 500 ms, known as the
N400 (Kutas and Federmeier, 2011). While much of the effect can
be explained by top-down or strategic operations, some facilita-
tion is believed to be driven by automatic associative processes
(Collins and Loftus, 1975) that can occur with minimal aware-
ness. Evidence for this comes from masked priming, in which the

target follows a briefly presented prime and a backward mask
(Marcel, 1983). Masking allows access to the prime’s semantic
features, but minimizes top-down operations, such as predic-
tively preactivating the target, or “matching” prime-target fea-
tures to influence decision-making (Neely, 1991). Significant
effects of masked priming on the N400 (cf. Brown and Hagoort,
1993; Deacon et al., 2000; Holcomb et al., 2005; Grossi, 2006)
suggest that automatic associative mechanisms contribute to
early semantic facilitation. The aim of the present study was to
identify the neural sources underlying this automatic semantic
facilitation.

Functional magnetic resonance imaging (fMRI) studies have
established that much of the semantic network can contribute to
unmasked semantic priming (Van Petten and Luka, 2006; Lau et
al., 2008). It has been proposed that reduced activity to associated
versus unrelated word pairs within anterior and posterior tem-
poral cortices reflects facilitated access to stored conceptual and
lexicosemantic (Martin, 2007; Patterson et al., 2007) informa-
tion, while modulation of inferior frontal and parietal regions
indexes manipulation of these stored representations (Thompson-
Schill et al., 2005; Hagoort, 2008; Binder et al., 2009). This pre-
dicts that automatic semantic priming should localize to
temporal regions subserving lexical and conceptual access, with-
out marked frontal or parietal modulation. Thus far, however,
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this hypothesis has not been confirmed. Even those fMRI studies
that included a masked semantic priming condition reveal a
mixed picture, reporting response suppression not only within
temporal cortex (Devlin et al., 2004; Gold and Rastle, 2007), but
also within the insula (Bick et al., 2010) and inferior parietal
cortex (Devlin et al., 2004). Moreover, those that examined the
opposite contrast report increased activity to associated versus
unrelated word pairs across much of the semantic network (Bick
et al., 2010).

The main reason why it has been challenging to isolate the
automatic component of semantic priming is the limited tempo-
ral resolution of fMRI. In addition to detecting to the target, the
hemodynamic response will also capture downstream processes
(Vartiainen et al., 2011), including active attempts to recognize
the masked prime itself (Segaert et al., 2013).

Here, we combined fMRI with electroencephalography (EEG)
and magnetoencephalography (MEG) to overcome these chal-
lenges. This allowed us to separate early effects that converge
across EEG, MEG, and fMRI from late-stage effects that also con-
tribute to the fMRI signal, and to directly test the hypothesis that,
within the N400 time window, automatic semantic priming maps
on to reduced activity within the temporal cortex in the absence
of marked frontal or parietal activity.

Materials and Methods
Materials. Stimulus materials were taken from a previous event-related
potential (ERP) study examining unmasked semantic priming (Kreher et
al., 2006). They consisted of 192 unique target words (e.g., “stripes”) that
were paired with directly associated primes (“tiger”) or unrelated primes
(“truck”). In a third condition, targets were paired with indirectly related
primes (categorically or associatively related to the prime of the directly
related pair, e.g., “lion”). In this study, however, we focus on the contrast
between directly associated and unrelated pairs, as this provides the most
robust measure of automatic semantic facilitation. Directly associated
pairs constituted primes and targets that belonged to the same semantic
category (e.g., “cat–mouse”), that were strongly associated through co-
occurrence but were not members of the same category (e.g., “ring–
finger”), and that were functionally related (“hammer–nail”). Unrelated
word pairs constituted targets that were paired with primes that had no
categorical, associative, or functional relationship to the target, and were
largely composed of primes appearing with related targets on other lists.
Latent semantic analysis measures showed significantly larger semantic
similarity values for directly associated than unrelated targets (associ-
ated, 0.41; unassociated, 0.08; t(191) � 19.3, p � 0.01).

Target words were counterbalanced across three lists. Each list con-
tained 64 directly associated pairs, 64 indirectly related pairs, and 64
unrelated pairs, in randomized order. No prime or target word appeared
twice on the same list, but across all participants, the same targets could
appear in all three conditions, such that differences between conditions
could not be attributed to lexical properties of the targets. The mean
length of target words was 5.1 letters and the mean frequency was 98.8 per
million (Kučera and Francis, 1967). The mean length of the prime words
was 5.1 letters in the associated condition and 5.3 letters in the unrelated
condition, and the mean frequency of the prime words was 94.3 per
million in the associated condition and 83.4 per million in the unrelated
condition; neither length nor frequency of prime words differed signifi-
cantly across conditions (in all cases, p � 0.1). Each list also contained 40
probe word pairs in which either the prime (50%) or the target (50%) was
the name of an insect that was unrelated to the other word in the pair.
Half of the insect words appeared in the prime position and half appeared
in the target position. Each list was divided into two blocks for presenta-
tion.

Participants. In total, 29 young adults participated in two sessions: a
session in which both MEG and EEG were recorded, and a session in
which both structural and functional MRI were recorded. Several data-
sets were excluded from subsequent analysis on the basis of excessive

artifact (one fMRI, five EEG/MEGs) and technical problems (four EEG/
MEGs). Here we report data from 28 fMRI datasets (17 males, 11 females;
mean age, 21 years; range 18 –27 years) and 20 EEG/MEG datasets (11
males, 9 females; mean age, 21 years; age range, 18 –24 years). All partic-
ipants were native speakers of American English without prior history of
neuropsychiatric disorders, and were right-handed as assessed by the
Edinburgh Handedness Inventory (Oldfield, 1971). The order of EEG/
MEG and MRI sessions was counterbalanced across participants, and
participants were assigned different lists in EEG/MEG and fMRI sessions,
so that no participant saw the same list twice.

Stimuli presentation and task. In both the EEG/MEG and fMRI
sessions, participants performed a semantic monitoring task: to press
the response button as quickly as possible whenever they saw an insect
word, even if it appeared very quickly. A brief practice session was
conducted before both sessions. Stimuli were presented in white 20-
point Helvetica font against a black background. Each trial consti-
tuted a central fixation for 400 ms, a blank screen for 200 ms, a
forward mask (a hash mark string the length of the longest prime
word) for 300 ms, the prime word (lower case) for 83 ms, a backward
mask for 17 ms, and finally the target word (upper case) for 300 ms
(Fig. 1). This resulted in a stimulus-onset asynchrony of 100 ms.
These parameters were designed to elicit barely supraliminal percep-
tion, as previous ERP work suggests that effects of automatic semantic
priming depend on a minimal level of conscious awareness (Holcomb
et al., 2005). In the MEG session, short intervals were inserted be-
tween trials (at least 700 ms) to allow participants time to blink. In the
MRI session, additional fixation trials of varying length summing to a
total of 64 s per block were added to the intertrial interval to optimize
deconvolution of event-related activity (Burock et al., 1998). In both
sessions, the paradigm was presented in two equal blocks of �5 min,
separated by a break.

EEG/MEG. The EEG/MEG data were acquired while participants were
seated inside a magnetically shielded room (Imedco). The MEG data
were acquired with a Neuromag VectorView system (Elekta-Neuromag)
with 306 sensors arranged in 102 triplets of two orthogonal planar gra-
diometers and one magnetometer. EEG, EOG, and electrocardiogram
(ECG) data were acquired at the same time using a 70-channel MEG-
compatible scalp electrode system (BrainProducts) and referenced to an
electrode placed on the left mastoid; an electrode was also placed on the
right mastoid to confirm that the reference did not incorporate measur-
able lateralized brain activity. Impedance was kept �10 k� for all scalp,
ECG, and EOG sites, and �2.5 k� for mastoid sites. Both EEG and MEG

Figure 1. Stimulus presentation sequence used in the priming experiment, illustrated with
an example of an associated trial.

Lau et al. • Semantic Facilitation in Anterior Temporal Cortex J. Neurosci., October 23, 2013 • 33(43):17174 –17181 • 17175



data were acquired with an online bandpass filter of 0.03–200 Hz and
were continuously sampled at 600 Hz.

To record the head position relative to the MEG sensor array and to
coregister the EEG/MEG and MRI coordinate frames, the locations of
three fiduciary points (nasion and two auricular), four head position
indicator coils, the EEG electrodes, and at least 100 additional points
were digitized using a 3Space Fastrak Polhemus digitizer integrated with
the Vectorview system. During the EEG/MEG recording, the coils were
used to measure the position and orientation of the head with respect to
the MEG sensor array at the beginning of each block of trials.

Structural MRI/fMRI. Structural MRI and fMRI images were acquired
using a 3 T Siemens Trio scanner and a 32-channel head coil. Two T1-
weighted high-resolution structural images (1 mm isotropic multiecho
MPRAGE; TR, 2.53 s; flip angle, 7°; four echoes with TE, 1.64, 3.5, 5.36,
7.22 ms) were acquired in separate scans at the beginning and end of the
session. To construct the boundary-element model surface for MEG
source estimation, a single multiecho 5° flip angle fast low-angle shot
(FLASH) image (1 mm isotropic; TR, 20 ms; TE, 1.85 ms � 2n, n � 0 –7)
was acquired.

Two runs of functional data were collected, each �5 min long. In each
run, 148 functional volumes (36 axial slices anterior commissure-
posterior commissure aligned, 3 mm slice thickness, 0.3 mm skip, 200
mm field of view, in-plane resolution of 3.125 mm) were acquired with a
gradient-echo sequence (TR, 2 s; TE, 25 ms; flip angle, 90°; interleaved
acquisition).

Structural MRI processing. The two T1-weighted structural images
for each participant were averaged together after coregistration to
increase the signal-to-noise ratio, and a cortical surface for each par-
ticipant was reconstructed from the resulting average using the Free-
Surfer software package developed at the Martinos Center (Charlestown,
MA; http://surfer.nmr.mgh.harvard.edu). Each participant’s cortical
surface was morphed to a template brain created by averaging the cortical
surface of 40 individuals scanned by the Buckner Laboratory (fsaverage)
using an algorithm designed to align individual sulcal-gyral patterns
while minimizing distortion (Fischl et al., 1999). This morphed surface
was used for visualization, group averaging, and statistical analysis.

EEG preprocessing and analysis. Averaged event-related EEG signals,
time-locked to target words, were computed offline from trials free of
ocular and muscular artifacts after application of a 20 Hz offline low-pass
filter. A 100 ms prestimulus baseline was subtracted from all waveforms
before statistical analysis. Data from noisy or disconnected electrodes
were interpolated with signals from neighboring electrodes using the
Laplacian surface estimate.

We computed a repeated-measures type III sum of squares ANOVA
on mean ERP amplitudes between 300 and 500 ms poststimulus onset,
the time window in which the N400 effect to visually presented words is
classically observed. To assess broad differences in topographical distri-
bution, ERP analyses were conducted on a subset of 48 electrodes divided
equally among the four quadrants of the scalp, resulting in a 2 � 2 � 2
repeated-measures design (relatedness � hemisphere � anteriority).

MEG preprocessing and analysis. Signal-space projection (SSP) was
applied to MEG magnetometer data to suppress environmental noise
and biological artifacts (Uusitalo and Ilmoniemi, 1997). For three par-
ticipants in which a strong cardiac artifact was observable in the MEG
recording, an additional SSP was computed for gradiometers and mag-
netometers during heartbeat events (detected using the bipolar ECG
electrodes) and applied to the MEG data. Averaged event-related MEG
signals time-locked to target words were computed offline from trials
free of ocular and muscular artifacts after application of a 20 Hz
offline low-pass filter. A 100 ms prestimulus baseline was subtracted
from all waveforms before statistical analysis. Noisy MEG sensors
were marked and excluded from the generation of sensor waveforms
and source estimates.

The MNE software package (www.martinos.org/mne) was used for
source estimation on the reconstructed cortical surface (derived as de-
scribed above) for MEG event-related signals in each participant. The
high-resolution cortical surface reconstruction was decimated into
�10,000 vertices in each hemisphere. A three-compartment boundary
element model with the linear collocation approach was used in the

forward calculation (Hämäläinen and Sarvas, 1989; Mosher et al., 1999).
The scalp and skull surfaces were estimated on the basis of a 5° FLASH
structural MRI sequence for most participants; for one participant, in
which a FLASH sequence was not collected, the MPRAGE structural data
were used instead. The amplitudes of the dipoles at each cortical location
were estimated for each time sample using the dynamic statistical para-
metric mapping (dSPM) approach, with anatomically constrained linear
estimation (Dale et al., 2000). Noise covariance estimates were derived
from data recorded in the 100 ms baseline period before the presentation
of the prime word for all trials. The orientations of the dipoles were
approximately constrained to the cortical normal direction by reducing
the variance of the source components tangential to the cortical surface
by a factor of 0.5 (Lin et al., 2006).

dSPM source estimates of activity at the cortical surface for the �100:
700 ms surrounding target word presentation were computed for each
participant for the two conditions of interest (directly associated and
unrelated). Next, a dSPM contrast map was created for each participant
by subtracting the unrelated–associated activity estimates across all ver-
tices, resulting in a dSPM map representing the masked priming effect.
Before translating individual participant data into the common template
space, a smoothing operation was applied to the individual data, using
seven iterative steps to spread estimated activity to neighboring vertices.
Then the activity estimates were averaged across the N400 time window
in each of these maps to provide an estimate of the mean differential
activity associated with the priming effect (unrelated–associated).

In the cortical surface analysis, we looked across all vertices (5095 in
total) within bilateral temporal, inferior frontal, inferior parietal, and
occipitotemporal cortices, which have all been previously implicated in
language processing, using the Desikan–Killiany atlas (Desikan et al.,
2006) included in the FreeSurfer distribution to delineate the regions. We
used a nonparametric permutation test based on spatial clustering to
estimate which differences in the remaining vertices were reliable across
participants (Pantazis et al., 2005; Maris and Oostenveld, 2007). For our
time window of interest (300 –500 ms), we first created a t map repre-
senting the t statistic associated with the mean priming effect (unrelated
vs directly associated) across the N400 time window at each vertex. We
established an initial threshold of t(1,19) � 2.09 ( p � 0.05), and grouped
the vertices that survived this initial threshold into spatially contiguous
clusters. The t values in each cluster were summed, resulting in a second-
level cluster statistic. Then, to verify that these clusters did not arise by
chance, we randomly permuted the sign of the priming effect in each
subject and ran the same univariate t test 1000 times to derive a cluster
size confidence interval such that � � 0.05. Only significant clusters are
reported here.

fMRI preprocessing and analysis. FreeSurfer’s Functional Analysis
Stream software was used to analyze the fMRI data. After slice-time
correction, functional images were motion corrected to the middle time
point of each functional run using the AFNI (analysis of functional neu-
roimages; afni.nimh.nih.gov/afni) 3dvolreg program (Cox and Jesmano-
wicz, 1999). Nonbrain voxels were masked out of the analysis using the
FSL (fMRI of the Brain Software Library; www.fmrib.ox.ac.uk/fsl) Brain
Extraction Tool (Smith 2002). Images were corrected for temporal drift,
normalized, and spatially smoothed on the surface by 10 mm full-width/
half-maximum using an iterative technique (Hagler et al., 2006). The
group-averaging transform described above was used to map general
linear model (GLM) parameter estimates and residual error variances of
each participant’s functional data to a common spherical coordinate
system before smoothing. Functional images were then analyzed with a
weighted least-squares GLM using a finite impulse response (FIR)
model. The FIR model gave estimates of the hemodynamic response on
every TR (every 2 s), and thus allowed us to address our hypotheses
without assumptions about the shape of the hemodynamic response
(Burock et al., 1998; Dale, 1999; Burock and Dale, 2000). Activity esti-
mates across the right and left cortical surfaces, between 2 and 12 s
poststimulus onset, were computed for each condition and summed at
each voxel across this time epoch (Ashby, 2011).

Whole-brain significance maps were thresholded at p � 0.01, uncor-
rected, and a Monte Carlo procedure was used to determine cluster-level
significance. For each planned comparison, we set a cluster-level thresh-
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old of p � 0.01, which results in a familywise � of p � 0.05 (as both
hemispheres and both positive and negative contrasts were tested sepa-
rately for each planned comparison). Figures are thresholded at p � 0.01,
uncorrected, and we display only clusters that survived the cluster-level
significance test.

Results
Behavioral
In the EEG/MEG session, as expected, insect words were detected
more accurately in the target position (92%) than in the masked
prime position (58%; t(1,19) � 5.22, p � 0.01). In fMRI, behav-
ioral responses were not recorded in one participant due to
equipment problems. In the remaining participants, insect words
were also detected more accurately in the target position (89%)
than in the masked prime position (63%; t(1,26) � 6.14, p � 0.01).

EEG
ANOVA of the 48 electrodes selected for the quadrant analysis in
the 300 –500 ms time window demonstrated a significant main
effect of relatedness (F(1,19) � 6.37, p � 0.05). The main effect of
relatedness reflected a less negative N400 to directly associated
targets (mean amplitude, 1.5 �V) than unrelated targets (mean
amplitude, 0.7 �V; Fig. 2A). The distribution of the N400 effect

appeared to be more anterior than the
typical centroparietal distribution. Al-
though no significant interactions be-
tween relatedness and either of the
topological factors (in all cases, p � 0.2)
were observed, we note that several previ-
ous ERP studies of masked semantic
priming also appear to elicit a slightly an-
terior N400 effect (Deacon et al., 2000;
Holcomb et al., 2005), which may indicate
that not all of the neural generators of the
N400 effect in unmasked semantic prim-
ing are common to masked semantic
priming.

MEG
For visual comparison, Figure 2B illus-
trates the root mean square of activity
measured across left and right MEG gra-

diometers over frontal, temporal, parietal, and occipital cortex.
Again, differences were seen between unrelated and associated
targets in the N400 time window (300 –500 ms). These differ-
ences were visually most apparent in left temporal gradiometers,
which is consistent with previous MEG studies of the N400 (e.g.,
Helenius et al., 1998; Halgren et al., 2002).

To determine which cortical areas showed reliable differences
across subjects in the amplitude of source estimates between con-
ditions, we conducted nonparametric spatial cluster permutation
tests on the differential dSPM source estimates for directly asso-
ciated versus unrelated targets. In the 300 –500 ms time window,
this procedure revealed a single cluster showing a reliable effect of
relatedness in left anterior temporal cortex (Fig. 3). The effect of
relatedness in this cluster appeared to be fairly tightly constrained
to the 300 –500 ms time window used to define the cluster, as
illustrated in the waveform plot in Figure 3.

Effects of unmasked semantic priming are also frequently ob-
served in inferior frontal cortex and posterior temporal cortex
(Van Petten and Luka, 2006; Lau et al., 2008). Although the non-
parametric test did not reveal significant clusters in these areas,
we conducted follow-up region-of-interest (ROI) analyses to fur-

Figure 2. Group-averaged EEG and MEG sensor-level signals, time-locked to the target word. A, Mean EEG evoked responses at nine electrode sites. B, Root mean square evoked responses,
calculated across planar gradiometers only, in frontal, parietal, temporal, and occipital regions.

Figure 3. A, MEG statistical map illustrating the unrelated–associated contrast for dSPM estimates between 300 and 500 ms.
Yellow outline indicates the left anterior temporal cluster that demonstrated a significant reduction for the associated condition
relative to the unrelated condition. Lighter shading indicates regions included in the cluster-level permutation test. B, Mean dSPM
activity estimate for this cluster plotted across the �100:600 ms time window in each condition.
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ther explore this possibility. We used the
Desikan–Killiany atlas (Desikan et al.,
2006) to define an inferior frontal gyrus
(IFG) ROI consisting of BA44, BA45, and
BA47, and a posterior temporal cortex
ROI consisting of posterior middle tem-
poral gyrus and superior temporal sulcus
(MTG/STS). Since the atlas does not spe-
cifically segment the posterior aspect of
MTG/STS, the posterior aspect of the la-
bel was manually delineated and com-
bined with the posterior “banksts” label.
In each ROI, we conducted a 2 � 2
ANOVA (relatedness � hemisphere) on
the mean dSPM amplitude across verti-
ces for each condition in the 300 –500 ms time window. Re-
sults of the ANOVA demonstrated no significant main effects
or interactions with relatedness in posterior MTG/STS (in
each case, p � 0.5), and only a marginally significant main
effect of relatedness in IFG (F(1,19) � 4.17, p � 0.06).

fMRI
As expected, relative to fixation, all word pairs together resulted
in a significant increase in activity in left lateral occipital and
posterior temporal cortex, and to a lesser extent in the same re-
gions in the right hemisphere (Fig. 4). Increased activity relative
to fixation across conditions was also observed bilaterally in su-
perior parietal and inferior/middle frontal cortex and precentral
gyrus.

In contrasting the directly associated and unrelated word
pairs, only a single cluster in the left anterior superior temporal
gyrus (MNI coordinates of peak voxel: �52, �9, �3) showed
hemodynamic response suppression: significantly less activity to
the associated pairs than to the unrelated pairs (Fig. 5; Table 1,
unrelated � associated). In contrast, hemodynamic response en-
hancement—more activity to the directly associated than to the
unrelated pairs—was observed in bilateral inferior frontal gyrus
(pars opercularis and pars triangularis), left middle frontal gyrus,
and right angular gyrus (Fig. 6; Table 1, associated � unrelated).

Discussion
We used fMRI and EEG/MEG to localize the effects of automatic
semantic facilitation using a masked semantic priming paradigm.
All three techniques converged to demonstrate automatic seman-
tic priming within the left anterior temporal cortex between 300
and 500 ms. Our EEG results showed significantly reduced neural
activity from 300 to 500 ms to semantically associated (vs unre-
lated) targets (an N400 effect), and MEG localized activity in this
time window to the left anterior lateral temporal cortex. Our
fMRI results more precisely localized the effect to the left ante-
rior superior temporal gyrus (STG). Although a number of
fMRI studies have examined automatic semantic priming, and
many electrophysiological studies have examined the factors
influencing the N400 effect, none has been able to localize the
automatic contribution to semantic facilitation with this de-
gree of combined spatial and temporal specificity.

There are many reasons why EEG, MEG, and fMRI may not
always converge: differences in temporal precision, susceptibility
to artifacts, susceptibility to cancellation of signals from an ex-
tended cortical area, and sensitivity to the orientation of the elec-
trical currents. However, all three measures are sensitive to
changes in local electrical activity: MEG and EEG signals primarily
reflect postsynaptic currents in pyramidal cells aligned orthogonally

to the cortical surface (Lopes da Silva, 2010), and the hemodynamic
signal shows strong correlations with local electrophysiological re-
sponses (Puce et al., 1997; Logothetis et al., 2001). Therefore, when
these techniques do converge to show differential signal in the same
region, it is reasonable to assume that this signal reflects the same
differential neural activity (Dale et al., 2000).

fMRI also revealed several regions outside the temporal cortex
that showed quite a different pattern of response: increased ac-
tivity to semantically associated (vs unrelated) pairs. Impor-
tantly, there was no hint of any EEG/MEG response enhancement
in these regions within the 300 –500 ms window, and we therefore
suggest that it indexed later-stage operations, such as retrospec-
tive attempts to consciously access the semantic features of the
masked prime, after automatic priming of the target was over. In
addition to occurring late in time, this type of activity may not be
well time-locked to the stimulus and may be missed in averaged
EEG/MEG responses. This is not the case in fMRI because of the
sluggish and long-lasting hemodynamic response.

Automatic semantic facilitation within the temporal cortex
The only region in which fMRI and MEG converged to show
reduced activity to semantically associated (vs unrelated) words
was the anterior temporal cortex, a region that has long been

Figure 4. Cortical fMRI statistical maps illustrating areas of increased signal for all target trials relative to fixation. All activity
displayed survives a cluster-level threshold of p � 0.01.

Figure 5. Cortical fMRI statistical map illustrating areas of reduced signal for associated trials
relative to unrelated trials. All activity displayed survives a cluster-level threshold of p � 0.01.
Inset, Relative location of left anterior temporal MEG cluster to differential fMRI activity, for
illustration only.
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implicated in semantic processing (Mummery et al., 1999;
Vandenberghe et al., 2002; Visser et al., 2010; Price, 2012) and
associative learning (Sharon et al., 2011), and which may act as a
hub for binding conceptual information that is distributed
throughout cortex (Patterson et al., 2007; Lambon Ralph and
Patterson, 2008). MEG distributed source localization (Halgren
et al., 2002), as well as intracranial recordings (McCarthy et al.,
1995; Nobre and McCarthy, 1995), has implicated the anterior
temporal cortex as a source of the N400. What the present find-
ings show is that semantic facilitation in this region within the
N400 time window can result from highly automatic, bottom-up
mechanisms. Note that this does not imply that activity in this region
is only modulated by bottom-up automatic mechanisms: if top-
down controlled mechanisms, such as prediction, modulate the
same semantic memory structures, we should see N400 facilitation
effects in the same area. This is an important target for future
research.

The anterior temporal cortex is a heterogeneous region (Bon-
ner and Price, 2013) and previous studies have implicated differ-
ent subregions in semantic processing. For example, the
intracranial recordings by Nobre et al. (1994) and by Nobre and
McCarthy (1995) probed the anterior fusiform gyrus; early PET
studies of semantic categorization observed differential activity
in anterior inferior temporal gyrus (Devlin et al., 2000, 2002), and
many fMRI and MEG studies contrasting intelligible sentences
with unintelligible baselines or noncombinable word lists have
observed effects in anterior STG (Scott et al., 2000; Vandenber-
ghe et al., 2002; Humphries et al., 2006; Spitsyna et al., 2006;
Awad et al., 2007; Jobard et al., 2007; Lindenberg and Scheef,
2007; Bemis and Pylkkänen, 2011; Pallier et al., 2011). In the
present study, the anterior STG was the only region to demon-
strate significant early semantic facilitation in both MEG and
fMRI; however, both effects extended at a less conservative

threshold to more medial anterior temporal regions, and both
MEG and fMRI are subject to signal loss in medial and inferior
temporal regions. Therefore, to determine the specific roles
played by each of these subregions, it will be important for future
multimodal imaging studies to determine whether early activity
in medial and inferior anterior temporal cortex is also sensitive to
automatic semantic facilitation.

Of note, we saw no EEG/MEG or fMRI suppression within a
more posterior region of the temporal cortex, which in other
paradigms has also been implicated as an important contributor
to the N400 effect (Helenius et al., 1998; Uusvuori et al., 2008;
Vartiainen et al., 2009; for review, see Lau et al., 2008). The pos-
terior MTG/STS has been closely linked to lexical processing,

acting to map conceptual representations
on to syntactic representations and indi-
vidual word forms (Hickok and Poeppel,
2007; Martin 2007; Binder et al., 2009),
and previous work (Rissman et al., 2003)
has functionally dissociated lexicality ef-
fects in this posterior region from associa-
tive priming effects in the anterior
temporal region thought to mediate rela-
tionships between distributed conceptual
representations, as discussed above. Most
theories of automatic priming assume a
spread of activity across both lexical and
conceptual networks (Collins and Loftus,
1975; for review, see Hutchison, 2003). In
the present study, we suggest that our use
of a conceptual task (semantic monitor-

ing) maximized access to conceptual rather than lexical represen-
tations. This contrasts with previous fMRI and MEG priming
studies using lexical decision or repetition detection tasks, which
are more likely to have probed lexical facilitation and which
showed response suppression in the post-MTG/STS.

Importantly, the reduction of activity to associated versus un-
related targets within the 300 –500 ms time window was relatively
specific to the temporal cortex: response suppression here was
much more robust than within the inferior frontal regions previ-
ously implicated in top-down selection between competing se-
mantic representations (Novick et al., 2010). Some authors have
suggested that frontal activation is inherently more difficult to
detect in MEG than in fMRI (Liljeström et al., 2009). However, in
the current study, we also failed to observe significant frontal
response suppression in fMRI. This contrasts with fMRI studies
(Kotz et al., 2002; Giesbrecht et al., 2004; Gold et al., 2006; Ku-
perberg et al., 2008), as well as with an MEG study reporting
inferior frontal modulation within the N400 time window (Hal-
gren et al., 2002). In these studies, experimental parameters en-
couraged the generation of top-down predictions, which likely
served as competitors for unrelated targets, leading to increased
selection costs in the unrelated condition (Gold et al., 2006; Ku-
perberg et al., 2008). In the current masked priming paradigm,
however, participants had no time to generate lexicosemantic
predictions. We therefore take the presence of a reduced anterior
temporal response in the absence of robust frontal suppression as
further evidence that semantic facilitation was driven largely by
bottom-up automatic activity from the prime.

Hemodynamic response enhancement within the frontal and
parietal cortices
Although fMRI failed to show hemodynamic response suppres-
sion within frontal cortices, it did reveal increases in activity to

Figure 6. Cortical fMRI statistical maps illustrating areas of increased signal for associated trials relative to unrelated trials. All
activity displayed survives a cluster-level threshold of p � 0.01.

Table 1. Stereotactic coordinates of semantic association effects in fMRI

Peak vertex of MNI coor-
dinates

Number of
vertices

Cluster-wise
p valuex y z

Unrelated � associated
Left anterior superior

temporal gyrus
�52 �9 �3 1800 0.009

Associated � unrelated
Left inferior frontal gyrus �54 21 13 1374 0.002
Right inferior frontal

gyrus
41 41 1 1360 0.001

Left middle frontal gyrus �40 11 51 1338 0.003
Right inferior parietal 43 �63 40 983 0.001
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semantically associated (vs unrelated) words within bilateral in-
ferior frontal cortices, left middle frontal gyrus, and right angular
gyrus—so-called hemodynamic response enhancement. Nota-
bly, however, none of these enhancement effects was mirrored in
the early 300 –500 ms time window measured with EEG/MEG
(unfortunately, there was too much ocular artifact in the later
part of the evoked response to evaluate subsequent activity). We
therefore suggest that the enhancement effect seen on fMRI re-
flected later processes occurring after automatic priming of the
target was complete. To carry out the semantic monitoring task,
participants may have retrospectively attempted to consciously
access the semantic features of the masked prime, and this is most
likely to have been successful when the prime was associated with
the target. On this account, the increased hemodynamic activity
to the associated trials within the right angular gyrus may have
reflected attentionally mediated semantic matching, while the
increased left frontal activity may have reflected increased success
in recognizing the masked associated primes (the accumulation
model; James and Gauthier, 2006; Segaert et al., 2013).

In conclusion, we have shown that the combined use of mul-
tiple neuroimaging modalities in the same participants provides
important converging evidence on the source of automatic as-
pects of semantic facilitation in the human brain. Our findings
suggest that highly automatic semantic associative facilitation is
realized as reduced activity in the left anterior STG between 300
and 500 ms after a word is presented. The absence of robust
suppression effects outside the temporal lobe suggests that such
automatic associative activity can proceed with minimal top-
down feedback within the N400 time window. More broadly, our
findings illustrate how a consideration of convergence and diver-
gence across imaging modalities can yield new insights into the
contributions of multiple components of the language network
to semantic processing.
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