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Direction Selectivity Mediated by Adaptation in the Owl’s

Inferior Colliculus

Yunyan Wang and José Luis Peiia

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461

Motion direction is a crucial cue for predicting future states in natural scenes. In the auditory system, the mechanisms that confer
direction selectivity to neurons are not well understood. Neither is it known whether sound motion is encoded independently of station-
ary sound location. Here we investigated these questions in neurons of the owl’s external nucleus of the inferior colliculus, where auditory
space is represented in a map. Using a high-density speaker array, we show that the preferred direction and the degree of direction
selectivity can be predicted by response adaptation to sounds moving over asymmetric spatial receptive fields. At the population level, we
found that preference for sounds moving toward frontal space increased with eccentricity in spatial tuning. This distribution was
consistent with larger receptive-field asymmetry in neurons tuned to more peripheral auditory space. A model of suppression based on
spatiotemporal summation predicted the observations. Thus, response adaptation and receptive-field shape can explain direction selec-
tivity to acoustic motion and an orderly distribution of preferred direction.
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Introduction

Direction selectivity (DS) in the auditory system has been studied
in the contexts of frequency modulation (FM) and motion in
space. Encoding FM is important for vocal communication and
echolocation (Suga and Schlegel, 1973; Mendelson and Cynader,
1985; Rauschecker, 1997; Razak and Fuzessery, 2006). FM is anal-
ogous to movement in visual space, as motion occurs over the
tonotopic and retinotopic axes of the auditory and visual recep-
tors, respectively. There is mounting evidence that DS for FM
sweeps can be explained by asymmetric excitation and inhibition
across the tonotopic axis (Casseday et al., 1994; Zhang et al., 2003;
Ye et al., 2010; Kuo and Wu, 2012). These mechanisms are con-
sistent with findings in vision where asymmetric circuit structure
confers DS in the retina (Briggman et al., 2011; Wei et al., 2011;
Vaney et al., 2012).

DS for sound motion is crucial for tracking auditory objects in
space. Neural sensitivity to auditory motion direction has been
reported in many species (Sovijarvi and Hyvirinen, 1974; Raus-
checker and Harris, 1989; Reale and Brugge, 1990; Wagner and
Takahashi, 1990; Ahissar et al., 1992; Stumpf et al., 1992; Spitzer
and Semple, 1993; Wilson and O’Neill, 1998; Ingham et al., 2001;
Malone et al., 2002). Processing spatial motion may require dif-
ferent mechanisms compared with vision, as auditory space is
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computed, rather than mapped on the receptor’s surface. Adap-
tation has been proposed to underlie DS (Ingham et al., 2001;
Malone etal., 2002; Ingham and McAlpine, 2004; Shestopalova et
al., 2012), because it provides a mechanism for activation history
to affect subsequent response.

Although adaptation is widely reported in the auditory system
(Harris and Dallos, 1979; Ingham and McAlpine, 2004; Ulanovsky et
al., 2004; Gutfreund and Knudsen, 2006; Ayala and Malmierca,
2013; Singheiser et al., 2012), few studies have directly linked the
time course of adaptation with selectivity for sound motion (Ingham
etal,, 2001; Malone et al., 2002; Ingham and McAlpine, 2004). Sim-
ulations based on the summation of suppression (Reid et al., 1991;
Jagadeesh et al., 1993; Tolhurst and Heeger, 1997) could explain
motion sensitivity in vision, suggesting temporal integration may be
important for generating DS. Models of inferior colliculus (IC) neu-
rons showed that adaptation could give rise to sensitivity to dynamic
binaural cues observed during sound motion (Cai et al., 1998b).

We studied the relationship between the time course of adap-
tation and DS in a population of space-specific neurons of the
ow!l’s midbrain (Knudsen and Konishi, 1978), using a dense
hemispheric speaker array. We found that in fact adaptation
could predict DS in single cells based on the properties of the
neurons’ spatial receptive field (SRF). In addition, we found that
systematic changes in receptive field shape across the population
could account for a topographic representation of DS overlap-
ping the map of auditory space.

Materials and Methods

Surgery

Adult barn owls of both sexes (3 males, 1 female) were implanted with
stainless steel head plates and a reference post, as described previously
(Steinberg and Pefia, 2011; Wang et al., 2012). A dental acrylic well was
built around the craniotomy above external nucleus of the IC (ICx) for
repeated sessions in each animal.
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Owls were food-deprived 12 h before recording. At each recording
session, anesthesia consisting of intramuscular injections of ketamine
hydrochloride (20 mg/kg; Ketaset) and xylazine (4 mg/kg; Anased) was
administered with prophylactic antibiotics (ampicillin; 20 mg/kg, i.m.)
and lactated Ringer’s solution (10 ml, s.c.). The depth of anesthesia was
monitored by pedal reflex. Additional injections were given to maintain
anesthesia during the experiment. Body temperature was maintained
throughout the session with a heating pad.

At the end of each session, the craniotomy was sealed with a clear
quick-curing silicone compound (Quick-Pro, Warner Tech-Care). An
intramuscular injection of carprofen (3 mg/kg, Rimadyl) was given to
relieve inflammation and pain. All owls were able to fly the day following
recording. Owls were allowed to recuperate in their home cages for 7-10
d before the next session. These procedures comply with guidelines set
forth by the National Institutes of Health and by the Albert Einstein
College of Medicine’s Institute of Animal Studies.

Extracellular recording

Tucker Davis Technologies (TDT) System 3 and custom programs writ-
ten in Matlab (MathWorks) were used to present all acoustic stimuli and
record neural data. All experiments were performed in a double-walled
sound-attenuating chamber (Industrial Acoustics) lined with echo-
absorbing acoustical foam (Sonex).

ICx was located stereotaxically and by the characteristic responses to
interaural time difference (ITD) and interaural level difference (ILD;
Moiseff and Konishi, 1981; Takahashi et al., 1984; Pefia and Konishi,
2001). Single and multiunit responses were recorded using 1 M) tung-
sten electrodes (AM Systems) advanced in steps of 10 wm to the level of
optic tectum, then at steps of 2—4 um during search in ICx (Motion
Controller, model ESP300, Newport).

Acoustic stimuli

Dichotic stimulation. We used custom-made earphones each consisting
of a speaker (Knowles, model 1914) and a microphone (Knowles, model
1319) housed in a cylindrical metal earpiece that fits in the owl’s ear canal.
Microphones inside the earphones were calibrated before experiments
using a Fostex speaker (FE87E) and a reference Briiel and Kjer micro-
phone (model 4190; Steinberg and Pena, 2011; Wang et al., 2012).

Auditory stimuli delivered through the earphones consisted of five
repetitions of 100 ms duration broadband signals (0.5-10 kHz) or tones,
with a 5 ms rise-fall time at 10-20 dB above threshold. For each ICx
neuron, we first measured the ITD, ILD, frequency tuning, and rate-
intensity response using dichotic stimulation. ITD varied from #300 us,
and ILD from *40 dB, where negative values represent sounds leading
and louder on the left ear, respectively. Frequency ranged from 500 Hz to
10 kHz and sound level varied from 0 dB SPL to 70 dB SPL. Five trials of
each test were collected. Stimuli within the tested ranges were random-
ized during data collection.

Earphones were removed for testing in the free-field, after which ear-
phones were replaced and recalibrated before searching for the next unit
with dichotic stimulation.

Stationary receptive field mapping. Free-field spatial tuning of each
neuron was measured using a custom-made hemispherical array of 144
speakers (Sennheiser, 3P127A) constructed inside the sound-attenuating
chamber (Pérez and Pefia, 2006; Wang et al., 2012). The speaker array
ranged = 100° in azimuth and = 80° in elevation. The angular separation
between the speakers varied from 10° to 30°. The highest density of
speakers was located in frontal space, at the center of the array (*=40°
around origin) and on the horizontal and vertical axes passing through
the origin (+100° azimuth, *+80° elevation). Each speaker in the array
was calibrated using a Briiel and Kjer microphone (model 4190). The
calibration apparatus was mounted on a custom-built pan-tilt robot po-
sitioned at the center of the array. The robot oriented the microphone
toward the speaker being calibrated, with fine adjustments assisted by a
laser-mounted webcam. Each speaker’s transfer function was then mea-
sured using a Golay code technique (Zhou et al., 1992), after which an
output voltage rms versus stimulus-intensity (dB SPL) curve was com-
puted and stored (Wang et al., 2012). All acoustic stimuli in free field
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were presented within the dynamic range of the rate-intensity curve for
each unit (typically 30—45 dB SPL).

Alinear subset of 21 speakers located at —100° to 100° in azimuth at 0°
elevation was used to map the SRF in azimuth. Spatial separation be-
tween speakers in this subset was 10°. Broadband (0.5-10 kHz) sound
bursts 25 ms in duration were presented at random locations within the
21 speaker subset. Up and down-ramps for each burst were 5 ms and the
interstimulus interval was 300 ms. Forty-five to 50 trials were tested for
each speaker location. Each unit’s preferred direction was designated as
the midpoint in the spatial tuning curve main peak at half-maximum.
After a unit’s spatial tuning was determined, the owl was rotated so the
center of the unit’s SRF was aligned to 0° azimuth. Stationary SRF map-
ping was repeated with the owl in the new orientation and subsequent
free-field tests were performed in this condition.

Simulated acoustic motion in free field

Moving sound stimuli were presented with the same 21-speaker array
used for stationary SRF mapping. Motion was initiated at —100° or 100°.
Broadband 25 ms sound bursts were presented in sequence across the
array. Onset and offset ramps of adjacent speakers overlapped in time to
create a perceptually smooth motion. The duration of each moving stim-
ulus was 425 ms for a 200° displacement, or 470 °/s. Previous studies have
used speeds ranging from 125 to 1200 °/s in birds and mammals (Raus-
checker and Harris, 1989; Wagner and Takahashi, 1990, 1992; Ingham et
al., 2001). Motion from left-to-right (LR) or right-to-left (RL) was ran-
domized over 250 trials with 1 s of silence between trials. Clicks (1 ms
duration) were also used for moving stimuli. Motion velocity was con-
trolled by changing the interclick interval (ICI). ICIs of 25 and 250 ms
were used to test the effect of motion speed.

Adaptation test. Each trial consisted of a pair of 1 ms clicks presented at
asingle speaker location corresponding to the center of the receptive field
for each neuron. ICIs were randomized between 50 and 500 ms over 800
trials. The interval between pairs of clicks was 800 ms.

Data analysis

Isolation of single units was validated offline by spike-sorting using
Wave_Clus (Quiroga et al., 2004). Stationary azimuthal SRFs were com-
puted by averaging the firing rate in response to each speaker for 100 ms
after the onset of stimulus. For SRFs in the moving condition, each
moving stimulus was treated as one trial. peristimulus time histograms
(PSTHs) were calculated with 5 ms bins. The direction selectivity index
(DSI) is described in Equation 1, where FR,  is the firing rate at the center
of the SRF for the LR motion direction and FRy, is the firing rate for the
RL direction. We defined the center as the five speakers that covered the
main peak of the SRF (#20°). Positive and negative values of DSI distin-
guish preference for the LR and RL directions, respectively.

FR;z — FR
DSl = — = & 1)
FR,x + FRy

Side peak asymmetry (SPA) was calculated in the same way as DSI using
the sum within 40° to 80° at either side of the main peak.

Adaptation in pairs of clicks was quantified by comparing the re-
sponses to the first (C1) and second (C2) click. Responses to clicks usu-
ally lasted between 5 and 30 ms. Spikes were counted for 30 ms after
taking into account the response latency for each cell. Firing rates for the
first and second clicks were grouped across the ICI range in 35 ms bins.
Each bin contained at least 50 trials. Normality of all datasets was assessed
using the Lilliefors test.

Model of spatiotemporal summation

Linear spatiotemporal summation was used to model response adapta-
tion during motion and to predict DS. Excitation elicited by the n™
speaker in the moving-sound sequence was scaled by the amplitude of the
response in the stationary receptive field (SRF,,). Response adaptation,
represented as suppression (S,,), recovered over time (t) for the duration
of the sound at each position. Decay of adaptation was modeled as an
exponential function (Sen et al., 1996; Varela et al., 1997; Oxenham,
2001) drawn from the data, using a least-square fit (Matlab) with 1 ms



Wang and Pefia e Direction Selectivity Mediated by Adaptation

J. Neurosci., December 4, 2013 - 33(49):19167-19175 * 19169

DSlp 0.08 DSI -0.22 DSlp 0.09 DSI 045 DSIp 0.10 DSI  0.04
Eg fip == SPA, 0.82 2y P SPAm -0.29 2g 1 B SPAn, -0.06
= e b
T O ® O ®O
§§0.5 §§0.5 §§0.5
20 2r g 2
-100 -50 0 50 100 -100 -50 0 50 100 —?00 -50 0 50 100
Position in Space (Deg) Position in Space (Deg) Position in Space (Deg)
100 - 25 e . = - .
» » 100
8 50 3
= . o = 50 ]
0 - - 0 S P
0 100 0 100 400 300 400
— —> —>
50 LR motion LR motion LR motion
2 50 |I 2 40 8 60
o= = =< 50
& il o 20 & 0 "5 2o & 0% o o
#® #® L |L 1 *
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
100
o 100f P o 100
s o S 50 : el
2 5o i 2 = 50 :
ol T o 2 0 :
400 300 200 100 0 400 300 200 100 0 400 300 200
<— - ——
50 RL motion RL motion RL motion
8 50 - @ |eo
2 X 5ol o X 50t o
& -20° 0° 20° & -20° 0° 20° & -20° 0° 20°
® #* o_._..i_._.h._.h....ill._, #® g
400 300 200 100 0 400 300 200 100 0 400 300 200 100 0
Time (ms) Time (ms) Time (ms)

Figure 1.

Receptive-field shape and direction-dependent responses. For each column, the top panel represents the stationary receptive field of an example neuron. The second and third panels

represent raster and PSTH in the LR motion directions, whereas the fourth and fifth panels represent the same for the RL direction. Time axes of panels 2—5 are aligned to corresponding positions
in space relative to the top panel. Positive SPA , indicates larger left side peak, whereas positive DSl indicates preference for the LR motion direction. Blue and red arrows indicate the onset position
and direction of motion. Cellsin Aand B show attenuated responses at center when the larger side peak was stimulated before the center. In all three examples, attenuation of the side peak following
center was strong in either motion direction. Insets show PSTHs to sounds moving over a subset speaker array (+-20°). Direction selectivity for stimulation of only the center is usually weaker and

is indicated at the top-left corner of each column (DSIp).

sampling rate and time constant () for each cell’s adaptation curve (Sen
etal.,, 1996; Varela et al., 1997). The starting value of adaptation at the n th
speaker depended on suppression carried over from stimuli at previous
locations (S,,_; Eq. 2) such that adaptation accumulates over multiple
stimuli when they occurred in quick succession.

t

S, (1) = SRE, (1 — e77) — §,.4(1) (2)

Adaptation over the course of the moving stimulus in the LR or RL directions
was estimated from the stationary SRF for each cell by summing suppression
elicited by each speaker from —100° or 100° end of the array.

To predict the SRF during motion [SRF,,,(1)], the stationary SRF
(SRF,,,,) was multiplied by the time-dependent suppression function,
S(#), in the LR or RL directions (Eq. 3).

SRF,,(t) = SRFg, S(t) (3)

Because suppression accumulated over time, responses elicited later in
time were more strongly suppressed. DSI in the model was calculated in
the same way as in the data. The response latency for each neuron was
used to temporally align the observed and predicted SRFs.

Results

Data from 111 ICx single units were included in this study. ICx
cells were narrowly tuned to elevation and azimuth and showed a
wide range of sensitivity to motion.

Receptive-field asymmetry predicts direction selectivity

Azimuthal SRF in the stationary condition were recorded from
—100° to 100° with the region of maximal excitation aligned at
the center of the array. The center peak was flanked by smaller
side peaks of varying size, located 40°—80° to either side. In ICx,
spatial tuning in azimuth arises from the selectivity to ITD

(Moiseff and Konishi, 1983). Rate-ITD curves in ICx exhibit a
larger peak at the characteristic delay and smaller side-peaks as a
result of the convergence of ITD channels across frequency
(Takahashi and Konishi, 1986; Mori, 1997; Mazer, 1998).

The cells’ responses differed between stationary and moving
stimulus conditions. Figure 1 shows three examples of responses
under stationary and moving conditions. Cells in Figure 1 A, B were
sensitive to motion direction. Specifically, the cell in Figure 1A pre-
ferred the RL direction, when the response at the center was pre-
ceded by the smaller side peak. Motion in the LR direction elicited a
larger response before arriving at the center, which had a strong
attenuating effect. The same was true for the example in Figure 1B,
although in the opposite direction; the right side peak was larger and
the LR direction was preferred by this cell. In Figure 1C, side peak
sizes were similar and the cell was only weakly selective for motion
direction at center. In all three examples, the response amplitude at
side-peaks in the moving condition was similar to that in the station-
ary SRF when they preceded center during motion. However, re-
sponses at the side peaks were significantly attenuated when they
followed response at the center. DS was also tested for moving stim-
uli in a subset of the speaker array corresponding to only the main
peak of the SRF (*20°), thus excluding side peaks. DS was weak
when there was no stimulation at the side peaks, demonstrating their
strong contribution to DS (Fig. 1, insets). The attenuating effects of
the cell’s firing on future responses indicated that the shape of the
SRFs could significantly influence how neurons respond to moving
sounds, in a manner consistent with adaptation.

The relationship between SRF asymmetry and DS was dem-
onstrated for the entire dataset in Figure 2. In the LR motion
direction, the left side peak preceded the center, whereas the right
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side peak preceded the center in the RL A

direction. The response at the center was 1
proportional to the difference between
the side peaks preceding the center in ei-
ther motion direction, referred to as side
peak asymmetry under the moving condi-
tion (SPA,,). This relationship is plotted
in Figure 2A, which shows that when the
left side peak was larger (SPA,, > 0), RL

DSl
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was the preferred motion direction - 05
(DSI < 0). The converse was true for cells
with larger right side peaks, which showed
a preference for LR motion direction
(DSI > 0). Asymmetry between left and
right side peaks was also quantified for the
stationary SRF, referred to as side peak
asymmetry under stationary conditions
(SPA,), to disambiguate from the moving
condition. DSI was also significantly cor-
related with SPA, (Fig. 2B), further indi-
cating that the response to side peaks was a
robust predictor of DSI. The ratio of side
peak response magnitude after and before
stimulation at center was 0.23 (median,
interquartile range 0.43, Wilcoxon rank

Figure 2.
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Side-peak asymmetry predicts direction selectivity. DSI was negatively correlated with side peak asymmetry in the
moving (A) and stationary (B) conditions (n = 111). Positive and negative DSIs represent preference for LR and RL directions,
respectively. Positive side-peak asymmetry indices indicate larger side peaks on the left side of the SRF's center. Symbols O, A, and
[CJindicate neurons shown in Figure 1A—C, respectively.
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Across the population, ICx cells exhibited S0 0
awide range of DS and side peak asymme-
try (Fig. 2). We thus looked into whether
this variability could be explained by where
neurons were located in the map of auditory
space. In other words, we examined whether
DS and SRF asymmetry were correlated
with the neurons’ spatial tuning, which itself
is tied to the neurons’ location in the map
(Knudsen and Konishi, 1978). Seventy-two
of 111 cells showed a larger ipsilateral side
peak. There was a weak but significant cor-
relation between side-peak asymmetry and tuning eccentricity such
that more peripherally tuned cells showed larger side-peak asymme-
try (Fig. 3A). Grouped analysis by spatial tuning at intervals of 10°
revealed a systematic reduction in contralateral side-peak height
with increasing eccentricity in spatial tuning (Fig. 3B).

There was a weak but significant trend for laterally tuned neu-
rons to show stronger preference for sounds moving toward the
front, indicated by the higher number of neurons with negative
DSIs (Fig. 3C). Although correlations between SPA, and spatial
tuning (Fig. 3A) and between DSI and spatial tuning (Fig. 3C)
were low, they were nonetheless both statistically significant and
consistent with one another. These observations suggest there is a
topographic distribution of DS overlapped with the map of au-
ditory space in ICx, where preference for sounds moving from
the periphery to the front increases with tuning eccentricity (Fig.

Figure 3.

Figure 1A-C, respectively.

Spatial Tuning (Deg)

Side-peak asymmetry and direction selectivity across the neural population. 4, Side-peak asymmetry in the stationary
condition increased with spatial tuning (n = 111). B, Averaged SRFs in the stationary condition grouped by spatial tuning show decrease
in the contralateral side-peak size with eccentricity. The centers of the SRFs for all groups were aligned at 0° for comparison. SRFs of cells
collected from the right hemisphere were flipped around 0° so that ipsilateral space falls on the negative side of the x-axis. Ipsilateral and
contralateral side peaks are indicated by brackets. Shaded color regions indicate SEM. C, Preference for the contra-to-ipsilateral motion
direction increases with tuning eccentricity, as indicated by negative DSIs for peripherally tuned cells. D, Schematic of DS topography in ICx.
Sensitivity formoving sounds entering frontal space increases with spatial-tuning eccentricity. Dashed arrow indicates the preferred motion
direction and the gray gradient indicates the degree of directional preference. Symbols O, A, and [[]in Aand Cindicate neurons shown in

3D). The most lateral spatial tuning in the recorded sample was
45°, reflecting a known difficulty in accessing the most lateral
areas of the ICx map (Knudsen and Konishi, 1978; Wagner et al.,
2007). However, because there is an overrepresentation of frontal
space, the sampled area covered most of the nucleus (Fig. 3D;
Knudsen and Konishi, 1978).

Adaptation as a mechanism for direction selectivity

Because adaptation appeared as a plausible mechanism underlying
DS, we used paired-click stimulation to test whether the temporal
dynamics of response adaptation could explain DS in 44 ICx neu-
rons. Figure 4A shows an example response to a click (C2) presented
at different delays after a preceding click (C1; Fitzpatrick et al., 1995;
Brosch and Schreiner, 1997; Wehr and Zador, 2005; Gutfreund and
Knudsen, 2006; Singheiser et al., 2012). The response suppression to
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whether the model could predict the di-
rectionality from their decay time con-
stant 7. Because the moving sound could
be decomposed into stationary sounds at
each speaker in the array (Reid etal., 1991;
Jagadeesh et al., 1993, 1997), the model
treated the stimulus as a sequence of 21
(number of speakers) consecutive stimuli
that are contiguous in space. Each sound
that excited the cell triggered an amount
of suppression proportional to the re-
sponse at that location. The decay in sup-
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400 500 pression after the onset of sound was
defined by 7. Short intervals between
stimuli resulted in accumulated suppres-
sion over time because there was not
enough time for suppression to decay to
zero (Fig. 5A). Figure 5B shows the re-
sponse to stationary stimuli of the same
cell as Figure 1A, where the cumulative
suppression for LR (blue arrow) and RL
(red arrow) motion directions were mod-
eled as time-dependent scaling factors or
S(t) (see Materials and Methods). Motion

starts at either end of the array where sup-
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signs represent outliers.

C2 was strongest when ICIs were <250 ms. The averaged time
course for adaptation could be described by an exponential function
with a time constant () of 98 ms (Fig. 4B). Double-exponential fits
(Yin, 1994; Ulanovsky et al., 2004; Singheiser et al., 2012) to the
averaged adaptation data were not distinguishable from single expo-
nential functions. The two types of exponential functions yielded
highly correlated predictions (R* = 0.86). For simplicity, we used a
single exponential function to describe the temporal properties of
adaptation with one variable, 7.

If adaptation underlies DS, then the response to motion speed
should be explained by the time course of adaptation. We then
measured DS using clicks spaced by short intervals (25 ms) when
adaptation was strong and long intervals (250 ms) when adapta-
tion was weak. Stimulation with clicks elicited weaker direction
selectivity than with overlapping sound bursts (Fig. 4C). This can
be explained by the effect of gaps between sounds (Wagner and
Takahashi, 1992), which may allow for recovery from response
suppression. Nevertheless, DS was stronger for stimuli with short
ICIs. The effects of interclick interval on DS were consistent with
the temporal properties of response adaptation, where suppres-
sion was strongest for ICIs <250 ms (Fig. 4A).

Temporal summation of suppression predicts

direction selectivity

We constructed a model of response adaptation such that sup-
pression was summed during the motion trajectory. This model
is based on short-term plasticity lasting several hundred millisec-
onds (Varela et al., 1997). We used a sample of 44 cells to test

Sound ICI
25 ms

Correlation between adaptation and direction selectivity. 4, Example cell showing adaptation to paired-click stimulation. B,
Adaptation time course. The C2/C1 ratio approaches 1 (solid line) near 250 ms (n = 44). Dashed line represents the exponential fit to the
data (T = 98 ms). , DS for three motion conditions. Absolute values of direction selectivity indices are shown for motion stimulus
consisting of 25 ms sound bursts click stimuli with short (25 ms) and long (250 ms) ICls. Long ICls elicited significantly smaller DSIs than
moving stimuli with short ICls (Wilcoxon rank sum test). Box plots represent the median, 25 ™, and 75 ™ quartiles and the range of data. Plus

ICI pression elicited by each sound causes
250 ms large downward deflections in the scaling
factor (Fig. 5B, bottom). The magnitude
of the suppression is proportional to the
response magnitude in the stationary
SRF (SRF,,,; Fig. 5B, top). We scaled the
SRF,,,, by the time-dependent cumulative
suppression S(t) in each direction to esti-
mate the SRF during motion (SRF,,,,,). This
transformation of the SRF,,,, gave a close
prediction of SRF,,,,, for both LR and RL directions (Fig. 5C,D).

To test the effects of suppression decay time on DS, we com-
pared the model’s prediction using different time constants. The
distribution of 7 from adaptation is shown in Figure 6A. Each
cell’s individual adaptation T generated predictions for direction
selectivity index that matched the data well (Fig. 6B). When a
short 7 (25 ms) was used to predict DS for all cells, the model
underestimated DS (Fig. 6C), because fast-decaying response
suppression did not accumulate over time. Large 7 values pro-
duced good predictions of DSI (Fig. 6D). This lack of overestima-
tion was likely due to the short interstimulus intervals (25 ms)
relative to the decay time constants. Differences in suppression
decay were more prominent among fast-decaying functions as
demonstrated by the underestimation of DS with short 7. Thus,
linear spatiotemporal summation of adaptation was sufficient to
produce the observed DS in ICx neurons.

Discussion

This study builds upon existing evidence to establish a link between
response adaptation and the emergence of DS in the auditory system
(Caietal., 1998b; Malone et al., 2002; Ingham and McAlpine, 2004).
A model based on spatiotemporal summation of response adapta-
tion could predict each cell’s DS using their individual adaptation
time constant. On the population level, preference for sounds enter-
ing the front increased with eccentricity. This was consistent with
increased SRF asymmetry for peripherally tuned cells. Our findings
suggest that sensitivity to motion may be a general property for spa-
tially tuned cells that adapt.



19172 - ). Neurosci., December 4, 2013 - 33(49):19167-19175 Wang and Pefia e Direction Selectivity Mediated by Adaptation

A 4 -
[
Kl
[V}
[%]
[0
S
Q
=)
2 )
Time
B SRFstat C SRFmov
Y 1 11— — Observed
N2 - . serve
< §_ LA /\ 3 9 LR motion — Predicted
£Eg =H
Z® 100 -50 0 50 100 E9
o
ZzX
0 " n
; —> <— -100 -50 0 50 100
S(t) S(t) Position in Space (Deg)
3 D
©
— 11 — Observed <—
£ B9 — Predicted RL motion
© N
& 8205
58
S
0 0 — ,
-100-80-60-40-20 0 20 40 60 80 100 -100 -50 0 50 100

Position in Space (Deg) Position in Space (Deg)

Figure 5.  Spatiotemporal summation model. 4, Schematic for suppression accumulation. Response suppression elicited by excitation at each speaker location was modeled as an exponential
decay function. When a second stimulus is presented before suppression decays to zero, adaptation accumulates over time. B, Temporal suppression summation. Top, SRF of the neuron shown in
Figure 14 measured with stationary sounds (SRF,,,,). Bottom, Suppression over time, or S(t), was summed for the LR (blue arrow) and RL (red arrow) motion directions, starting at each end of the
array. The amount of suppression is represented as a normalized scaling factor (0—1, 1 representing no suppression), weighted by the response magnitude at each position in the SRF. Suppression
decays during the intervals between sounds. The scaling factor decreases more quickly in the LR direction, from —60° to 0°, due to the larger side peak on the left. x-Axes for B (bottom), ¢, and D
represent spatial positions at corresponding times during motion stimulation. C, SRFs under the moving sound condition (SRF,,,,,) were predicted by multiplying the SRF, . (B, top) by either the blue
(LR) or red (RL) time-dependent scaling functions (B, bottom). Curves were smoothed over 50 ms. Observed and predicted SRFs were aligned by adjusting for the neuron’s response latency. In all

panels, LR and RL directions are indicated by blue and red colors, respectively. Arrows indicate motion directions.

Comparisons with previous studies

In this study, we show that each cell’s DS depended on its SRF asym-
metry, which in turn was correlated with the cell’s tuning in space.
Parameters, such as speaker density and angular distance, determine
stimulation in the surround, thus affecting DS at the center. These
parameters must be considered when interpreting past work on DS
in the owl IC (Wagner and Takahashi, 1990, 1992).

The population trend for DS in ICx is in agreement with fMRI
studies showing hemispheric preference for auditory motion in
the contra-to-ipsilateral direction in humans (Getzmann, 2011).
Our results are, however, in contrast with the preference for out-
ward sounds reported by Wagner and von Campenhausen
(2002). We explain this inconsistency by methodological differ-
ences between studies. The coarser array (30° between speakers)
used in the previous study may not be sufficient to map and
stimulate regions of the SRF that surround the excitatory center.
Further, DS trends reported in Wagner and von Campenhausen
(2002) were derived from a pooled population of several mid-
brain nuclei and across all elevations whereas we restricted our
analysis to only ICx cells responsive at 0° elevation.

In the context of DS, the adaptation time course could deter-
mine the sensitive range of motion velocities. Using clicks, we
showed that DS decreased for long interstimulus intervals over
the same spatial displacement. This is in agreement with Wagner

and Takahashi (1992), where DS was strong for motion velocities
faster than 300°/s and weaker for slower velocities.

Emergence of SRF asymmetry

The correlation between motion selectivity and SRF shape raises
the question of how side peak asymmetry emerges. Side peaks
result from ITD computation by coincidence detector neurons in
the brainstem (Carr and Konishi, 1990; Yin and Chan, 1990).
Early in the ITD pathway, cells narrowly tuned to frequency re-
spond to ITD ambiguously. This ambiguity is resolved in ICx
where frequency bands converge. The main peak in the ITD tun-
ing of ICx neurons corresponds to the characteristic delay of the
neurons (Rose et al., 1967; Takahashi and Konishi, 1986). Re-
sponses at phase-equivalent ITDs are attenuated but not com-
pletely eliminated, thus forming side peaks (Takahashi and
Konishi, 1986; Mazer, 1998; Pefia and Konishi, 2000). It is possi-
ble for asymmetric side peaks to emerge through skewed align-
ment of ITD tuning across frequency (McAlpine et al., 1998).
Alternatively, the space-dependent filtering properties of the
owl’s head and facial ruff (Payne, 1971; Knudsen and Konishi,
1979; Coles and Guppy, 1988) known as the head-related transfer
function (HRTF) could contribute to SRF asymmetry. Because
HRTFs show increased gain for sounds directly in front of the
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2001; Malone et al., 2002; Bartlett and
Wang, 2005). Gutfreund and Knudsen
7 (2006) showed the intensity of the mask-
/ ing stimulus in ICx is proportional to
adaptation strength. Our data were con-
sistent with this finding, as the difference
in excitation at the side peaks predicted
DS. However, we did not find a relation-
ship between response history and adap-
tation strength on a trial-to-trial basis.
This suggests adaptation may not rely on
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intrinsic spiking mechanisms (Priebe et
al., 2002). It is possible that adaptation is
relayed to ICx from upstream nuclei
where similar properties have been ob-
served (Singheiser et al., 2012). However,
novel adaptation properties emerge
within ICx, such as adaptation across fre-
quency (Gutfreund and Knudsen, 2006).

Several mechanisms may mediate the
long-lasting suppression (hundreds of mil-
liseconds to seconds) observed in adapta-
tion and forward suppression in the
auditory system (Ulanovsky et al., 2004;
Nelson et al., 2009). Although GABAergic
inhibition plays a role in processing binaural
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p=10°
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Figure 6.

O, A, and [indicate neurons shown in Figure 1A—C, respectively.

owl’s face (Keller et al., 1998), side peaks closer to frontal space
would be amplified by louder sound at the eardrums.

Adaptation mechanism

The adaptation reported here lasts several hundred milliseconds.
We interpreted this time course as the lower limit for suppression
decay rate to produce the observed DS, because very long 7 also
generated good predictions for DS. The observed adaptation time
course is longer compared with in the auditory nerve (Harris and
Dallos, 1979; Delgutte, 1990) and in the thalamus (Wehr and
Zador, 2005) but similar to data using paired-stimulation in the
IC (McAlpine et al., 2000; Ingham and McAlpine, 2004; Gut-
freund and Knudsen, 2006; Singheiser et al., 2012), optic tectum
(superior colliculus in mammals; Netser et al., 2011) and audi-
tory cortex (Brosch and Schreiner, 1997; Wehr and Zador, 2005;
Nelson et al., 2009; Lanting et al., 2013). Although these studies
used similar paired-stimulation protocols and reported compa-
rable recovery time scales, the phenomena studied may be either
adaptation or forward suppression.

The commonly made distinction between forward suppres-
sion and adaptation is that forward suppression does not rely on
the firing rate of the masker (Calford and Semple, 1995; Malone
and Semple, 2001; Nelson et al., 2009), although this does not
necessitate the mechanisms underlying these phenomena are
mutually exclusive (Relkin and Turner, 1988; Oxenham, 2001).
However, it is important to discern whether response suppres-
sion is dependent on the masker stimulus itself or on the response
elicited by the masker (Sanes et al., 1998; Malone and Semple,

Dependence of direction selectivity on the adaptation time constant. 4, Distribution of adaptation time constants.
B-D, DSl predictions using each cell's adaptation time constant (B), short (25 ms; €), and long (1000 ms) time constants (D). Short
time constants underestimated direction selectivity. Predictions using longer time constants were similar to those made with each
cell's . Dashed lines and black lines represent the identity and regression lines between the model and data, respectively. Symbols

0 0.5 1 cues (Fujita and Konishi, 1991; Sanes et al.,
1998; Fukui etal., 2010), direction selectivity
(Kautz and Wagner, 1998; Razak and Fuz-
essery, 2009) and stimulus-specific adapta-
tion (Pérez-Gonzalez et al., 2012), modeling
(Cai et al., 1998a,b), and intracellular re-
cordings (Wehr and Zador, 2005) suggest
the time course of inhibition is too short to
account for the recovery time of adaptation.
Further, spike-frequency adaptation (Ingham and McAlpine, 2004)
and motion sensitivity in the IC (McAlpine and Palmer, 2002) are
not eliminated by blocking GABAergic input. Alternatively, synaptic
depression and afterhyperpolarization may contribute to the time
course of adaptation.

Validity of the model

Our model assumes response adaptation sums linearly in time,
resulting in direction selectivity if asymmetry is present. Linear
summation of suppression is supported by psychophysics (Plack
etal., 2006) and several studies on DS in vision (Enroth-Cugell et
al., 1983; Jagadeesh et al., 1993, 1997). Similar to the relationship
between DS and SRF asymmetries shown in the present study, the
shape of spatiotemporal receptive fields in simple cells can pre-
dict the preferred motion direction (DeAngelis et al., 1993). Lin-
ear summation models can underestimate DS (Reid et al., 1991;
DeAngelis et al., 1993; Oxenham, 2001) depending on the type of
functions used to model the time-dependent suppression decay
(Drew and Abbott, 2006).

Effect of anesthesia

In adequate dosages, ketamine anesthesia in birds does not cause
profound changes in respiration and cardiovascular function
(Degernes etal., 1988). Recovery time from response suppression
obtained under ketamine-xylazine anesthesia is comparable with
those obtained using other types of anesthesia, such as halothane
and nitrous oxide (Gutfreund and Knudsen, 2006), ketamine and
medetomidine (Wehr and Zador, 2005), and no anesthesia
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(Nelson etal., 2009). The administration of barbiturates can pro-
long recovery time from suppression (Wehr and Zador, 2005),
whereas ketamine only mildly affects temporal properties in the
IC (Ter-Mikaelian et al., 2007).

Functional implications

Direction selectivity can emerge by lateral connections within
sensory maps. Adaptation, on the other hand, could give rise to
direction selectivity in single cells. This mechanism could explain
direction selectivity in auditory regions where space is not repre-
sented topographically (Rauschecker and Harris, 1989; Wilson
and O’Neill, 1998; McAlpine et al., 2000; Ingham et al., 2001;
Malone et al., 2002). Receptive fields in the visual (DeAngelis et
al., 1995; Touryan et al., 2005) and auditory systems (Jenison et
al., 2001) can take complex shapes. Thus, the asymmetry required
for individual cells to become directional through adaptation
may be a common feature in sensory systems.
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