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Different Calcium Sources Control Somatic versus Dendritic
SK Channel Activation during Action Potentials
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Australia

Small-conductance calcium-activated potassium (SK) channels play an important role in regulating neuronal excitability. While SK
channels at the soma have long been known to contribute to the medium afterhyperpolarization (mAHP), recent evidence indicates they
also regulate NMDA receptor activation in dendritic spines. Here we investigate the activation of SK channels in spines and dendrites of
rat cortical pyramidal neurons during action potentials (APs), and compare this to SK channel activation at the soma. Using confocal
calcium imaging, we demonstrate that the inhibition of SK channels with apamin results in a location-dependent increase in calcium
influx into dendrites and spines during backpropagating APs (average increase, �40%). This effect was occluded by block of R-type
voltage-dependent calcium channels (VDCCs), but not by inhibition of N- or P/Q-type VDCCs, or block of calcium release from intracel-
lular stores. During these experiments, we noticed that the calcium indicator (Oregon Green BAPTA-1) blocked the mAHP. Subsequent
experiments using low concentrations of EGTA (1 mM) produced the same result, suggesting that somatic SK channels are not tightly
colocalized with their calcium source. Consistent with this idea, all known subtypes of VDCCs except R-type were calcium sources for the
apamin-sensitive mAHP at the soma. We conclude that SK channels in spines and dendrites of cortical pyramidal neurons regulate
calcium influx during backpropagating APs in a distance-dependent manner, and are tightly coupled to R-type VDCCs. In contrast, SK
channels activated by APs at the soma of these neurons are weakly coupled to a variety of VDCCs.

Introduction
Calcium (Ca 2�) is an important signaling molecule in neurons
with diverse actions ranging from regulation of neuronal excit-
ability to gene expression. In addition, calcium plays a critical role
in many forms of synaptic plasticity (Alvarez and Sabatini, 2007;
Sjöström et al., 2008). One of the main ways in which neurons
regulate calcium influx during electrical activity is via calcium-
activated potassium channels. While it is well known that these
channels regulate excitability by contributing to the action poten-
tial (AP) afterhyperpolarization at the soma (Berkefeld et al.,
2010), much less is known about their role in regulating dendritic
excitability. Calcium influx into dendrites and spines can occur
during a range of electrical events, including synaptic input,
backpropagating APs (bAPs), and dendritic regenerative events
such as calcium and NMDA spikes (Jaffe et al., 1992; Yuste and
Denk, 1995; Schiller et al., 1997, 2000; Sabatini et al., 2002). Den-
dritic calcium-activated potassium channels would be expected

to regulate these electrical events, and thereby have a significant
impact on neuronal function and plasticity.

Neurons in the CNS express two main types of calcium-
activated potassium channels, termed BK and SK channels due to
their respective large and small single-channel conductance
(Berkefeld et al., 2010). A third variety of calcium-activated po-
tassium channel with intermediate conductance has recently
been identified in cerebellar Purkinje neurons (Engbers et al.,
2012). At the soma of many neuronal cell types, SK channels are
activated by APs and contribute to the medium afterhyperpolar-
ization (mAHP), impacting on AP accommodation, burst firing,
and output gain (Schwindt et al., 1988; Faber and Sah, 2002;
Womack and Khodakhah, 2003; Womack et al., 2004). The role
of SK channels in dendrites is less clear. Dendritic SK channels
have been shown to regulate glutamate-evoked dendritic plateau
potentials in CA1 pyramidal neurons (Cai et al., 2004) and so-
matic AP firing in cerebellar Purkinje cells (Womack and Khod-
akhah, 2003). In addition, SK channels in dendritic spines can
constrain NMDA receptor activation and calcium influx during
synaptic input (Ngo-Anh et al., 2005; Bloodgood and Sabatini,
2007; Faber, 2010), as well as regulate synaptic plasticity (Faber et
al., 2005; Lin et al., 2008; Ohtsuki et al., 2012). Whether SK chan-
nels in dendrites and spines can be activated by bAPs, and if so,
how this impacts on dendritic calcium influx, is unclear.

Here we investigate SK channel activation in spines and den-
drites of cortical pyramidal neurons during bAPs and identify
their calcium source. Furthermore, we compare dendritic SK
channel activation during bAPs with SK channel activation dur-
ing the mAHP at the soma of the same neurons. We find that SK
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channels in spines and dendrites of cortical pyramidal neurons
regulate calcium influx during bAPs in a location-dependent
manner and are tightly coupled to R-type voltage-dependent cal-
cium channels (VDCCs). In contrast, at the soma SK channels
activated during the mAHP are weakly coupled to all known
VDCCs except R-type VDCCs.

Materials and Methods
Preparation. Wistar rats (3–5 weeks old) of either sex were anesthetized
by inhalation of isoflurane and decapitated according to guidelines ap-
proved by the Animal Experimentation Ethics Committee of the Austra-
lian National University. Parasagittal brain slices of somatosensory
cortex were made using a Vibroslice (Campden) or Leica VT1000S tissue
slicer. During slicing, the brain was submerged in ice-cold artificial CSF
(ACSF) containing the following: 125 mM NaCl, 25 mM NaHCO3, 15 mM

sucrose, 10 mM glucose, 3 mM KCl, 1.25 mM NaH2PO4, 0.5 mM CaCl2,
and 6 mM MgCl2, bubbled with 95%O2/5%CO2, pH 7.4. Slices were then
transferred to a holding chamber and incubated at 35°C for 30 – 45 min in
standard ACSF containing the following: 125 mM NaCl, 25 mM NaHCO3,
25 mM glucose, 3 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, and 1 mM

MgCl2 bubbled with 95%O2/5%CO2, pH 7.4, before being maintained at
room temperature. During recordings, slices were perfused a rate of �4
ml/min with standard ASCF maintained at 35–36°C.

Electrophysiology. Somatic whole-cell current-clamp recordings were
made from visually identified layer 5 (L5) pyramidal neurons using dif-
ferential interference contrast optics (Stuart et al., 1993). Recording elec-
trodes were filled with an intracellular solution containing the following:
130 mM K-gluconate, 10 mM HEPES, 10 mM KCl, 4 mM Mg2ATP, 0.3 mM

Na2GTP, and 10 mM Na2-Phosphocreatine, pH 7.2 with KOH. In some
experiments, EGTA was added to the intracellular solution at a concen-
tration of either 200 �M or 1 mM, as denoted in the Results. Recordings
were made using a BVC 700A amplifier in current-clamp mode (Dagan).
Voltage traces were filtered at 10 kHz and digitized at 50 kHz using an
ITC-18 computer interface (Instrutech). Data acquisition was performed
using AxoGraph X software (AxoGraph Scientific) running on an Apple
iMac computer. Data were analyzed only from cells with stable (�2 mV
change) resting membrane potentials more negative than �60 mV. For
some experiments, input resistance was measured using repeated current
injections of �20 pA for a duration of 1 s (60 –100 sweeps were typically
averaged). Rheobase was determined using 200 ms somatic current in-
jections and denoted as the lowest current amplitude that evoked an
action potential.

Confocal calcium imaging. Changes in intracellular calcium concentra-
tion were detected with the high-affinity fluorescent calcium indicator
Oregon Green BAPTA-1 (OGB-1; 170 –200 �M; Kd, 170 nM; Invitrogen)
or the lower affinity fluorescent calcium indicator Oregon Green
BAPTA-6F (OGB6F; 200 �M; Kd, 3 �M; Invitrogen) using a confocal laser
scanning microscope (FV300, Olympus) equipped with a 60� 1.1 nu-
merical aperture water-immersion objective (Olympus). Neurons were
loaded with calcium indicator via the recording pipette for 50 – 60 min
before imaging, although loading for up to 120 min was required when
imaging dendritic locations greater than �150 �m from the soma. Cal-
cium indicators were excited at 488 nm using a solid-state laser (Melles
Griot). Baseline fluorescence was used to locate spines projecting from
basal dendrites. Line scans for spines were positioned to traverse the
spine head and parent dendrite and changes in fluorescence during APs
recorded at 500 –700 Hz. Typically, 10 –20 trials were averaged for each
condition. To reduce phototoxicity typically only one spine and parent
dendrite was examined per cell. High-speed point scans (filtered at 5 kHz
and digitized at 20 kHz) were used during experiments investigating
dendritic calcium influx using OGB6F. This was necessary to obtain an
acceptable signal-to-noise ratio due to the fast kinetics of this indicator.
Point scans (700 Hz) were also used to investigate somatic and dendritic
calcium influx during some experiments using SNX 482 (PEPTIDE
INSTITUTE, Inc.) at the soma. The change in fluorescence divided by the
resting fluorescence (�F/F ) was measured at the peak by taking the av-
erage value within a 10 ms time window. Baseline fluorescence was de-
termined by averaging over a 30 ms time window immediately before AP

onset. Only responses with a peak amplitude greater than four times the
SD of the baseline noise were included for analysis. In addition, data were
excluded if the baseline fluorescence changed �10% during the course of
the experiment. Calcium changes during acetylcholine (ACh) applica-
tions were recorded using frame scans of the soma at 20 Hz.

Pharmacology. SK and VDCC antagonists were dissolved in oxygen-
ated ACSF and locally applied using a large-diameter pipette positioned
above the brain slice near the region of interest (pipette tip, 20 �m; using
�10 mmHg constant pressure). Spines in experiments using VDCC an-
tagonist were located 100 –120 �m from the soma. Apamin and calcium
channel antagonists were bath applied in experiments on the mAHP and
during somatic calcium imaging. Bath application of SK and VDCCs
antagonists had no significant impact on the membrane potential or
input resistance. In experiments on spines where one drug was tested in
the presence of another, a second local application pipette containing
both drugs was used. In experiments investigating the role of intracellular
stores on spines, cyclopiazonic acid (CPA) was bath applied for 15 min
before the commencement of the experiment and apamin locally coap-
plied with CPA. ACh (100 �M) was locally applied to the soma using brief
(10 ms) pulses applied with a Picospritzer III (Parker) to a standard patch
pipette (tip 2–3 �m). Apamin, ACh, nifedipine, and NNC 55– 0396 were
purchased from Sigma-Aldrich; SNX 482 was purchased from the
PEPTIDE INSTITUTE, Inc. or Alomone Labs; conotoxin GVIA and aga-
toxin IVA were purchased from Alomone Labs; conotoxin MVIIC was
purchased from the PEPTIDE INSTITUTE, Inc.; and CPA and UCL 1684
were purchased from Tocris Bioscience.

Data analysis. Fluorescence responses were analyzed using ImageJ,
Microsoft Excel, and Axograph X, and were quantified as the �F/F. Dis-
tances from the soma were determined from confocal image stacks using
ImageJ. All electrophysiology was analyzed using AxoGraph X. Statistical
differences between datasets were evaluated using one sampled paired or
unpaired t test, as appropriate. Correlation analysis was performed using
Pearson’s coefficient. p � 0.05 was considered significant. All data were
tested for normality using the D’Agostino–Pearson omnibus test. All
statistical analyses were performed using GraphPad Prism 6.

Results
To investigate the activation of SK channels in spines and den-
drites during bAPs, we used confocal fluorescent calcium imag-
ing. Somatic whole-cell patch-clamp recordings were made from
L5 pyramidal neurons in brain slices of somatosensory cortex
taken from 3- to 5-week-old Wistar rats. Before imaging, neurons
were filled with the calcium-sensitive indicator OGB-1 via the
recording pipette. We focused on spines protruding from basal
dendrites between 50 and 200 �m from the soma. Single APs
were evoked by somatic current injections (2–3 nA, 2 ms), and
were accompanied by large changes in fluorescence in both spines
and dendrites (Fig. 1A). Previous studies indicate that calcium
influx into spines and dendrites during bAPs are mediated almost
exclusively by VDCCs (Schiller et al., 1998; Sabatini and Svoboda,
2000; Bloodgood and Sabatini, 2007).

SK channels constrain calcium influx into spines and
dendrites during bAPs
To investigate the role of SK channels in regulating calcium influx
into spines and dendrites during bAPs, we applied the SK channel
antagonist apamin. Local application of apamin (1 �M in ACSF)
caused a significant increase in calcium influx during bAPs in
both spines and dendrites (Fig. 1B,C; n 	 31). Across all spines,
we observed an average increase in fluorescence of �40%, which
was larger than the increase in the adjacent dendrite (Fig. 1D).
The properties of APs recorded at the soma were unaffected by
apamin (AP amplitude: ACSF, 100.9 
 2.4 mV; apamin, 101.3 

2.1 mV; p 	 0.77; half-width: ACSF, 0.62 
 0.01 ms; apamin,
0.63 
 0.03 ms; p 	 0.82; n 	 5), confirming that the impact of
inhibiting SK channels on spine and dendrite calcium dynamics
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is dendritic in origin. Importantly, the af-
fect of apamin on bAP-evoked calcium in-
flux into spines and dendrites was distance
dependent, with apamin having the greatest
impact at distal dendritic locations (Fig.
1E,F). As OGB-1 is a high-affinity calcium
buffer (Kd, 170 nM) and may perturb SK
channel activation, the observed distance
dependence could be due to a higher con-
centration of calcium indicator at proximal
locations compared with distal locations. To
investigate this possibility, we repeated these
experiments with the low-affinity indicator
OGB6F (Kd, 3 �M). While we did not have
the sensitivity to resolve calcium transients
in spines in these experiments, using
OGB6F apamin caused a similar distance-
dependent increase in dendritic calcium
transients during bAPs (Fig. 1F, red sym-
bols). This result suggests that the distance
dependence of the impact of apamin on
bAP calcium transients is not due to spatial
differences in calcium buffering.

In addition, we investigated the impact
of the alternative SK channel inhibitor
UCL 1684. Local application of UCL 1684
(1 �M in ACSF) led to a similar increase in
calcium influx in spines and dendrites
during bAPs to that seen during apamin
applications (Fig. 1G; n 	 15), indicating
that apamin is working specifically. To
check that the affect of apamin and UCL
1684 were not a result of the local applica-
tion method, we performed control ex-
periments where ACSF alone was locally
applied in the same way as during drug
applications. Comparison of fluores-
cence changes during bAPs at the begin-
ning and end of ACSF applications
indicated no significant impact of our lo-
cal perfusion system on bAP-evoked cal-
cium transients (Fig. 1H; n 	 11). Together, these data indicate
that SK channels in L5 cortical pyramidal neurons play an impor-
tant role in regulating calcium influx into basal spines during
bAPs, particularly at distal dendritic locations.

R-type calcium channels control SK channel activation
during bAPs
We next investigated the calcium sources controlling the activa-
tion of SK channels in spines and dendrites during bAPs. Other
groups have shown that SK channels in spines during synaptic
input are activated by calcium influx through R-type VDCCs
(Bloodgood and Sabatini, 2007; Faber, 2010) and/or NMDA re-
ceptors (Faber et al., 2005; Ngo-Anh et al., 2005). Given that
NMDA receptor activation during bAPs is negligible (Koester
and Sakmann, 2000; Sabatini and Svoboda, 2000; Bloodgood and
Sabatini, 2007), we examined whether SK channel activation dur-
ing bAPs also requires calcium influx through R-type VDCCs
using the antagonist SNX 482. Local application of SNX 482 (1
�M) caused a significant decrease in the bAP-evoked calcium
transient in dendrites, but, interestingly, not in spines (Fig. 2A–C;
spines, p 	 0.561; dendrites, p 	 0.0182; n 	 12). There are two
possible explanations for this result. The first is that bAPs do not

activate R-type VDCCs in spines. The second possibility is that
R-type VDCCs are present in spines and activated by bAPs, but
the expected impact of blocking these channels on calcium influx
is masked by enhanced activation of other VDCCs following re-
moval of the calcium source for SK channel activation. To isolate the
impact of SNX 482 on calcium influx from its potential impact on SK
channel activation, SNX 482 was applied in the presence of apamin.
Under these conditions, SNX 482 caused a significant decrease in
bAP-evoked calcium transients in both dendrites and spines (Fig.
2D–F; n 	 19). These findings indicate that R-type VDCCs are pres-
ent in both spines and dendrites. To test whether calcium influx
through these channels is required for the activation of SK channels
in spines, apamin was applied in the presence of SNX 482. Under
these conditions, apamin had no significant impact on bAP-evoked
calcium transients in either spines or dendrites (Fig. 2G–I; n 	 19).
Together, these data indicate that R-type VDCCs in spines and den-
drites are activated by bAPs, and that blocking these channels oc-
cludes the impact of apamin on bAP-evoked calcium transients.

Role of other calcium sources in spines
While these data indicate a critical role of R-type VDCCs in con-
trolling the activation of SK channels in spines and dendrites
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Figure 1. SK channels constrain calcium influx into spines and dendrites during bAPs. A1, Confocal image of a layer 5 pyramidal neuron
filled with 200�M OGB-1. Scale bar, 25�m. Yellow box indicates a region of interest in a distal basal dendrite. A2, Region of interest at high
magnification. Dashed line shows location of line scan. Scale bar, 1 �m. A3, Repeated line scans through the spine and dendrite shown in
A2. A single AP evoked after 30 ms (red arrowhead) caused a large increase in fluorescence in both compartments. B, AP-evoked change in
fluorescence in a spine (top) and dendrite (bottom) before and after local application of apamin (1�M). Same spine as in A2. In this and all
subsequent figures, the solid line and shaded regions represent the mean
SEM for an example spine and dendrite. C, Average AP-evoked
peak �F/F (
SEM) in spines in the absence and presence of apamin (n 	 32). D, Average change in AP-evoked fluorescence (
SEM) in
spines and dendrites after application of apamin (n 	 32). E, F, Change in AP-evoked fluorescence in spines (E) and dendrites (F ) after
apamin application versus distance from the soma. Lines represent linear fits to OGB-1 data. Pearson’s coefficient 0.868 (E) and 0.860 (F ).
G, H, Average change in AP-evoked fluorescence (
SEM) in spines and dendrites after application of UCL 1684 (G; 1 �M; n 	 15) and
normal ACSF (H; n 	 12). *p � 0.05, **p � 0.01. ns, Not significant.
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during bAPs, are they the sole calcium source for SK channel
activation? Calcium influx into spines and dendrites during bAPs
is mediated by multiple VDCC subtypes (Sabatini and Svoboda,
2000; Bloodgood and Sabatini, 2007). Consistent with this,
blocking R-type VDCCs in the presence of apamin only reduced
bAP-evoked calcium transients by �20% (Fig. 2D–F). To inves-
tigate the role of other VDCCs in activating SK channels, we
perturbed calcium influx into spines and dendrites by inhibiting
N- and P/Q-type VDCCs using local applications of conotoxin
MVIIC (10 �M). Blocking N- and P/Q-type VDCCs significantly
reduced bAP-evoked calcium influx into spines and dendrites by
�20% (Fig. 3A–C; spines, n 	 10), indicating that N- and P/Q-
type VDCCs are also present in basal spines and dendrites of L5
pyramidal neurons. In contrast to SNX 482, however, the appli-
cation of apamin in the presence of conotoxin MVIIC still led to
a significant (�30%) increase in bAP-evoked calcium transients
in both spines and dendrites (Fig. 3D–F; n 	 10). These data show
that calcium influx through N- and P/Q-type VDCCs in spines
and dendrites during bAPs is not required for SK channel activa-
tion. Furthermore, they indicate that, despite multiple VDCCs
contributing to calcium influx in spines and dendrites during

bAPs, SK channel activation is triggered solely by calcium influx
through R-type VDCCs.

A recent study showed that SK channel activation during
EPSPs can be abolished by blocking calcium release from intra-
cellular stores, suggesting a role of calcium-induced calcium re-
lease in SK channel activation (Faber, 2010). To investigate the
impact of calcium release from intracellular stores on SK channel
activation during bAPs, we depleted intracellular calcium stores
with the calcium-ATPase inhibitor CPA (30 �M in the bath)
(Seidler et al., 1989). Local application of apamin in the presence
of CPA caused a similar enhancement of bAP-evoked calcium
transients in basal spines and dendrites to that seen under control
conditions (compare Figs. 4A–C, 1C, spines; n 	 10). These data
suggest that intracellular calcium stores are unlikely to be in-
volved in controlling SK channel activation during bAPs. To con-
firm that CPA had emptied intracellular calcium stores, we
locally applied ACh to the soma, which is known to release cal-
cium from intracellular stores leading to a large increase in so-
matic calcium (Gulledge and Stuart, 2005; Gulledge et al., 2007).
The low-affinity calcium indicator OGB6F (200 �M) was in-
cluded in the recording pipette, and calcium transients in these
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experiments were evoked by brief (10 ms) applications of ACh
(100 �M) in the absence and presence of CPA. As expected, the
presence of CPA abolished ACh-induced calcium transients
(Fig. 4 D, E; n 	 4), indicating that CPA was effective in emp-
tying intracellular calcium stores under our experimental
conditions.

Somatic SK channels are not tightly coupled to their
calcium source
SK channels have long been known to contribute to the genera-
tion of the mAHP in L5 pyramidal neurons (Schwindt et al.,
1988). We were therefore surprised to find that applications of
apamin did not affect the mAHP in our calcium imaging exper-
iments. We hypothesized that this may be the case because
OGB-1, which is related to the fast calcium buffer BAPTA, per-
turbs SK channel activation at the soma through calcium chela-
tion. To test this hypothesis, we quantified changes in amplitude
of the mAHP in the absence and presence of OGB-1 in the pipette
internal solution. Single APs in these experiments were elicited by
200-ms-long positive current pulses just above rheobase. In the

absence of OGB-1 in the internal solution, bath application of
apamin (100 nM) led to a significant reduction in the amplitude
of the mAHP (Fig. 5A,D; n 	 5). Inclusion of OGB-1 (200 �M) in
the internal solution, however, led to a time-dependent decrease
in the mAHP, with the impact of apamin on the mAHP occluded
30 min after break-in (Fig. 5B,D; n 	 5). These data suggest that
the coupling of somatic SK channels to their calcium source is
weak. To investigate this further, we tested the impact of the
slow calcium buffer EGTA on the mAHP. Using the same
concentration of EGTA (200 �M), a partial perturbation of the
mAHP was observed (n 	 6) with full inhibition of the mAHP
occurring when the EGTA concentration was increased to 1
mM (Fig. 5C,E; n 	 6). The diffusional distance between so-
matic SK channels and their calcium source can be approxi-
mated by: �DCa/kon[buffer] (Neher, 1998). Based on a diffusion
coefficient of calcium (DCa) of 220 �m 2/s (Neher, 1998), a buffer
(EGTA) concentration of 1 mM, and assuming a Kon of EGTA of
1 � 10 7 M�1 s�1 (Nägerl et al., 2000), we estimate the average
distance between somatic SK channels and their calcium source
to be greater than �150 nm. These data suggest that somatic SK
channels are not tightly coupled to their calcium source.

Impact of OGB-1 on action potential firing
One consequence of the inhibition of the mAHP is a decrease in
the interspike interval (Schwindt et al., 1988; Stocker et al., 1999).
Consistent with previous findings, the addition of apamin to the
extracellular solution caused a significant increase in firing fre-
quency during long current steps (500 ms) and led to burst firing
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in 7 of 10 neurons during shorter current
steps (200 ms) just above rheobase (Fig.
5F,G,J). We next investigated whether di-
alysis of OGB-1 also leads to similar
changes in AP firing frequency and the
propensity for burst firing. So as to obtain
conditions in the absence of OGB-1 pi-
pettes in these experiments were tip filled
with intracellular solution without the in-
dicator and then backfilled with solution
containing the dye. Over the first 30 min
of the recording, there was a significant
change in the f–I relationship with many
(8 of 10) regular spiking neurons display-
ing burst firing after dialysis with OGB-1
(Fig. 5H, I,K). Subsequent addition of
apamin to the extracellular solution in
these experiments led to no additional
effect on AP firing, indicating that SK
channels were blocked (Fig. 5H, I,K).
Rheobase and input resistance were un-
changed by the dialysis of OGB-1 or the
addition of apamin (Table 1). An increase
in the incidence of burst firing was also
observed after dialysis with 1 mM EGTA
(three of six neurons). These data indicate
that the inclusion of low concentrations of
exogenous calcium buffers, such as fluo-
rescent calcium indicators, can signifi-
cantly alter the firing properties of L5
pyramidal neurons due to the weak cou-
pling between somatic SK channels and
their calcium source.

The calcium source for SK channel
activation during the mAHP
We next investigated the calcium source
for the activation of SK channels at the
soma during the mAHP. The observation
that low concentrations of OGB-1 (200
�M) or EGTA (1 mM) were sufficient to
abolish the mAHP (Fig. 5) suggests that
somatic SK channels are not tightly cou-
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in control. H, I, Action potential firing in response to a 200 ms
current step just above rheobase (H) or in response to a 500 ms
current step (I, 1600 pA amplitude) just after break-in (top),
after 30 min (middle), and in apamin (bottom) in cells dialyzed
with 200 �M OGB-1. J, K, Input– output properties during 500
ms somatic current injections in control (J) and in cells dialyzed
with 200 �M OGB-1 (K) immediately after break-in (black cir-
cles), after 30 min (black squares), and after the addition of
apamin (red triangles). *p � 0.05. ns, Not significant.
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pled to their calcium source. As a result, one might expect that
calcium influx through multiple VDCCs can activate SK channels
during the mAHP. To investigate this, we bath applied antago-
nists to different VDCC subtypes and monitored their impact on
the apamin-sensitive mAHP. We found that antagonists to all
known VDCC subtypes except R-type VDCCs caused a reduction
in the amplitude of the mAHP (Fig. 6). To determine whether an
additional calcium source other than N-, P/Q-, L-, and T-type
VDCCs contributes to SK channel activation during the mAHP,
we applied a cocktail of antagonists to these VDCCs. Under these
conditions, the addition of apamin had no significant affect on
the mAHP (Fig. 6F,G; n 	 6), indicating that the activation of SK
channels during the mAHP can be completely perturbed by
blocking N-, P/Q-, L-, and T-type VDCCs.

One likely explanation for the absence of a contribution of
R-type VDCCs to the amplitude of the mAHP is that R-type
VDCCs are not expressed at the soma of layer 5 pyramidal neu-
rons. To investigate this, somatic and dendritic calcium imaging
was performed in the absence and presence of SNX 482. There
was no difference in calcium influx at the soma in the two condi-
tions, whereas a �20% decrease in calcium influx was observed
in basal dendrites �100 �m from the soma in the presence of
SNX 482 (Fig. 7; n 	 5). These data suggest that R-type VDCCs
are not expressed at the soma but, as also shown in Figure 2, are
expressed in basal dendrites, and indicates that the absence of a
role of R-type VDCCs in the generation of the mAHP (Fig. 6) is
due to a lack of expression of these channels at the soma.

Together, these findings demonstrate that SK channels medi-
ating the apamin-sensitive component of the mAHP can be acti-
vated by calcium influx through a variety of VDCC subtypes,
consistent with the idea that they are not tightly coupled to their
calcium source. Furthermore, in contrast to SK channels in
spines and dendrites, which are coupled solely to R-type VDCCs,
all known VDCC subtypes except R type are involved in the acti-
vation of the SK channels mediating the mAHP at the soma of
cortical L5 pyramidal neurons.

Discussion
The experiments presented here provide the first observations of
SK channel activation in spines and dendrites of cortical pyrami-
dal neurons during bAPs. We find that during bAP SK channels
regulate calcium influx into spines and dendrites in a distance-
dependent manner, with a greater impact at distal dendritic loca-
tions. Furthermore, we show that R-type VDCCs exhibit tight
and specific control of SK channel activation in spines during
bAPs. In contrast, coupling of SK channels at the soma to VDCCs
is much less specific, with all known VDCCs, except R-type chan-
nels, playing a role in SK activation during the mAHP.

SK channel activation in dendrites and spines during
action potentials
The observed increase in bAP-evoked calcium influx during SK
channel block is presumably due to enhanced activation of

VDCCs in spines and dendrites following an increase in ampli-
tude or broadening of bAPs. Consistent with this idea, it has
recently been observed that SK channels can control bAP ampli-
tude in cerebellar Purkinje neurons (Ohtsuki et al., 2012). The
observation that dendritic SK channels can influence bAPs is
surprising given that apamin had no impact on the somatic AP
waveform, but may be due to the tighter coupling of SK channels
in spines and dendrites to their calcium source, speeding their
activation compared with SK channels at the soma. Previous
studies indicate that SK channels can activate within a millisec-
ond during rapid changes in intracellular calcium at room tem-
perature (Xia et al., 1998), and would be expected to activate even
faster at physiological temperatures. In addition, one might ex-
pect SK channels to have a greater impact on bAPs due to their
increased duration compared with somatic APs (Stuart et al.,
1997). Consistent with this idea, the impact of SK channels on
bAP-evoked calcium transients was greatest at distal basal den-
dritic locations where bAP duration is longest (Kampa and Stu-
art, 2006; but see Antic, 2003). The distance-dependent impact of
apamin on bAP-evoked calcium transients could also be due to
differences in the expression of SK or R-type calcium channels.
Finally, we observed that blocking SK channels caused a greater
increase in bAP-evoked calcium influx in spines compared with
dendrites. While this effect may also be due to differences in the
expression of SK or R-type calcium channels, the larger surface-
to-volume ratio of spines compared with dendrites is also likely
to contribute (Sabatini et al., 2002).

What possible function might SK channels in spines and den-
drites serve when activated by bAPs? The capacity of SK channels
in spines and dendrites to constrain the amplitude and/or width
of bAPs would be expected to influence NMDA receptor activa-
tion during EPSP—AP pairing. This effect would be greatest at
distal dendritic locations, where NMDA receptor activation dur-
ing synaptic events is most pronounced (Branco and Häusser,
2011). Given that changes in synaptic strength during spike
timing-dependent plasticity (STDP) are dependent on NMDA
receptor activation (Markram et al., 1997), the impact of SK
channels on bAP time course may play a role in setting the STDP
time window (Froemke et al., 2005; Letzkus et al., 2006), possibly
increasing the fidelity of coincidence detection during STDP,
particularly at distal dendritic locations.

As SK channels play an important role in regulating dendritic
calcium dynamics, modulation of these channels would be ex-
pected to modify neuronal excitability and synaptic plasticity.
Consistent with this idea, downregulation of SK channels follow-
ing activation of M1 muscarinic or �-adrenoceptor receptors in
CA1 pyramidal (Buchanan et al., 2010; Giessel and Sabatini,
2010) and lateral amygdala neurons (Faber et al., 2008), respec-
tively, increases synaptic strength. Conversely, changes in synap-
tic strength during synaptic plasticity have been shown to be
associated with changes in SK channel function (Lin et al., 2008;
Ohtsuki et al., 2012). Given the specific coupling of R-type
VDCCs to SK channels in spines as shown here and previously
(Bloodgood and Sabatini, 2007), modulation of R-type VDCCs
following activation of D2 dopamine receptors (Higley and Saba-
tini, 2010) could provide another mechanism in which SK chan-
nel activation in spines may be regulated. Recent evidence
indicates that the inhibition of individual dendritic spines can
modulate spine calcium influx during bAPs in a selective manner
(Chiu et al., 2013). These data suggest that SK channel modula-
tion in individual spines could selectively influence calcium in-
flux into only those spines during bAPs, although this effect may
be dominated by the progressive recruitment of SK channels dis-

Table 1. Impact of apamin and OGB-1 on rheobase and input resistance

Break-in 30 min Apamin N

No indicator
Rheobase (pA) 324 
 32.31 323 
 35.30 319 
 35.51 10
RN (M�) 27 
 1.71 27 
 1.63 26 
 1.60 10

OGB-1
Rheobase (pA) 269 
 12.69 265 
 16.20 265 
 14.92 10
RN (M�) 29 
 1.37 28 
 1.51 27 
 2.13 10

Data are given as the mean 
 SEM, unless otherwise stated. RN , Input resistance.
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tributed along the entire length of a dendritic branch. Consistent
with this idea, the impact of SK channel activation on bAP cal-
cium influx increased with distance from the soma (Fig. 1E,F).

Calcium sources for SK channel activation in dendritic spines
While there is evidence that R-type VDCCs control SK channel
activation in spines during EPSP-like events evoked by glutamate
uncaging (Bloodgood and Sabatini, 2007), other studies have
suggested that calcium influx through NMDA receptors contrib-
utes to SK channel activation during EPSPs (Faber et al., 2005;
Ngo-Anh et al., 2005; Faber, 2010). Consistent with this latter
idea, NMDA receptors and SK channels are colocalized within
the postsynaptic density in CA1 pyramidal neurons (Lin et al.,
2008). Because SK channels in spines modulate NMDA receptor
activation (Faber et al., 2005; Ngo-Anh et al., 2005; Faber, 2010),
which provides the main calcium source during synaptic activa-
tion (Kovalchuk et al., 2000; Sabatini et al., 2002), identifying the
calcium source driving SK channel activation in spines during
EPSPs is complicated. This complication does not exist in our
experiments as NMDA receptor activation during bAPs is negli-
gible (Koester and Sakmann, 2000; Sabatini and Svoboda, 2000;
Bloodgood and Sabatini, 2007). During bAPs, we find that the
inhibition of solely R-type VDCCs is sufficient to block SK chan-
nel activation. Moreover, the inhibition of N- and P/Q-type
VDCCs, which are expressed in spines along with R-type VDCCs
and led to similar calcium influx during bAPs, did not influence
SK channel activation. This indicates tight and specific coupling
between R-type VDCCs and SK channels within the spine head.
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This conclusion is similar to that made previously during EPSP-
like events evoked by glutamate uncaging in spines from CA1
pyramidal neurons (Bloodgood and Sabatini, 2007). These data
suggest that R-type VDCCs and SK channels in the spine head are
coupled in “nanodomains,” consistent with previous observa-
tions showing that only high concentrations of the fast, high-
affinity calcium buffer BAPTA are able to interfere with SK
channel activation in spines during EPSPs (Ngo-Anh et al., 2005).

Calcium sources for SK channel activation during the mAHP
SK channels contribute to the mAHP in many neuronal cell types,
including L5 pyramidal neurons (Schwindt et al., 1988; Sah and
McLachlan, 1991; Faber and Sah, 2002; Womack and Khod-
akhah, 2003), although this is controversial in CA1 pyramidal
neurons (Stocker et al., 1999; Gu et al., 2008). The ability of low
concentrations of both fast (OGB-1) and slow (EGTA) calcium
buffers to inhibit the mAHP in L5 cortical pyramidal neurons
suggests that the calcium influx driving activation of somatic SK
channels is working within a microdomain rather than a nano-
domain (Neher, 1998; Augustine et al., 2003; Eggermann et al.,
2012), with a coupling distance greater than �150 nm. Consis-
tent with this idea, we show that the SK channel-dependent com-
ponent of the mAHP in L5 neurons is controlled by all known
VDCC subtypes except R-type VDCCs, which are not expressed
at the soma. The coupling between somatic SK channels and their
calcium source in L5 neurons differs from that in other cell types,
where the calcium source for SK channel activation during the
mAHP has been linked to specific VDCC subtypes. For example,
in midbrain dopaminergic neuron activation of SK channels dur-
ing the mAHP is solely dependent on T-type VDCCs (Wolfart
and Roeper, 2002), whereas only L-type channels are coupled to
somatic SK channels in hippocampal pyramidal neurons (Mar-
rion and Tavalin, 1998). The reasons for this difference between
neuronal cell types, and why it is that SK channels are weakly
coupled to multiple calcium sources in L5 neurons is unclear.
Finally, it is worth noting that our observation that low concen-
trations of the calcium indicator OGB-1 blocks the mAHP, in-
creasing firing rate and promoting burst firing, raises the concern
that the use of high-affinity calcium indicators to investigate net-
work activity (Garaschuk et al., 2006) may inadvertently influ-
ence neuronal excitability and thereby network dynamics.

In conclusion, we show that SK channels in spines and den-
drites are activated by bAPs and act to constrain dendritic and
spine calcium influx in a distance-dependent manner. This effect
of SK channels would be expected to influence STDP, particularly
at distal dendritic locations. Furthermore, we provide evidence
that SK channels in spines and dendrites are strongly coupled to
their calcium source, forming nanodomains with R-type VDCCs.
In contrast, SK channels at the soma of L5 cortical pyramidal
neurons are weakly coupled to multiple calcium sources, forming
microdomains with all known VDCCs except R-type channels.
These findings provide evidence for heterogeneous and location-
dependent coupling of SK channels to VDCCs within the same
neuronal cell type. Such exquisite compartmentalization exem-
plifies the contrasting role calcium plays in regulating neuronal
excitability at different cellular locations even within the same
neuron.
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