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Humans learn to trust each other by evaluating the outcomes of repeated interpersonal interactions. However, available prior informa-
tion on the reputation of traders may alter the way outcomes affect learning. Our functional magnetic resonance imaging study is the first
to allow the direct comparison of interaction-based and prior-based learning. Twenty participants played repeated trust games with
anonymous counterparts. We manipulated two experimental conditions: whether or not reputational priors were provided, and whether
counterparts were generally trustworthy or untrustworthy. When no prior information is available our results are consistent with
previous studies in showing that striatal activation patterns correlate with behaviorally estimated reinforcement learning measures.
However, our study additionally shows that this correlation is disrupted when reputational priors on counterparts are provided. Indeed
participants continue to rely on priors even when experience sheds doubt on their accuracy. Notably, violations of trust from a cooper-
ative counterpart elicited stronger caudate deactivations when priors were available than when they were not. However, tolerance to such
violations appeared to be mediated by prior-enhanced connectivity between the caudate nucleus and ventrolateral prefrontal cortex,
which anticorrelated with retaliation rates. Moreover, on top of affecting learning mechanisms, priors also clearly oriented initial
decisions to trust, reflected in medial prefrontal cortex activity.

Introduction
Trusting others involves risk and uncertainty: people invest a
form of good (i.e., money, work, time, etc.) in interactions that
can yield a profit or a loss, depending on whether others hold to
their end of the bargain (Coleman, 1994). Critically, when others
are not contractually committed to doing so, they may be un-
trustworthy for their own benefit and harm the person that ini-
tially placed trust in them (Berg et al., 1995). In financial
transactions, investors should then either anticipate this, and not
invest money to begin with, or develop efficient strategies to es-
timate the trustworthiness of others (Camerer and Weigelt,
1988).

Experiments with repeated trust games (RTGs) allow us to
empirically observe trust-based dynamics (Chang et al., 2010).
Neuroimaging studies using RTGs have shown that, when no
prior information on transaction partners is available, the brain’s
reward circuitry is involved in learning about their type (i.e., their
level of trustworthiness), based on the outcomes of previous

trust-based interactions (King-Casas et al., 2005). Indeed,
reward-related brain regions have been found to respond posi-
tively to trustworthiness and negatively to violations of trust
(Krueger et al., 2007; Phan et al., 2010; Long et al., 2012). We refer
to this as “interaction-based” learning.

However, a second important alternative for investors to effi-
ciently engage in financial decisions is to rely on priors provided
by a third party. Such priors may affect the way agents evaluate
the outcomes of transactions and thus how they learn about the
type of their counterparts. We refer to this as “prior-based” learn-
ing. For example, in Web-based transactions, which are increas-
ingly used, investors interact with complete strangers and rely on
available reputation priors (e.g., reports on previous transac-
tions, customer reviews, etc.) to predict expected returns and
potential risks associated with investments (Kim, 2009). How-
ever, while the neural correlates of interaction-based learning to
trust have been largely explored, few studies have investigated the
neural bases of trust when reputation priors are provided (Del-
gado et al., 2005; Stanley et al., 2012). No studies to date have
directly compared the two forms of trust-based decision making
within the same experiment.

To confront this issue, we conducted a functional magnetic
resonance imaging (fMRI) experiment in an attempt to charac-
terize the neural activation patterns related to trust-based deci-
sions during RTGs. Two situations were analyzed and compared,
one in which we provided information about the social attitude
of counterparts (i.e., reputational priors), and one in which
no such information was provided. Furthermore, in contrast to a
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previous neuroimaging study on the same issue (Delgado et al.,
2005), we also manipulated the actual level of trustworthiness
demonstrated by counterparts during an RTG, such as to make it
consistent with the provided priors. Finally, we used standard
fMRI analysis as well as model-free and model-based reinforce-
ment learning (RL) algorithms to approach the problem of social
learning and reputation effects. Our main goal was to assess
whether and how reputation priors affect RL mechanisms at both
the behavioral and neural level.

Materials and Methods
Participants
Twenty male participants (mean age, 29.5 � 3.53 years) took part in the
fMRI experiment; two were removed from the analysis for excessive head
movement (see below, fMRI analysis). All of them were healthy; gave
written informed consent; had normal or corrected-to-normal vision
without any history of psychiatric, neurological, or major medical
problems; and were free of psychoactive medications at the time of the
study. Participants were told that the experiment aimed at studying de-
cision making in a social context, that they would receive a compensation
of €15/h and that the money gained in 10 randomly extracted trials would

be added to their compensation. The study was
approved by the local institutional ethical com-
mittee of the University of Trento.

Task
The experimental task was based on the trust
game (TG) (Berg et al., 1995). In one round of
our task, each participant played as “investor”
with an anonymous counterpart as “trustee.”
Both players were endowed with €1 before
starting a round composed of two stages (Fig.
1A): in stage 1 the participant decided whether
or not to share his euro with the trustee. If he
decided to share, the euro was multiplied by 3
by the experimenter before being allotted to
the trustee. In stage 2 the response of the
trustee could be to either equally share his
money with the investor (1/2 of €4 � €2) or
keep his money and return nothing. It follows
that if the investor invested and the trustee re-
ciprocated, both players were better off than if
the interaction had not occurred at all. How-
ever, investing was risky, as if a trustee returned
nothing, the investor incurred a loss.

We used a repeated version of this TG
(RTG), which consisted in a series of consecu-
tive TG rounds with a same counterpart. How-
ever, this alters the nature of the single-shot
TG, as RTGs allow for additional strategic ma-
neuvers. For instance, investors tend to invest
more (and trustees to reciprocate) in initial
rounds of RTGs, than in final rounds or single-
shot games (Isaac et al., 1985). For similar rea-
sons, both parties may strategically punish (by
not investing) if they believe this might incen-
tivize uncooperative counterparts to review
their strategies in future rounds.

Our study intended to minimize the strate-
gic component of trust-related behavior; hence
our version of the game differentiated from the
typical RTG in a few but important respects.
(1) Subjects were informed that trustees had
already made their choices, which thus would
not have been affected by those of the partici-
pant. In other words, participants knew that
counterparts were not interactive. This feature
should have eradicated any strategic compo-
nent usually present in RTGs. In reality, the

trustees were computer simulations and they reciprocated an investment
with fixed probabilities unknown to participants. (2) Another feature
was also adopted to make learning independent on participants’ actions.
In traditional RTGs, when an investor does not trust, the round ends and
nothing is learned about the behavior of counterparts. In our study, on
the other hand, participants learned about the trustees’ choices even
when they invested nothing. This adjustment enabled us to keep the
amount of feedback fixed (regardless the choice of participants), thus
allowing us to compare learning mechanisms between conditions. (3)
Finally, to further reduce strategic reasoning, participants did not know
how many games composed each RTG with a given trustee but only that
RTGs were consecutive and if they were not paired with the same trustee
twice in a row, then they would have never encountered the counterpart
again. Specifically, we fixed a constant probability of 1/3 to continue the
game with a same counterpart; this resulted in a minimum of one and a
maximum of eight games with a same trustee.

Then, each trustee was introduced with a picture of his face before a
RTG began (Fig. 1B). The association between pictures and RTGs was
randomized, as was the order of RTGs. To reduce facial information
extraction and gender attraction, we assembled a database of colored
pictures of 20- to 60-year-old Caucasian men (mean age: 34.05 � 11.19)

Figure 1. Experimental design. A, One round of the two-player RTG. P1 is the payoff of the participant, who always plays as
investor; P2 is the payoff of his counterpart, who plays as trustee. Before each round both players are endowed with €1. The
participant moves first and chooses either to “keep” or “share.” If he keeps, both players maintain their initial endowments. If he
shares the participant’s endowment is multiplied by 3 and passed to the counterpart. The trustee then decides whether to share in
turn (by returning €2), or to keep (by returning nothing). RTGs consisted of several consecutive rounds with the same counterpart.
Participants played with many different counterparts and were told that their counterparts had already made their choices. B,
Experimental conditions. Two conditions were adopted: (1) the “type” of counterpart and (2) the presence versus absence of
“reputational priors.” Types: counterparts could be either “cooperative” or “individualistic” in their (simulated) behavior in RTGs;
the former shared and the latter kept in 80% of RTG rounds. Reputational priors: participants were told that cues indicated whether
the current counterpart had obtained a high or low score in a social orientation task (triangles indicated low scores, circles indicated
high scores). Such priors reliably differentiated between the two counterpart types. C, Time line of the first RTG round. Presenta-
tion: face of the counterpart (with a prior or no-prior) was displayed for 3.5 s, and only presented for the first round of an RTG.
Fixation: Fixation cross was presented during a jittered ISI. Choice: participants made their choice by pressing “Keep” or “Share.”
Delay: ISI corresponding to the (simulated) decision of the counterpart. Outcome: outcome of the game and the payoffs of each
player.
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controlled for attractiveness, emotion, and racial traits. Then 128 pic-
tures were selected and used with authorization from the FERET data-
base of facial images collected under the FERET program (Phillips et al.,
2000). The words “trust” or “trustworthy” were never mentioned during
the training session and the experiment.

Experimental conditions
A first key manipulation was that trustees were divided into two pre-
defined types: they could be either “cooperative” or “individualistic.”
Cooperative trustees would reciprocate 80% of the time, while individ-
ualistic counterparts would defect 80% of the time (though participants
were not informed of such contingencies). The distinction between types
furthermore allowed confronting the cases in which trustees behaved
consistently (“Cons”) or inconsistently (“Incons”) with their types.

The second key feature of our study was whether or not a reputation
prior was provided (Fig. 1B). In the prior-condition, half of the cooper-
ative and half of the individualistic trustees were flagged, respectively, by
a circle and a triangle. These cues signaled their “reputation.” Specifi-
cally, participants took part in the social valuation orientation (SVO)
(Messick and McClintock, 1968; Van Lange et al., 1999) and were told
that the distinct cues were based on trustees’ scores for the same task. This
task distinguishes between different types of SVOs (e.g., cooperative or
individualistic). The main difference between each category is the extent
to which one cares about his own payoffs and that of the others in social
dilemma situations. Finally, for the remaining half of the counterparts,
no prior information was provided (no-prior condition).

To ensure no difference in learning scheme in each of the four condi-
tions (Prior/Cooperative, Prior/Individualistic, No-Prior/Cooperative,
No-Prior/Individualistic), RTG length and share/keep schedules within
each RTG were counterbalanced.

Procedure
Training
Participants received written instructions, took part in a simplified ver-
sion of the SVO task, and completed a 20 min RTG practice session (20
trials). The experiment was implemented using Presentation software
(version 0.70).

Inside the MRI
In the scanner, subjects completed 356 trials (89 for each condition:
Prior/Cooperative, Prior/Individualistic, No-Prior/Cooperative, No-
Prior/Individualistic), divided in four runs of 20 min. Figure 1C shows
the time line of the first trial of an RTG. Each RTG started with a 3.5 s
display of the face of the trustee (which, only in “prior” conditions, was
flagged with a reputational cue). This was followed by a fixation cross and
then by a “decision screen,” which required participants to choose be-
tween one of two options, labeled “share” or “keep.” After making their
choice, participants waited a jittered interval before an “outcome screen”
appeared, displaying the trustee’s choice and the corresponding payoffs
to both players. For those trials in which participants chose to keep, the
outcome screen was still shown.

Analysis
Behavioral data analysis
Behavioral data were analyzed using Stata Statistical Software version 9.2
and the R environment (Development Core Team, 2008). A two-way
repeated measure ANOVA was performed to identify differences be-
tween conditions for each variable of interest (e.g., decision to trust,
payoffs made in each condition). Next, we computed regression analyses
using mixed-effects linear models (MEL), in which participants were
treated as random effects and hence were allowed to have individually
varying intercepts. Parameter estimates (b), SE, t values and p values were
reported.

RL models
Model 1: model-free temporal-difference learning. We first used a “model-
free” temporal-difference (TD) (model 1) learning algorithm (Rummery
and Niranjan, 1994; Sutton and Barto, 1981), which assumes that agents
are initially unaffected by the presence of priors, but that, as trials with a

counterpart unravel, they may update reward values differently when
priors are available as opposed to when they were not available. Partici-
pants would sample the reward probability of two choices (Keep or
Share) in the Cooperative and Individualistic conditions. We then hy-
pothesized that participants would obtain reliable expectation of these
conditions updating the estimated value of each choice with a discounted
“step-size.” Thus the stochastic prediction error �, based on the Rescorla–
Wagner learning rule (Rescorla and Wagner, 1972) was computed as
follows:

�t � rt � Q(C,t) (1)

where r is the payoff obtained at time t, when choosing an option C at
time t or t � 1, and Q is the value of each choice Share or Keep in each
trial. In addition to this, the following learning rule differentially
updated the stochastic prediction error in the Prior ( P) and No-Prior
(NP) conditions:

Q(C,t � 1) � Q(C,t) � �P � �P
(C,t) � �NP � �NP

(C,t) (2)

The degrees in which �P and �NP influence the new action value are
weighted by two learning rates, �P and �NP, where 0 � �P, �NP � 1.

Model 2: model with separate expectations for positive or negative priors.
Additionally, we hypothesized that, in the Prior condition, participants
may have “optimistic” or “pessimistic” expectations, at the beginning of
the game due to the presence of a positive (P �) or negative Prior (P �),
respectively (Wittmann et al., 2008; Biele et al., 2011) (model 2). Thus,
the values of initial choices when playing with a Cooperative or Individ-
ualistic counterpart in the prior condition were computed as follows:

QP �
(C,0) � gP � � ��P � � N (3)

QP �
(C,0) � gP � � ��P � � N (4)

where gP� gP� are equal to 1 when playing with a counterpart with a
positive or negative prior, respectively, and 0 otherwise. �P� and �P� are
free parameters capturing the optimistic or pessimistic impact of the
priors expectation; � is the expected payoff from choosing randomly
among all options, which serves as a normalization constant (in our case
� � 1); and N is the number of trials experienced in the learning condi-
tion, which is a scaling factor, allowing for the comparison between an
expected value decision and the outcome of the decision. On the other
hand, in the no-prior condition, only one parameter weighted the initial
expected value of choices, QNP

(C,0).

The Softmax function was then used for the two models to determine
the probability of choosing a given choice option given the learned values
as follows:

p1(t) �
exp�Q1(t)/��

exp�Q1(t)/�� � exp�Q2(t)/��
(5)

where � is called a temperature parameter. For high values of �, all
actions have almost the same probability (i.e., choices are random), while
for low �s the probability of choosing the action with the highest ex-
pected reward (Q

1
� Q2) is close to 1.

To generate model-based regressors for the imaging analysis, both
learning models were simulated using each subject’s actual sequence of
rewards and choices to produce per-trial, per-subject estimates of the
initial values Qt and error signals �t (Morris et al., 1996; Wittmann et al.,
2008). All parameters of interest were implemented in MATLAB R2009
and were estimated using the negative log likelihood of trial-by-trial
choice prediction. Model comparisons were performed with the Bayes-
ian Information Criterion, the pseudo r 2 value using the Log likelihood
of a random distribution, and tested with the likelihood ratio test.

fMRI method
fMRI data acquisition
A 4 T Bruker MedSpec Biospin MR scanner (CiMEC, Trento, Italy) and
an eight-channel birdcage head coil were used to acquire both high-
resolution T1-weighted anatomical MRI using a 3D MPRAGE with a
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resolution of 1 mm 3 voxel and T2*-weighted Echo planar imaging (EPI).
The parameters of the acquisition were the following: 34 slices, acquired
in ascending interleaved order, the in-plane resolution was 3 mm 3 vox-
els, the repetition time 2 s, and the echo time was 33 ms. For the main
experiment, each participant completed four runs of 608 volumes each.
An additional scan was performed in between two different runs to de-
termine the point-spread function that was then used to correct the
known distortion in a high-field MR system.

Preprocessing
The first five volumes were discarded from the analyses to allow for
stabilization of the MR signal. The data were analyzed with Statistical
Parametric Mapping 8 software (SPM8; Welcome Department of Cog-
nitive Neurology, London, UK) implemented in MATLAB R2009
(MathWorks). We used SPM8 for the preprocessing steps. Head motions
were corrected using the realignment program of SPM8. Following re-
alignment, the volumes were normalized to the Montreal Neurological
Institute (MNI) space using a transformation matrix obtained from the
normalization process of the first EPI image of each individual subject to
the EPI template. The normalized fMRI data were spatially smoothed
with a Gaussian kernel of 8 mm (full-width at half-maximum) in the (x,
y, z) axes. Imaging data for participants with head motions exceeding one
voxel (3 mm) in transition and 3° in rotation were discarded (Eddy et al.,
1996). We also used the xjView package and MRICron to create the
pictures presented in the results (version 1.39, Build 4).

fMRI analysis
GLM 1a and 1b. Our first analysis considered the main effect of the
presence or absence of reputation priors when a new counterpart is
presented for the first time. We used a general linear model (GLM),
estimated in three steps: (1) first, an individual blood oxygenation level-
dependent (BOLD) signal was modeled by a series of events convolved
with a canonical hemodynamic response function. The regressors repre-
senting the events of interest were modeled as a boxcar function with
onsets at the beginning of each RTG (“Pre”) and durations of 3.5 s. For
GLM 1a, regressors represented trials in which priors were provided
(“Prior_Pre”) and no priors were provided (“NoPrior_Pre”). For GLM
1b, regressors represented trials in which priors were provided for a
cooperative counterpart (“Prior�_Pre”), priors were provided for indi-
vidualistic counterparts (Prior-_Pre), and no priors were provided (No-
Prior_Pre). For t contrasts, we then computed first-level one-sample t
tests comparing trials with and without priors on the basis of the GLM 1a.
(2) We then analyzed second-level group contrasts. Our fMRI results
were initially thresholded at p � 0.001 uncorrected and were subse-
quently cluster-thresholded at p � 0.05, familywise error (FWE). All
reported coordinates (x, y, z) are in MNI space. Anatomical localizations
were performed by overlaying the resulting maps on a normalized struc-
tural image averaged across subjects, and with reference to an anatomical
atlas. (3) Finally, we used the MarsBaR toolbox from SPM8 to perform
functionally defined (based on the averaged parameter estimates in the
cluster found with GLM 1b) region of interest analysis (ROI) and com-
pute percentage signal changes.

GLM 2 model-based fMRI analysis. A second GLM model still focused
on the distinction between prior and no-prior conditions but addition-
ally separated between two phases of the RTG: the decision phase and the
outcome phase. This allowed us to assess how the impact on the BOLD
signal of priors was parametrically modulated by two behaviorally esti-
mated learning measures (from model 2): (1) at time of choice, the
parameter Qt, weighted the value of options, on a trial-to-trial basis,
depending on RTG history; (2) while �t scaled outcomes on the basis of
their estimated prediction error. We performed this analysis at the indi-
vidual level and ran group statistics, taking individual participants as
random effects. We then focused on a subset of our resulting brain re-
gions on the basis of effect strength ( p � 0.05, FWE corrected). Specifi-
cally, averaged parameter estimates were extracted from bilateral caudate
(MNI coordinates: (�14, 20, 2) and (12, 18, 6)), separating between prior
versus no-prior contexts.

GLM 3, violation of trust. In a third GLM we differentiated between
consistent (Cons) and inconsistent (Incons) outcomes. We classified

consistent outcomes as those rounds in which either (1) participants had
kept with individualistic counterparts that defected (Cons�) (distribu-
tion of trials: M � 57 � 3) or (2) they had shared with a cooperative
counterpart that reciprocated (Cons�) (M � 56 � 4 trials); inconsistent
outcomes, on the other hand, occurred when either (3) participants had
kept with an individualistic counterpart that reciprocated (Incons�)
(M � 14 � 4 trials) or (4) they shared with a cooperative counterpart that
defected (Incons�) (M � 15 � 4 trials), and who thus “violated” their
trust.

Functional connectivity analysis. To explore the interplay between the
caudate and other brain regions following violations of trust (Incons�),
we assessed functional connectivity using psychophysiological analysis
(PPI;Friston, 1997; Cohen et al., 2005), which compares the pattern of
activity of a seed region to every other regions of the brain. We took the
bilateral caudate resulting from the reported GLM 3 (Cons � Incons) as
seed regions, as these areas showed highest sensitivity to violations of
trust (t � 6.78, p � 0.05, FWE). Then, we created three regressors: (1) the
caudate time course (physiological regressor), (2) an event-related re-
gressor that distinguished between violations of trust in the prior and
no-prior conditions (with a boxcar function ranging from the beginning
of the outcome phase until the end of the interstimulus interval; ISI), and
(3) the interaction term. Additionally, we also conducted a correlation
analysis between the retaliation rate for each subject (measured by the
percentage of choices to keep after violation of trust when playing with a
cooperative partner) and the parameter estimates in left ventrolateral
prefrontal cortex (vLPFC) (MNI �40, 42, 4) across subjects. Finally, to
examine how striatal responses to violations of trust were related to
learning, we plotted individual parameter estimates against the individ-
ual learning rates (estimated with model 2 described above).

Results
Behavioral results
Our main goal was to determine whether reputation priors influ-
ence initial expectations and decisions in the games, and subse-
quent learning mechanisms. A repeated measure two-way
ANOVA was performed using the type of counterpart (coopera-
tive or individualistic) and prior condition (prior or no-prior) as
within participant factors. The percentage of decisions to share
was significantly higher with cooperative counterparts (M �
71.77, SE � 4.03) than with individualistic counterparts (M �
27.34, SE � 3.71; F(1,17) � 174.01, p � 0.001). The results also
showed a significant interaction effect of prior with type of coun-
terpart (F(2,35) � 30.87, p � 0.001). Post hoc tests (t tests, Bonfer-
roni corrected) indicated that participants decided to share with
cooperative partners more when provided with a prior (M �
81.09, SE � 4.78) than when priors were not provided (M �
62.45, SE � 5.81; t � 5.89, p � 0.001), whereas they decided to
share with individualistic counterparts less in the prior (M �
18.37, SE � 4.66) than in the no-prior condition (M � 36.3, SE �
5.05; t � 4.23, p � 0.002, Fig. 2A). When payoffs are analyzed
with type of counterparts and prior condition as within-subject
variables, we found that payoffs were significantly higher when
playing with cooperative counterparts (M � 1.43, SE � 0.13)
than individualistic counterparts (M � 0.94, SE � 0.11; F(1,17) �
138.32, p � 0.001) and significantly higher in the prior condition
(M � 1.20, SE � 0.10) than the no-prior condition (M � 1.08,
SE � 0.06; F(1,17) � 28.98, p � 0.001; Fig. 2C).

To examine the effect of the prior condition, trustees’ type, the
order of the repeated game, and the interactions of such factors
on the decision to share (binary-dependent variable), we per-
formed regression analyses using MEL models. The results re-
vealed that participants shared with cooperative counterparts
more often compared with individualistic counterparts (b � 1.29
(SE � 0.08), t � 15.8, p � 0.001), shared less when they did not
receive priors (b � �1.09 (SE � 0.09), t � �12.1, p � 0.001), and
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shared less over time (b � �0.12 (SE �
0.02), t � �6.81, p � 0.001). These results
suggest that participants took into ac-
count reputation priors and played ac-
cording to the counterpart’s level of
trustworthiness. Instead, when priors
were not available, participants learned
counterparts’ types on the basis of their
actions. Interestingly, we found an inter-
action effect between trustees’ type and
the prior condition (b � 2.27 (SE � 0.13),
t � 17.39, p � 0.001). These results indi-
cate that the difference between prior and
no-prior conditions was greater when
playing with a cooperative than with an
individualistic counterpart. Furthermore,
even though participants in the no-prior
condition adjusted their decisions to their
counterparts’ type over rounds, they still
shared with cooperative counterparts less
than when they had priors (Fig. 2B). Post
hoc t test revealed that, in the no-prior
condition, in rounds when cooperative
counterparts kept, participants subse-
quently kept more (Mean percentage of
decisions to keep � 0.48, SE � 0.019),
whereas they persisted in sharing in the
prior condition (M � 0.2, SE � 0.015; t(17)

� �4.99, p � 0.001; Fig. 2D). Similarly,
when individualistic counterparts shared
in a round, participants subsequently
shared more when not provided with a
prior (Mean percentage of decisions to
share � 0.34, SE � 0.015) than when
given a prior (M � 0.21, SE � 0.009;
t(17) � �4.783, p � 0.001; Fig. 2E).

Results from learning models
A likelihood ratio test revealed that the Prior model (model 2)
with separated expectations for cooperative and individualistic
counterparts performed better than the classical TD learning
model (model 1) (p � 0.001) (Additional statistics are reported
in Table 1). The best-fitting parameters are shown in Table 2. For
these parameters, we found that the average learning rate esti-
mated from trials in the No-Prior condition, �NP, was signifi-
cantly higher than the average learning rate estimated from trials
in the Prior condition �P(t(17) � 2.29; p � 0.05). We also found
that the initial value in the Cooperative Prior condition, QP�(0)
was significantly higher than the initial value in the No-Prior
condition QNP(0) (t(17) � �2.82; p � 0.001), and the initial value
in the Individualistic Prior condition, QP�(0) (t17 � �3.07; p �
0.001). There was no significant difference between the initial
value in the Individualistic Prior condition, QP-(0), and the initial
value in the No-Prior condition QNP(0) (t � 0.46). Finally, we
found that the average learning rates estimated for each partici-
pant when they kept was higher (M � 0.46, SE � 0.04) than when
they shared (M � 0.38, SE � 0.048; t(17) � �2.27, p � 0.05; Table
2).

fMRI results
Effect of prior at time of counterpart presentation
The contrast (Prior_Pre � NoPrior_Pre) (see Materials and Meth-
ods, GLM 1a and 1b) revealed differential activity in the medial PFC

(mPFC; 0, 62, 31), to the presence versus absence of any priors when
new counterparts were presented (t � 8.26; p � 0.05, FWE cor-
rected) (Fig. 3A; Table 3). Further functional ROI analysis, based on
GLM 1b, qualified this activation pattern as responding with in-
creased activity to the presence of priors, regardless of their nature
(positive or negative), and decreased activity to their absence (Fig.
3B). The opposite contrast (NoPrior_Pre � Prior_Pre) revealed ac-
tivity in bilateral anterior insula (�36, �4, 15), t � 3.91; p � 0.001
uncorrected and (38, 3, 10), t � 3.45; p � 0.002 uncorrected).

Effect of prior at RTG choice
Applying parametric analysis (see Materials and Methods,
GLM 2 model-based fMRI analysis) to the functional MRI
data, we focused on trial-to-trial weights on decision values as
represented by per-trial Qt estimate amplitude. We found that
decision value estimates were correlated with neural activity in
a network consisting of the mPFC (�2, 64, 10) and the dorso-
lateral prefrontal cortex (dLPFC) (�38, 38, 32), surviving p �
0.05, FWE corrected (Fig. 4A; Table 3). These two regions
reflected the contributions of prior’s valence (positive or neg-
ative) to the pattern of activity related to the decision to trust
(Fig. 4B). Moreover, the difference at a neural level between
prior and no-prior condition was greater when playing with a
cooperative counterpart compared with an individualistic
counterpart. This is consistent with the observed behavioral
asymmetry of the effect of priors between cooperative and
individualistic conditions (Fig. 2B).

Figure 2. Behavioral results. A, Average percentage of decision to trust across conditions. Mean � SE of participants’ decision
to trust (share) are broken down for trustee’s type (Cooperative/Individualistic) and prior condition (Prior/No Prior); ***p � 0.001.
Priors enabled participants to match (on average) their choices with the counterpart’s level of trustworthiness. B, Learning
dynamics across RTG rounds. Average percentage of the decision to trust for each round when playing with a “cooperative” versus
“individualistic” counterpart, and when priors were present versus absent. When participants know nothing of their counterparts
they tend to randomize between trusting and not trusting during initial rounds and adjust their choices to their counterparts’ type
in succeeding rounds. On the other hand, when priors are present, participants tend to rely on them already from early rounds.
Shaded areas above and below the curves are SEs. C, Average payoffs in the Prior and No-Prior conditions. Average payoffs � SE (in
€) in Prior/No Prior conditions. When priors are available, participants significantly earn more when they adjust their choices to
counterparts’ types; **p � 0.01. D, Choices following unexpected behavior of cooperative and individualistic counterparts.
Average (�SE) of percentage of “keep” choices in prior versus no-prior condition at time t, following rounds in which participants
shared and a cooperative counterpart violated their trust by deciding to keep (at t � 1). Decisions to Keep at time t (i.e., retaliation)
were less frequent when priors were available. E, Percentage of “share” choices (at t) following rounds in which participants had
kept and an individualistic counterpart has shared (at t � 1).
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Effect of prior at RTG outcome
Across all RTGs, during the outcome phase of the game (see
Materials and Methods, GLM 2 model-based fMRI analysis),
individually estimated trial-wise prediction errors (positive
and negative combined) correlated significantly with BOLD
responses in the bilateral caudate in the No-Prior trials only
( p � 0.05, FWE) (Fig. 5A; Table 3). On the other hand, striatal
activity appeared to track estimated prediction errors in a
more blunted fashion when priors were provided (Fig. 5A).
Moreover, from a direct comparison between the no-prior
and prior conditions, we found higher activity in the left
caudate for the no-prior condition compared with the prior
condition with group peak MNI coordinates at �12, 20, 8
(Fig. 5B).

Pattern of activity related to violation of trust: functional
connectivity analysis
Finally, we specified the changes in activity in the caudate related
to the effects of violation of trust (e.g., the decisions to keep a
cooperative counterpart in response to a decision to trust of a
participant) in the prior and no-prior condition (analysis from
GLM 3; Table 3). This analysis showed a stronger deactivation of
the caudate in the prior condition compared with the no-prior
condition (t � 6.78; Fig. 6A,C). However, in contrast with the
no-prior condition, striatal deactivations to violation of trust
were not reflected in the behavior of our participants. Indeed, the
pattern of striatal activity related to violation of trust did correlate
with individual learning rates only in the no-prior condition
(from the model 2: r � �0.687, p � 0.001; Fig. 6D). No such
correlation was found in the Prior condition (Fig. 6D).

We used functional connectivity analysis to search (see Mate-
rials and Methods, Functional connectivity analysis) for brain
areas that could have mediated such striatal responses when rep-
utation priors were provided. We found that left and right vLPFC
showed strong functional connectivity with the caudate seed re-
gion after violation of trust in the prior compared with no-prior
conditions; vLPFC, left (�40, 42, 4), t � 3.73; right (38, 46, 4), t �
6.37, p � 0.05 corrected (Fig. 6A; Table 3). Finally, we found that the
strength of connectivity between caudate–vLPFC was anticorrelated
with participants’ decisions to keep following violation of trust
(Spearman correlation r � �0.67, p � 0.001). Moreover, we found
that the activity in the vLPFC was inversely correlated with indi-

vidual retaliation rates (computed as the
percentage of Keep over Share choices) af-
ter violations of trust (r � �0.6, p �
0.009; Fig. 6B).

Discussion
Reputation-based social decision making
has been investigated both by theoretical
and empirical studies (Camerer and
Weigelt, 1988; Fudenberg et al., 1990;
Boero et al., 2009); however, research on
its neurocognitive bases is still in its in-
fancy. Though it is rather unlikely that, in
daily decisions, people possess absolutely
no-prior/contextual information on who
they interact with, the growing literature
using RTGs in fMRI focused mainly on
situations in which strictly no-priors are
available (McCabe et al., 2001; King-Casas
et al., 2005; Krueger et al., 2007). Only two
recent fMRI studies investigated how so-
cial priors (i.e., the moral character of

their counterparts) affect the way people engage in RTGs (Del-
gado et al., 2005; Fareri et al., 2012). These studies, however, did
not completely isolate the effect of priors on trust (prior-based
trust) by confronting them with identical conditions with no
priors (interaction-based trust). Our experimental setting is the
first to allow this direct comparison. The main goal of our study
was to determine whether, and how, reliable reputational priors
affect initial decisions and subsequent learning mechanisms at
both the behavioral and neural level.

From a behavioral point of view, we show that priors affect
decisions to trust in at least two ways: (1) in initial stages of the
interaction, participants clearly chose to trust or distrust ac-
cording to the positive or negative reputation of their coun-
terparts; furthermore (2) players tend to keep relying on

Figure 3. mPFC encodes reputational priors when a new counterpart is first presented. A, Random effect analysis. When
contrasting (Prior) � (No Prior) conditions at time of counterpart presentation, activity in the mPFC survived FWE correction, p �
0.05. B, Functional ROI analysis in mPFC. Functional ROI analyses further revealed percentage signal changes in the mPFC cortex
MNI (0, 62, 31). The figure shows an increased activity when priors were present, regardless of their type, and decreased activity
when there were no priors.

Table 1. Learning model comparison

Learning model comparison

Classical model-free TD
learning model

Prior � and Prior � expectations
RL learning model

BIC 7619 6460
Log likelihood (random

model � �4442)
�3809 �3230

Pseudo r 2 0.14 0.273

Bayesian information criterion value (BIC), Log likelihood, and the pseudo r 2 suggest that the Prior � and Prior �

expectations TD learning model fits the observed behavior better the other TD learning models.

Table 2. Averaged best-fitting parameter estimates (across subjects) SE

Parameter estimate for best behavioral model, depicted as mean � SE

Mean SE

Learning rate Prior condition �P 0.3373 � 0.0456
Estimates for Cooperative counterparts 0.327 � 0.0424
Estimates for Individualistic counterparts 0.3475 � 0.0398
Learning rate No Prior condition �NP 0.5075 � 0.0689
Estimates for Cooperative counterparts 0.4686 � 0.0701
Estimates for Individualistic counterparts 0.539 � 0.0599
Estimates learning rates for Invest trials (participants shared) 0.3845 � 0.0459
Estimates learning rates for Non-Invest trials (participants kept) 0.4603 � 0.0476
Softmax inv. Temp Betha � 4.7769 � 0.3149
Initial value Cooperative Prior condition, QP�(0) 1.3814 � 0.1031
Initial value Individualistic Prior condition, QP�(0) 0.9838 � 0.1055
Initial value No Prior condition QNP(0) 1.0641 � 0.126
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reputation priors, even when their
counterpart’s behavior was inconsistent
with it. As a consequence, and since pri-
ors were accurate predictors of trust-
worthiness in our study, players earned
more when reputational cues were
available than when they were not.

mPFC encodes reputational priors
From a neural point of view, our fMRI
results revealed that the presentation of a
new counterpart yielded enhanced activa-
tion in the mPFC when accompanied by a
prior (regardless of it signaling a positive
or negative reputation). We suggest that
the enhanced mPFC activity may reflect
the fact the prior information reduced the
uncertainty about the behavior of the other
faced by participants when beginning a new
RTG. Indeed, this region has been previ-
ously implicated in uncertainty resolution
in interactive contexts (Yoshida and Ishii,
2006). This is furthermore consistent with
the inverse activation pattern observed in
the insula, which showed stronger activity
when priors were not available, consistently
with previous findings reporting a role for
this region in tracking increased uncertainty
(Preuschoff et al., 2008).

mPFC and dLPFC encode the value of
reputation priors
At time of choice, the valence of priors
elicited dissociable activation patterns when
integrated with the behaviorally estimated
(from the prior-based RL model) option
values (Qt). Specifically, the mPFC and
dLPFC differentially responded to cooper-
ative versus individualistic counterparts,
however, only when priors were available.

Figure 5. Brain regions parametrically correlated with the estimated prediction error of the best-fitting RL model. A, Random
effect fMRI analysis: Activity of the caudate showed significant correlation to the estimated prediction error signal in the no-prior
condition ( p�0.05 FWE corrected). Such activities were not observed in this brain area in the prior condition. Peak coordinates are
given in MNI space. Color bars indicate T values. B, Parameter estimates were extracted from the left caudate (�12, 20, 8) for the
direct comparison between prior and no-prior conditions. Caudate activity correlates with prediction error in the no-prior condition
only.

Table 3. Activations correlated with contrasts of interest

MNI coordinates (mm)

Analysis/Location BA Side Cluster size T p value FWE cor. X Y Z

Prior � No Prior (GLM 1)
mPFC 10 95 8.26 6.8 	 10 �06 0 62 31
VTA — 14 3.177 0.0032 unc. 0 �1 �5

No Prior � Prior (GLM 1)
Anterior insula 44 Left 106 3.912 0.0009 unc. �36 �4 15
Anterior insula 44 Right 55 3.450 0.0017 unc. 38 3 10

Parametric regression of Choice (GLM 2)
mPFC 10 — 87 6.562 2.7 	 10 �06 �2 64 10
Lateral PFC 46 Left 122 5.987 7.8 	 10 �05 �38 38 32
Lateral PFC 46 Right 109 6.342 2.1 	 10 �06 30 38 34
Superior parietal lobule 48 Left 43 5.01 6.7 	 10 �04 �38 6 24

Parametric regression at Outcome for the No
Prior condition (GLM 2)

Caudate nucleus — Left 77 7.091 8.9 	 10 �06 �14 20 2
Caudate nucleus — Right 56 8.298 7.9 	 10 �06 12 16 8

Violation of rust in the Prior condition
(GLM 3, Cons � Incons)

Caudate nucleus — Left 82 6.78 2.8 	 10 �06 �10 18 11
Caudate nucleus — Right 56 6.34 2.4 	 10 �06 12 21 5

Note: BA, Brodmann area; mPFC, medial prefrontal cortex; VTA, ventral tegmental area.

Figure 4. Brain regions parametrically correlated with the estimated “optimistic” and “pessimistic” decision value from the
Prior model. A, Random effect fMRI analysis. To look for neural correlates of value signals (Qt) at time of choice, we entered the
trial-by-trial estimates of the values of the two stimuli (Share and Keep) into a regression analysis against the fMRI data. We found
enhanced activation in mPFC and dLPFC, surviving FWE correction, p � 0.05. B, Functional ROI analysis in mPFC. Percentage signal
change by condition in the mPFC area represented in A. A similar pattern of activity was found in the dLPFC (not reported). These
regions encoded prior valence (positive and negative) that guided decision to trust at time of choice. Error bars indicate SE.
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As reported in previous studies, our results suggest that this brain
network keeps track of contextually modulated decision values over
trials, and doing so improves participants’ performance (Wunder-
lich et al., 2009).

As reputational priors conveyed information on the social
attitudes of counterparts in our study, this activation is also con-
sistent with a well established role of the mPFC in ascribing atti-
tudes to others (Mitchell, 2009), and anticipating their choices
(Krueger et al., 2007; Hampton et al., 2008; Coricelli and Nagel,
2009). Thus the mPFC is encoding a first response to reputational
priors as well as the effect of priors during subsequent interac-
tions. This is in accordance with findings from humans (Rilling et
al., 2002; Hampton et al., 2008) and nonhuman primates (Barra-
clough et al. 2004) on the role of the PFC in encoding value-
related signals in repeated interactions.

Caudate nucleus encodes reward prediction errors only when
prior information is not provided
Consistent with previous studies, trial-by-trial prediction errors
estimated by RL models correlated with activity in the striatum
(McClure et al., 2003; Bunge et al., 2004; O’Doherty et al., 2004;
King-Casas et al., 2005; Schönberg et al., 2007), but, critically,
only when no priors were available. This confirms a role for the
caudate in tracking the difference between expected and obtained
outcomes in RTGs, triggering learning. However, when priors
were available they appeared to prevent participants from
reinforcement-based learning, which was reflected in the reduced
covariance between caudate responses and estimated prediction
errors.

Priors magnify reward prediction error signals in the
caudate nucleus
As regards the striatal activation patterns, these are well aligned
with an established role of the striatum in tracking reward con-
tingencies, in both nonsocial (O’Doherty et al., 2004) and social
domains (Delgado et al., 2005; King-Casas et al., 2005; Jones et al.,
2011). More specifically, the observed patterns are consistent
with the idea that the caudate mediates the neural computation of
reward prediction error (RPE). Indeed, we observed RPE-pliant
signals in the caudate only when no priors were provided, while
the same signals appeared blunted when priors were available.
Previous studies on nonsocial tasks (Doll et al., 2009, 2011; Li et
al., 2011) and social tasks (Delgado et al., 2005; Biele et al., 2011;
Fareri et al., 2012) have shown that, when priors are available,
participants tended to hinge on to them, and to relatively dis-
count the impact of the outcomes of their past decisions.

However, in addition to the previous studies, our results show
that the presence of priors magnifies striatal deactivation to vio-
lations of trust (i.e., when a counterpart with positive reputation,
as opposed to no reputation, violated trust), rather than blunting
their response. Why previous studies did not find such magnified
response due to violation of priors requires further investigation,
though several hypotheses are possible. For instance, two studies
(Delgado et al., 2005; Fareri et al., 2012) focused on the subset of
unreliable priors, that is, on priors that carried no information on
trustees’ actual choices; it is likely that, in such a scenario, partic-
ipants were gradually learning to disregard such priors, converg-
ing toward their extinction rather than exploitation. On the other
hand, the opposite may have occurred in a more recent study on

Figure 6. Functional connectivity between the caudate nucleus and vLPFC correlates with the choice to retaliate after violation of trust in the prior condition. A, PPI analysis. With a caudate seed,
bilateral vLPFC shows stronger connectivity with this region in the prior compared with the no-prior conditions. B, vLPFC prevents retaliation to violation of trust in the prior condition. vLPFC
anticorrelates with retaliation rate in the prior condition after participants experimented violation of trust from a cooperative counterpart. Spearman r � �0.6, p � 0.009. C, Reputational priors
magnify striatal response to violation of trust. The caudate shows a stronger deactivation to violation of trust from a cooperative counterpart in the prior condition compared with the no-prior
condition. D, Striatal responses to violation of trust and learning rates. The correlation between caudate and learning rates is significant only in the no-prior condition, thus striatal responses to
violation of trust in the prior condition are not reflected in learning.
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the nonsocial domain (Li et al., 2011), in which priors were per-
haps too reliable. Indeed, in that study, agents were explicitly
instructed on the precise probabilities of outcomes, which may
have reduced their surprise when infrequent, though anticipated,
losses occurred. In both of these previous studies, the space for
learning via priors may have been reduced, as the actual prior-to-
reward contingencies appeared either nonexistent (Delgado et
al., 2005; Fareri et al., 2012) or already completely exploited (Li et
al., 2011). It is also possible that the different methods used to
instill priors tapped on different neural mechanisms: Delgado et
al. (2005) provided short descriptions of the “moral character” of
counterparts, whereas Fareri et al. (2012) used direct evidence
from previous experience (i.e., playing a ball task). Such methods
of instilling priors may have also made them more salient or
intuitive and, as a result, harder to extinguish despite conflicting
evidence. On the other hand, our task reported on characteristics
of counterparts that were possibly more directly linked to the
main task (i.e., the priors were based on results indicating the
extent to which one cares about his own payoffs and that of
others, SVO task). Further investigation specifically manipulat-
ing prior reliability should clarify some of the points of diver-
gence. Until then, the open question in our study regarded the
reason as to why striatal deactivations to trust violations were not
leading to behavioral adjustments when priors were available.

vLPFC– caudate stronger functional connectivity
preventing retaliation
On the other hand, when priors were present, we suggest that the
impact on learning of the striatal deactivations to violations of
trust may have been disrupted by other brain areas. Our results
are in line with attributing this role to the vLPFC, which we found
to functionally correlate with such striatal deactivations. In par-
ticular, the strength of connectivity between caudate and vLPFC
was stronger in the prior compared with the no-prior condition.
We thus propose that the vLPFC contributes in maintaining
choices aligned with the reliable prior beliefs, when beliefs mo-
mentarily conflict with observations. This might occur by com-
pensating for the relatively automatic behavioral changes to RPE
signals. In line with this interpretation previous literature has
implicated the vLPFC in top-down cognitive control by biasing
processing in other brain regions toward contextually appropri-
ate representations (Cohen et al., 1990; Miller et al., 2001). Fur-
thermore, not only the vLPFC plays a role in modulating
bottom-up fashion cognition processes, but this area has also
been found to play a role in goal-directed behavior (Valentin et
al., 2007; Souza et al., 2009).

In conclusion, our study integrates theories and methods
from cognitive neuroscience, economics, and reinforcement
learning to gain a greater understanding of how reputation priors
are encoded in the brain and how they affect learning to trust
anonymous others. Our findings suggest that priors influence
both initial decisions to trust and the following learning mecha-
nisms involved in repeated interactions. Specifically, the present
study showed that reputational priors magnify striatal responses
to violations of trust. However, when such priors are reliable,
other phylogenetically younger brain regions involved in higher
cognition may contribute to keep decisions anchored to those
priors, thus relatively discounting the weight of conflicting evi-
dence. The interplay between striatum and ventrolateral prefron-
tal cortex may prevent unnecessary retaliation when others
violate our trust, and thus constitutes an important neurocogni-
tive mechanism that favors social stability.
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