The Journal of Neuroscience, January 1,2014 - 34(1):95-111 - 95

Systems/Circuits

Heterogeneous Single-Unit Selectivity in an fMRI-Defined
Body-Selective Patch

Ivo D. Popivanov,' Jan Jastorff,' Wim Vanduffel,">* and Rufin Vogels'
"Laboratorium voor Neuroen Psychofysiologie, KU Leuven, BE-3000 Leuven, Belgium, 2Massachusetts General Hospital, Martinos Center for Biomedical
Imaging, Charlestown, Massachusetts 02129, and *Harvard Medical School, Boston, Massachusetts 02115

Although the visual representation of bodies is essential for reproduction, survival, and social communication, little is known about the
mechanisms of body recognition at the single neuron level. Imaging studies showed body-category selective regions in the primate
occipitotemporal cortex, but it is difficult to infer the stimulus selectivities of the neurons from the population activity measured in these
fMRI studies. To overcome this, we recorded single unit activity and local field potentials (LFPs) in the middle superior temporal sulcus
body patch, defined by fMRI in the same rhesus monkeys. Both the spiking activity, averaged across single neurons, and LFP gamma
power in this body patch was greater for bodies (including monkey bodies, human bodies, mammals, and birds) compared with other
objects, which fits the fMRI activation. Single neurons responded to a small proportion of body images. Thus, the category selectivity at
the population level resulted from averaging responses of a heterogeneous population of single units. Despite such strong within-
category selectivity at the single unit level, two distinct clusters, bodies and nonbodies, were present when analyzing the responses at the
population level, and a classifier that was trained using the responses to a subset of images was able to classify novel images of bodies with
high accuracy. The body-patch neurons showed strong selectivity for individual body parts at different orientations. Overall, these data
suggest that single units in the fMRI-defined body patch are biased to prefer bodies over nonbody objects, including faces, with a strong

selectivity for individual body images.

Introduction

Visual representations of bodies of conspecifics and other ani-
mals are instrumental for survival. Primates can categorize ani-
mals versus nonanimals fast and accurately (Fabre-Thorpe et al.,
1998). Headless bodies are detected as fast as faces in scenes,
suggesting that not only faces but also body cues contribute to
person detection (Bindemann et al., 2010). Nonverbal commu-
nication is partially based on the analysis of body shape (de
Gelder et al., 2010). Additionally, body posture coding can con-
tribute to action recognition (Giese and Poggio, 2003; Vange-
neugden et al., 2011).

Despite this ethological importance of body recognition, little
is known about its neural mechanisms. fMRI studies in primates
identified occipitotemporal areas that are activated more strongly
by images of bodies or body parts compared with other object
categories, including faces (Downing et al., 2001; Tsao et al.,
2003; Pinsk et al., 2005, 2009; Bell et al., 2009; Popivanov et al.,
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2012). However, because fMRI reflects the activity of a large pop-
ulation of neurons, these studies do not inform about the stimu-
lus selectivities of the neurons in these body-selective regions.

Previous fMRI-guided single unit studies were mainly re-
stricted to fMRI-defined face patches, showing that face patches
contain a high fraction of face-selective cells (Tsao et al., 2006;
Issaand DiCarlo, 2012) and that many face-patch cells respond to
a wide variety of face images, including human, macaque, and
cartoon faces (Tsao et al., 2006; Freiwald et al., 2009; Freiwald and
Tsao, 2010). This raises the question whether the same holds for
body patches: do single neurons in a body patch prefer images of
bodies compared with other objects, including faces, and do they
respond similarly to different body images? Thus far, only one
study recorded in a macaque body patch (Bell et al., 2011), re-
porting that approximately half of the neurons responded stron-
ger to body parts compared with other object classes, which is less
than observed for face selectivity in the face patches (Freiwald and
Tsao, 2010). No data exist regarding the clustering or selectivity
for individual body, or other stimuli in the body patches. Thus, in
general little is known about the stimulus and category selectivity
of fMRI defined body-patch neurons.

To bridge this gap in our understanding of stimulus process-
ing in the body patches, we recorded single-unit activity and local
field potentials (LFPs) within an fMRI defined body selective
patch. Previously, we localized two patches inside the superior
temporal sulcus (STS) that were activated more strongly by im-
ages of monkey bodies compared with control objects, matched
in low level image properties, in four monkeys (Popivanov et al.,
2012). Here, we recorded single units and LFPs in the posterior,
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so called midSTS body patch, in two of
these animals, examining their selectivity
for animate and inanimate categories and
for individual exemplars of these catego-
ries. We asked how the neurons that com-
prise the body patch represent exemplars
of the different categories, whether exem-
plars of the body category cluster together,
whether the population responses can
classify bodies versus other objects, and
whether they show body part selectivity.

Materials and Methods

Subjects

The two male rhesus monkeys (Macaca mu-
latta) were 2 of 4 subjects for our previous
fMRI study (Popivanov et al., 2012). They were
implanted with a magnetic resonance (MR)
compatible headpost and a recording chamber
targeting the midSTS. Animal care and experi-
mental procedures complied with the Na-
tional, European, and National Institute of
Health guidelines and were approved by the
Ethical Committee of the KU Leuven Medical
School.

Stimuli

Main stimulus set. Ten classes of achromatic
images, monkey and human bodies (excluding
the head), monkey and human faces, four-
legged mammals, birds, manmade objects
(matched either to the monkey or to the hu-
man bodies), fruits/vegetables, and body-like
sculptures (by the British artist H. Moore),
served as stimuli in the electrophysiological
study. Each class consisted of the 10 images
which were previously used in the even runs of
the fMRI study of Popivanov et al. (2012). Ex-
amples of the stimuli are shown on Figure 1A,
whereas the full stimulus set together with
details about the stimuli can be found in
Popivanov et al. (2012). Briefly, the images
of monkey bodies depicted headless bodies
in different postures and the monkey faces
varied in both orientation and viewpoint
(profile to frontal views). Most of the images
of human bodies were from Downing et al.
(2001). The human face stimuli (courtesy of
M. J. Tarr, http://www.tarrlab.org/ and the
NBU Faces Database, http://nbufaces.yobul.
com/ENAboutDatabase.aspx) depicted dif-
ferent individuals and varied in viewpoint. All
other stimuli were generated from images
downloaded from the public domain.
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Figure 1. Category selectivity in the fMRI-defined midSTS body patch. A, Example image taken from each of the 10
stimulus classes of the main stimulus set, embedded into a pink noise background. B, Flattened surface of the left
hemisphere of the monkey brain (F99 common space) with the body selective fMRI activations (contrast: monkey bodies
—objects M; only activations that passed the FWE corrected level of p << 0.05 are shown) of both subjects. The white ellipse
indicates the midSTS: the region targeted in the recordings. €, MidSTS body patch region targeted in the recordings with
activations shown on coronal slices of each monkey (Horsley-Clarke AP, ML coordinates of body patch peak; monkey E, +2,
21; monkey B, +1, 21) An artifact from the electrode in monkey E (left) and tracks from the guide tube in monkey B (right)
are clearly visible, targeting the center of the activation. D, Normalized population PSTHs (sliding window of 10 ms
duration with a step of 1 ms) showing the single-cell responses, averaged across neurons in the midSTS body patch for each
of the two monkeys. Before averaging, the PSTH of each neuron was normalized with respect to the maximum firing rate
(bin width 10 ms). Line patterns and colors follow the same conventions as the frames in A. Stimulus presentation is marked
by the thick black line on the abscissa. N indicates number of averaged neurons.

embedded into pink noise backgrounds having the same mean lumi-

We made every effort to equate the low-level image characteristics,
such as mean luminance, mean contrast, and aspect ratio, across the
different stimulus classes. The mean aspect ratio of the monkey and
human bodies differed because the upright human bodies tend to be
more elongated than the monkey bodies. This was controlled for by using
two classes of manmade objects, one matching the aspect ratio of the
monkey bodies (objects M) and another one matching the aspect ratio of
the human bodies (objects H). The images were resized so that the aver-
age area per class was matched across all classes, except for the objects H
and human bodies, but still allowing some variation in area (range, 3.7—
6.7° square root of the area) within each class. This variation in size
avoided potential clustering of the image classes based on local, pixel-
based gray level differences. The mean vertical and horizontal extent of
the images was 8.3° and 6.7° of visual angle, respectively. The images were

nance as the images and which filled the entire display (height X width:
30° X 40° of visual angle). Each image was presented on top of nine
different backgrounds that varied randomly across stimulus presenta-
tions. Although unlikely, the use of different backgrounds may have
(slightly) increased response variability. The stimuli were gamma
corrected.

Body part stimulus set. A second stimulus set consisted of seven male
monkey body part classes, i.e., arm, foot, genitals, hand, leg, tail, and
torso. We presented three exemplars of each body part class (Fig. 2A) and
each exemplar was shown at five orientations (rotations in the image
plane with step size of 45°) including the 180° inversion (Fig. 2B; illus-
trated for one body part exemplar). Thus, the body part stimulus set
included 105 images (3 exemplars X 5 orientations X 7 body part
classes). The stimuli were taken from snapshots of movies depicting male
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Figure 2.  Body part stimulus set. A, The three exemplars of each of the seven body-part
classes are shown in rows per class. B, Five in-plane orientations of one particular exemplar
(step size 45°). The body parts measured 4° on a side and were shown on uniform gray
background.

monkeys in our colony. The body parts were first resized so that the
maximum of their vertical and horizontal extent was 4° at an orientation
of 0° (Fig. 2A). Then these images were rotated around their center of
mass to obtain the five different orientations (Fig. 2B). The mean lumi-
nance of all images was equated. The body parts were presented on top of
a uniform gray background, having the same grayscale value as the mean
luminance of the body parts. The artificial edges where the body part was
dismembered from the rest of the body were blurred and faded into the
gray background using Adobe Photoshop CS3. All images were gamma
corrected.

RI

f]g\gtails of the fMRI procedure, data analysis and results are provided by
Popivanov et al. (2012) and will only be summarized here. The monkeys
were scanned while fixating a small red target (0.2° of visual angle) su-
perimposed on the stimuli. During scanning, the monkeys sat in a sphinx
position with their heads fixed in a MR compatible plastic monkey chair.
Eye position was continuously monitored (120 Hz; Iscan) during scan-
ning. The monkey received a juice reward when maintaining fixation
within a square window of 2° X 2° of visual angle. Immediately before
scanning, a contrast agent, Monocrystalline Iron Oxide Nanoparticle
(MION; Feraheme, AMAG Pharmaceuticals; 8—11 mg/kg) was injected
into the monkey femoral/saphenous vein.

In a block design experiment, monkey bodies, monkey faces, objects
M, mammals, birds, and fruits/vegetables classes were presented in six
discrete blocks of 20 s each. Each class consisted of 20 images of which 10
were identical to those used in the subsequent recordings (main stimulus
set). Stimuli were presented for 500 ms each without interstimulus inter-
val (ISI). Each run contained 21 blocks in total: the six classes plus a
“fixation” block (fixation target superimposed on the pink noise back-
ground) were repeated three times. The monkeys were scanned on a 3T
Siemens Trio scanner following standard procedures (Vanduffel et al.,
2001). Functional MR images were acquired using a custom-made
8-channel monkey coil (Ekstrom et al., 2008) and a gradient-echo single-
shot echo planar imaging sequence (repetition time = 2 s, echo time =
17 ms, flip angle = 75°% 80 X 80 matrix, 40 slices, no gap, 1.25 mm
isotropic voxel size). The functional images were coregistered with a
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high-resolution (0.4 mm isotropic) anatomical image of each monkey’s
individual brain, serving as a template.

Only runs in which the animals were fixating the target for at least 90%
of the time were included in the analysis. The functional data were resa-
mpled to 1 mm isotropic voxel size. All analyses were performed in each
monkey’s native space without smoothing the functional data. All valid
runs (24 and 28 in monkeys E and B, respectively) were combined in a
fixed effects model for each monkey separately in native space. They were
analyzed using a general linear model with seven regressors, one for each
of the six stimulus classes and the fixation condition, plus six additional
head-motion regressors (translation and rotation in three dimensions)
per run. The resulting t maps were thresholded at p < 0.05, family-wise
error (FWE) rate, corresponding to t > 4.9.

Electrophysiological recordings

Standard single-unit and LFP recordings were performed with epoxylite-
insulated tungsten microelectrodes (FHC; in situ measured impedance
between 1.3 and 1.6 M()) using techniques as described previously
(Sawamura et al., 2006). Briefly, the electrode was lowered with a Na-
rishige microdrive into the brain using a stainless steel or an MR-
compatible (when a position verification scan was performed after
recording) guide tube that was fixed in a standard Crist grid positioned
within the recording chamber. After amplification and filtering between
540 and 6 kHz, spikes of a single unit were isolated online using a custom
amplitude- and time-based discriminator. The simultaneously measured
LFPs were filtered on-line using a 1-300 Hz bandpass filter and saved for
off-line analysis.

The position of one eye was continuously tracked by means of an
infrared video-based tracking system (SR Research EyeLink; sampling
rate 1 kHz). Stimuli were displayed on a CRT display (Philips Brilliance
202 P4; 1024 X 768 screen resolution; 75 Hz vertical refresh rate) at a
distance of 57 cm from the monkey’s eyes. As in all our previous studies,
the onset and offset of the stimulus was signaled by means of a photo-
diode detecting luminance changes in a small square in the corner of the
display (but invisible to the animal), placed in the same frame as the
stimulus events. A digital signal processing-based computer system de-
veloped in-house controlled stimulus presentation, event timing, and
juice delivery while sampling the photodiode signal, vertical, and hori-
zontal eye positions, spikes, LFP signals, and behavioral events. Time
stamps of the recorded spikes, eye positions, continuous filtered LFP
signals (sampling rate 1 kHz), stimulus, and behavioral events were
stored for off-line analyses.

The recording grid locations were defined so that the electrode tar-
geted the left midSTS body patch in both animals. Before the recordings
started, we performed a structural MRI in each monkey (3T Siemens
Trio; magnetization-prepared rapid acquisition with gradient echo se-
quence; 0.6 mm resolution) and visualized long glass capillaries filled
with the MRI opaque copper sulfate (CuSO,) that were inserted into the
recording chamber grid (until the dura) at predetermined positions.
Then, the functional images (the contrast between the monkey bodies
and objects M) of each monkey were coregistered with its anatomical
MRI using the coregistration toolbox of SPM8 (Wellcome Department
of Cognitive Neurology, London, UK) and the registration was verified
by visual examination. Grid positions were selected for body patch re-
cordings if the electrode would end in a voxel that was activated signifi-
cantly more by monkey bodies than objects M (p < 0.05 FWE corrected)
and was not significantly activated by monkey faces compared with ob-
jects M (p > 0.05 FWE corrected). These neighboring voxels included
the most significant activation when monkey bodies were contrasted
with objects M in the midSTS body patch. During the course of the
recordings, we verified the recording locations with 10 and four addi-
tional anatomical MRI scans in monkeys E and B, respectively. Four of
these scans in monkey E were performed immediately after recording
sessions that targeted the body patch, using an MR compatible (fused
silica; Plastics One) guide tube with the electrode left in the cortex during
the MRI scan (for an example MR image with an electrode in situ; Fig. 1C,
left). In all other scans we visualized long glass capillaries filled with
copper sulfate that were inserted into the grid at recorded grid positions.
The recording locations along the medial-lateral and anterior—posterior
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dimensions were extrapolated from the trajectories of the imaged capil-
laries. The validity of the latter method to verify recording locations is
supported by the four MRI scans in monkey E in which the electrode was
imaged directly and was indeed shown to be present at the predicted
location in the anterior—posterior and medial-lateral dimensions. In ad-
dition to the imaged capillaries, tracks of the repeated guide penetrations
were clearly visible in the MR images of monkey B above the targeted
body patch (Fig. 1C, right), providing further evidence that the record-
ings were at the targeted region. The ventral—dorsal location of the elec-
trode tip was verified in each recording session using the transitions of
white and gray matter and the silence marking the sulcus between the
banks of the STS.

In addition to the body patch recording locations described in Results,
we recorded at 10 and nine neighboring grid positions (1 mm spacing) in
the STS of monkeys B and E, respectively, to ensure that we did not miss
a body patch containing a very high proportion of body selective neu-
rons. We recorded more extensively lateral to the midSTS body patch
location in monkey E only.

Electrophysiology: tasks

Neurons were searched while presenting the 100 images of the main
stimulus set in a pseudo-random order. Stimuli were presented for 200
ms each with an ISI of ~400 ms during passive fixation (fixation window
size 2° X 2°). The pink noise background was present throughout the
task, but refreshed together with the stimulus onset, as in previous stud-
ies (Tsao et al., 2006; Issa and DiCarlo, 2012). Fixation was required in a
period from 100 ms prestimulus to 200 ms poststimulus. A trial was
aborted when the monkey interrupted fixation in this interval. In the
pseudo-randomization procedure, all 100 stimuli were presented ran-
domly interleaved in blocks of 100 unaborted trials. Aborted stimulus
presentations were repeated within the same block in a subsequent ran-
domly chosen trial. The number of unaborted presentations per stimulus
could differ by 1 at most. ISIs within and between successive blocks were
the same. Aborted trials were not analyzed further. Juice rewards were
given with decreasing intervals (2000—-1350 ms) as long as the monkeys
maintained fixation. All neurons (N = 185 and 114 for monkeys E and B,
respectively) were tested using this procedure and testing was continued
when a response was notable in the on-line peristimulus time histograms
(PSTHs) for at least one of the stimuli.

Stimuli during the initial search for responsive neurons were pre-
sented foveally. When responses to the foveal stimuli were present but
weak (as judged by visual inspection of the online PSTHs), the stimulus
producing the largest estimated response was selected for receptive field
(RF) mapping. For the RF mapping, a scaled version of the selected image
(the maximum horizontal or vertical extent was 4°) was presented for 200
ms at 35 positions ranging from 3° ipsilateral to 9° contralateral and from
9° below to 9° above the horizontal meridian. Adjacent positions differed
by 3°, horizontally or vertically. The different stimulus positions were
presented interleaved. The mean number of unaborted presentations per
position was six and five, averaged across the mapped neurons for mon-
key E and monkey B, respectively. Based on the PSTHs of the RF mapping
test, the optimal stimulus location was determined and then the main test
was rerun by presenting the stimuli at this location. When two main tests,
using different stimulus locations, were available, the one producing the
largest response was included in the further analysis. Most responsive
neurons searched for with the main stimulus set were also tested with
other tests, which are part of another study and will not be reported in
this paper.

We recorded the responses of body-patch neurons to the body part
stimulus set in a second series of recording sessions that took place after
the conclusion of data collection using the main stimulus set. For both
monkeys, these neurons were recorded using the grid position that
yielded the majority of neurons recorded for the main stimulus set. Pro-
cedures were identical to those described above for the main stimulus set;
the only exception was that responsive neurons were searched for using
the body part stimuli.

Single-unit data analysis
Firing rate was computed for each unaborted stimulus presentation in
two analysis windows: a baseline window ranging from 100 to 0 ms
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before stimulus onset and a response window ranging from 50 to 250 ms
after stimulus onset. Responsiveness of each recorded neuron was tested
offline by a split-plot ANOVA with repeated measure factor baseline
versus response window and between-trial factor stimulus. Only neurons
for which either the main effect of the repeated factor or the interaction of
the two factors was significant and were recorded for at least five trials per
stimulus were analyzed further. Using these criteria for the main stimulus
test, 134 of 185 neurons and 81 of 114 neurons were defined as responsive
for monkeys E and B, respectively. For this test, the mean number of
unaborted presentations per stimulus was 9 for both animals, averaged
across responsive neurons. For the body part stimulus set, the mean
number of unaborted presentations per body part stimulus was 9.2
pooled across animals (N = 52 neurons; 26 for each monkey). Because
our implementation of the split-plot ANOVA required an equal number
of observations per cell, we equated the number of unaborted stimulus
presentations for that analysis. This was done by removing the last un-
aborted presentation of the stimulus that was presented by one trial more
than the rest. All other analyses included the responses to all unaborted
stimulus presentations.

All analyses were based on baseline subtracted, average net firing rate,
except stated otherwise. In most analyses, the net firing rates of each
neuron to the stimuli were normalized by dividing the firing rate for a
particular stimulus by the maximum firing rate of the neuron (the re-
sponse to the “best” stimulus).

For each neuron we computed several indices. The body selectivity
index (BSI) was computed as follows:

Ebody - }inon-body
|Rbody‘ + |Rnovx—body|)

where I_Qbody and I_Qm,n,body are the mean net firing rates to bodies and
nonbodies of the main stimulus set, respectively. To compare our results
with previous studies in the face patches, we computed the BSI on net
firing rates. However, we also computed BSI using raw responses, with-
out baseline subtraction (see Results). In addition, we computed BSIs for
which the nonbody category did not include the ambiguous category of
the body-like Moore sculptures and BSIs that included the sculptures as
nonbodies. The face selectivity index (FSI) was computed, likewise, as the
difference between the mean net firing rate to faces and nonfaces divided
by the sum of the absolute mean net firing rate to the faces and nonface
stimuli. The nonface stimuli included all images without head, i.e., ex-
cluding the mammals and birds.

We also computed d" indices (Afraz et al., 2006; Ohayon et al., 2012)
which take into account differences in mean responses to the stimulus
categories as well the variability of the responses to the different stimuli
within a category. The d" indices were computed for bodies versus non-
bodies [d’ (body)] and faces versus nonfaces [d’ (faces)] using both net
and raw responses. Thus:

BSI =

Rbody - Rnon—body

2 2
Dbody + SDnon-body
2

d'(body) =

>

where }_Qbody and Rnoﬂ—body are the mean firing rates and SDyq, and
SD,0n-body are the SDs of the firing rates for the bodies and nonbodies,
respectively. The d’ (faces) were defined contrasting the responses to
faces and nonface images, excluding the mammals and birds because
these had “faces.” We tested whether the d’ value for each neuron was
significantly different from zero by comparing it to the null distribution
of d’ (p = 0.025). This null distribution was obtained by computing the
d' 1000 times with different permutations of the body and nonbody
labels.

Hierarchical cluster analysis with Ward’s method was performed on a
dissimilarity matrix of pairwise Euclidean distances between the re-
sponses to the individual images. The Euclidean distance d, _, for a pair
of images 1 and 2 was defined as follows:

di,= \ Z(Ru - R2,1)2>
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LFP data analysis
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Figure 3.

where R, ;and R, ; are the normalized net responses of neuron i, averaged
over trials, to stimulus 1 and 2, respectively, and # is the number of
neurons tested with that pair of stimuli. Unlike correlation as similarity
metric, the Euclidean distance metric takes into account differences in
the response patterns of the population of neurons between the images as
well as differences in overall response level between the images and hence
makes fewer assumptions about the (unknown) metric used by the brain.

To test the extent to which the neural distances reflect the pure image,
pixel-based dissimilarities, we computed the pairwise Euclidean dis-
tances d,_, between the gray levels of the corresponding pixels of all
possible image pairs. This was achieved using the formula above where
R, ;and R, ; were the gray values for pixel i in image 1 and 2, respectively.
The neural- and pixel-based dissimilarities were compared by correlating
the dissimilarity matrices, using the Spearman rank coefficient. To assess
whether the obtained value for the coefficient was significant we com-
pared it to a distribution of 10,000 coefficients computed after permuting
one of the dissimilarity matrices (threshold p = 0.02; two-tailed).

Linear support vector machines (SVMs) were used to classify bodies
versus nonbodies, faces versus nonfaces or the 10 image classes of the
main stimulus set with the responses of the population of neurons of a
single monkey to the individual stimuli as input. In each of the three
cases, SVMs were trained using the average net firing rates to seven
randomly chosen images of each class and tested using the remaining
images. SVMs were trained with cross-validation and a grid search for the
regularization parameter to reduce overfitting. The SVM analyses were
run using the Weka library (Hall et al., 2009). We trained and tested 100
SVMs, each with a different random sampling of training and test images.
The classification rates are averages across the 100 SVMs and test stimuli
per SVM. Chance classification rates were determined empirically by
running 100 SVMs on the same neural responses but with shuffled stim-
uluslabels. In the case of the 10 class SVMs, the chance classification rates
had a mean of 9% (range, 7-11%) and 10% (range, 7-15%) in monkeys
E and B, respectively.

i I IS 1S

(ategory selectivity of the LFP power. Time-frequency plots representing the power change normalized to baseline
for monkey E (4) and monkey B (B), averaged across sites (monkey E, N = 133; monkey B, N = 66) for each of the 10 stimulus
classes. The boundaries of the frequency bands (alpha, c; beta, 3; low gamma, -y,; middle gamma, v,,; high gamma, -y,,) are
shown on the first plot in both panels. Stimulus onset and offset are marked by white vertical dotted lines.

(clipping) were excluded from the analyses. Al-
though we recorded LFPs and spikes simulta-
neously using the same electrode, the number
of LFP sites (N = 133 and 66 for monkeys E and
B, respectively; Fig. 3) is less than those for
spiking (Fig. 1D), because we did not have a
bird valid LEP signal during all recording sessions
(i.e., the signal was clipped in too many trials).
By convolving single-trial data using complex
Morlet wavelets and taking the square of the
convolution between wavelet and signal, we
obtained the time-varying power of the signal
for every frequency (Tallon-Baudry and Ber-
trand, 1999) The complex Morlet wavelets had
a constant center frequency—spectral band-
width ratio ( fo/ay) of 7, with f; ranging from
1to 150 Hz in steps of 1 Hz. We took the mean
power across trials per spectral frequency and
site. The power was normalized by dividing it
by the average power in a baseline window that
ranged from 100 to 0 ms before stimulus onset.
The normalized power was averaged across
sites and stimuli per class to generate the time
frequency plots of Figure 3. The LFP power
response per frequency band was computed by
taking the averaged normalized power at each
frequency in a 50250 ms window relative to
stimulus onset followed by an averaging across
the frequencies of the frequency band of interest. The frequency bands
were defined as follows: alpha, 8—12 Hz; beta, 13-29 Hz; low gamma,
30-59 Hz; middle gamma, 60-99 Hz; high gamma, 100—-150 Hz (Fig. 3).
For quantitative analyses of the mean power for each frequency band
across sites (Fig. 4), we equated the contribution of each site to the
population response, by dividing the power by the maximum power
across the 100 stimuli for each site. Dissimilarity matrices were obtained
for each frequency band by computing pairwise Euclidean distances on
the percentage change in power from the baseline, normalized by the
maximum percentage difference across the stimuli, for each site.

sculpture

Results
The midSTS body patch was defined by contrasting images of
headless monkey bodies with control objects (Popivanov et al.
(2012); Fig. 1A, B). The recording locations in each monkey were
guided by their individual fMRI data. We recorded at the location
showing the most significant activation (Fig. 1C) and at neigh-
boringlocations. In monkey E, four neighboring grid positions (1
mm spacing; along the posterior-anterior dimension) coincided
with the portion of the midSTS body patch that was activated
strongest by bodies compared with the control objects. There was
no significant fMRI activation to faces (contrast monkey faces
—object M) at these locations. In monkey B, three neighboring
grid locations were probed that corresponded to the most signif-
icant activations of his midSTS body patch. As in the other mon-
key, there was no significant activation to faces at these voxels. In
both monkeys, we recorded from their left hemisphere only.
Recording locations were verified using anatomical MRI scans
between recording sessions in both animals (see Materials and
Methods) and by direct visualization of the electrode in situ after
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Figure 4. Correlation between the category selectivity of spiking activity and LFP power in

different frequency bands. Left, Normalized spiking activity (spikes) averaged per class of those
units for which valid LFP measurements were obtained and normalized LFP power averaged for
the same sites. The mean LFP power is averaged within each of five frequency bands. Colors
indicate the normalized response strength (see bottom color bar). Each class is indicated by an
example image. Right, Pearson correlation coefficient r between the mean spiking response
and the mean power for each frequency band. The red line depicts the statistical threshold
above which the correlations are significantly different from 0 (p << 0.05; N = 10 classes).

actual recordings in monkey E (four scans; Fig. 1C, left, example;
see Materials and Methods). In addition, guide tube tracks were
clearly visible on the MRI of monkey B at positions consistent
with the targeted recording location (Fig. 1C, right). These MRI
scans indicate that we recorded at the targeted location in the
medial-lateral and anterior—posterior dimensions.

Category selectivity of the midSTS body patch

We measured single units and LFPs, simultaneously, for the 100
images of the main stimulus set that were presented randomly
interleaved for 200 ms each during passive fixation (see Materials
and Methods). These images were half of the stimuli used in the
fMRI study of Popivanov et al. (2012). There were 10 images in
each of the 10 stimulus classes: monkey faces, human faces, head-
less monkey bodies, headless human bodies, mammals, birds,
body-like sculptures, fruits/vegetables, and two sets of control
objects matched in low-level stimulus properties to the monkey
bodies (objects M) and the human bodies (objects H), respec-
tively (Fig. 1A, examples). Responsive neurons were searched
when presenting the 100 images, centered at the fovea. In those
cases in which responses were weak, we mapped the receptive
field with the image that elicited the strongest response foveally,
and then retested the neuron by presenting the 100 images at the
center of the receptive field. Of the 134 responsive neurons (for
definition, see Materials and Methods) recorded at the category-
selective body patch of monkey E, 35 (26%) neurons were tested at
peripheral locations (average eccentricity, 5.5°). In monkey B, only
10% (8/81) were tested at peripheral locations (average eccentricity,
3.7°). Below, we will report only data on responsive neurons for the
optimal location or for the foveal location when no mapping was
obtained, ensuring that each neuron is contributing only once to the
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sample. Results were similar when restricting the sample only to
the foveal presentations. All responsive neurons showed an excit-
atory response for at least one image and often showed inhibitory
responses to some images, which is typical for inferior temporal
cortex.

The single-unit responses, averaged across the images of a
class, differed significantly across classes (repeated-measures
ANOVA on normalized responses per neuron; p < 0.0001 in each
animal). For each monkey, the average response was greater for
the four classes that contained bodies (monkey and human bod-
ies, mammals, and birds) compared with the other classes, in-
cluding the body like sculptures (Fig. 1D). Thus, we defined the
body category as consisting of images of these four classes. The
nonbody category included all the other classes: the monkey and
human faces, objects M, objects H, fruits/vegetables, and sculp-
tures. In some of the analyses, explicitly mentioned below, we
excluded the sculptures from the nonbody category, because of
their body-like appearance. In both monkeys, the average nor-
malized response to the body category was significantly larger
than the average response to the nonbody images (paired ¢ test;
p < 0.00001 in each animal). This preference for the body cate-
gory was present early on in the response of monkey E but it was
more pronounced in the later phase of the response in monkey B.
Responses were stronger for bodies compared with either human
or monkey faces. This difference was highly significant for each of
the four body classes in monkey E (post hoc Bonferroni ¢ tests;
each body class, each face class; p < 0.00001); however, it reached
significance only for the monkey bodies ( post hoc Bonferroni ¢
tests; p < 0.01) but not for the other body classes (all p > 0.48) in
monkey B. Interestingly, the monkey bodies elicited a larger re-
sponse than the human bodies in each animal, but this difference
failed to reach significance. The monkey bodies produced a sig-
nificantly larger response compared with the objects M class ( post
hoc Bonferroni ¢ tests; p << 0.00001 in each animal), in agreement
with the fMRI contrast that was used to define the recording
location.

The single-unit data represent a relatively small sample of the
population of neurons in the targeted body-patch regions. There-
fore, we also simultaneously measured LFPs (using the same elec-
trode) and computed the power as a function of peristimulus
time and spectral frequency. It has been suggested that the power
for frequencies >50 Hz can be used as a proxy for the spiking
activity of the population of neurons close to the electrode (Ray
and Maunsell, 2011). As shown in Figure 3, the LFP power for
those frequencies was strongly selective for stimulus class in both
monkeys, with greater power for the four body classes, which
aligns perfectly with the single-unit data. We quantified the mean
body category selectivity of the LFP signal by comparing the av-
erage normalized power for each of five spectral frequency bands
(see Materials and Methods and Fig. 3 for definitions of fre-
quency bands) for bodies and nonbodies (excluding sculptures).
In each animal, the mean normalized power was significantly
larger (paired t test) for bodies compared with nonbodies for
each of the gamma bands (Table 1). The same trend was present
for the beta band, but the body category selectivity became much
weaker than for the gamma bands and reached significance in one
animal only. The alpha bands showed a stronger mean response
to nonbodies compared with bodies, but as for the beta bands, the
difference between the two categories was relatively small (Table
1). For comparison, Table 1 also shows the mean normalized
spiking activity of single units recorded at the same sites as the
LFPs.
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Table 1. Mean normalized responses to bodies and nonbodies for spiking activity
and LFP power

Monkey E (N = 133) Monkey B (N = 66)

Body Nonbody  p Body Nonbody p
Spiking 0.14 0.06 0.0001 0.14 0.08 0.0001
High gamma 0.50 0.40 0.0001 0.49 0.39 0.0001
Middle gamma 0.53 0.42 0.0001 0.47 0.40 0.0001
Low gamma 0.56 0.50 0.0001 0.49 0.46 0.0001
Beta 0.51 0.50 0.09 0.51 0.49 0.003
Alpha 0.52 0.53 0.002 0.49 0.51 0.03

pdenotes thesignificance value of the paired t test between the responses to bodies and nonbodies; N represents the
number of analyzed neurons and sites.

Figure 4 directly compares the normalized single unit spiking
activity with the LFP power in different spectral bands for each of
the 10 stimulus classes for the population of the same recording
sites. In both monkeys, the Pearson correlations between the
mean spiking activity and mean power in the gamma bands were
all >0.92 (p < 0.0002; N = 10 classes), except for a correlation of
0.82 (p < 0.005) between the low-gamma band power and spik-
ing activity in monkey B. However, no significant correlations
between spiking activity and power were present for the beta and
alpha bands (Fig. 4, right), despite a significant, yet completely
different, class-specific modulation of the LFP power in these
lower frequency bands (ANOVA; p < 0.001 for each animal and
band). This pattern of the correlations between spiking activity
and the LFP power across frequency bands (Fig. 4) fits the pres-
ence of significant body category selectivity for both spiking ac-
tivity and gamma power and the weaker or even reversed
selectivity for the lower-frequency bands (Table 1).

Category selectivity of single units

The above data indicate that the mean neuronal activity in the
fMRI defined body patch is greater for bodies compared with
other stimulus classes, including faces. However, based on these
neuronal population analyses one cannot conclude that there is
body category selectivity at the single unit level. In other words,
does each of the neurons within the body patch prefer body im-
ages above images of other classes? Or is there a small pool of
highly selective body cells embedded within a pool of noncate-
gory selective cells? Alternatively, are there many weakly selective
body cells that drive the population response?

To assess this, we computed for each single neuron a BSI that
contrasts the mean net responses to body and nonbody images
(Materials and Methods; Fig. 5A). A BSI larger than zero shows a
preference for bodies with a BSI of 0.33 corresponding to a two-
fold greater net response to bodies compared nonbodies. In a first
conservative analysis, we excluded the body-like sculptures from
the nonbody category. The median BSI with only monkey and
human faces, fruits/vegetables, objects M, and objects H as non-
body classes was 0.47 and 0.25 for monkeys E and B, respectively;
values significantly >0 (Wilcoxon test; p < 0.00005 in each ani-
mal; median across animals, 0.38; mean, 0.33). However, as is
clear from the distribution of the BSI (Fig. 5A; Table 2), both
monkeys showed a considerable variation in the magnitude of the
BSI. Previous studies on face selectivity, using the same sort of
index computed on net responses, used a criterion of 0.33 to
define a face category selective cell (Tsao et al., 2006; Issa and
DiCarlo, 2012). Employing the same criterion, 61 and 48% of the
neurons can be classified as body-selective in monkeys E and B,
respectively (53% across both animals). When the BSI was re-
computed with the sculptures included as nonbodies the median
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Figure 5.  Body category selectivity in the midSTS body patch. 4, Distribution of the BSI of
body-patch single neurons. The values for the two animals are indicated by different gray levels
(darker corresponds to monkey B). The triangles indicate the median BSI of each monkey. The
dotted line marks a BSI of 0.33, corresponding to a twofold greater net response to bodies with
respect to nonbodies. BSI was computed using net responses. B, Distribution of d” (body) of the
same neurons. The same conventions as in A, except that the dotted line represents a threshold
ofd’ = 0.5). The neurons with d’ values significantly different from 0 (p = 0.025, Permutation
test) are hatched.

Table 2. BSI and d’ (body) values computed using net and raw firing rates

BSI (net) BSI (raw) d’ (net) d’ (raw)

Monkey E (N = 134)

Median 0.47 0.25 0.43 0.44

P, 0.08 0.05 0.10 0.11

Pss 0.86 0.42 0.69 0.72

% = Thr 60% 35% 43% 46%
Monkey B (N = 81)

Median 0.25 0.14 0.21 0.21

Pys 0.03 0.01 0.03 0.02

P 0.72 038 0.68 0.74

% = Thr 43% 30% 36% 35%

For each index the median and the 25 ™" and the 75 ™ percentiles (P,5 and P55 ) are shown. The last row (% = Thr)
represents the percentage of neurons having an index greater than or equal to the respective threshold (0.33 for the
BSIand 0.5 for d’). N represents the number of analyzed neurons.

BSIs were similar (0.41 and 0.26 in monkeys E and B, respec-
tively) with 56 and 47% of the neurons classified as body cells.
The body patch was defined by comparing fMRI activations
for the monkey bodies and objects M. Computing a BSI index
with only the net responses to these two classes yielded median
BSIs of 0.45 and 0.42 in monkeys E and B, respectively. Based on
these BSIs, 55 and 54% of the neurons were “monkey body”
selective in E and B, respectively. Thus, using the same contrasts
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for single units and fMRI, approximately half of the neurons
found in the body patch could be classified as body cells using the
conventional criterion and category index.

To compare with previous fMRI-guided studies on face selec-
tivity (Tsao et al., 2006; Freiwald et al., 2009; Freiwald and Tsao,
2010; Issa and DiCarlo, 2012), we computed the BSIs on net
responses. Because such BSIs can be affected (in both directions)
by strong inhibitions to a few stimuli of a class, we recomputed
BSIs using raw responses, i.e., including baseline and ignoring the
distinction between inhibitory and excitatory responses. As
shown in Table 2, median BSIs computed on raw responses were,
as expected, smaller than those computed on net responses but
were still significantly larger than zero in each animal (Wilcoxon
test; p < 0.00005 in each animal; median across animals, 0.19)
with 35% and 30% of the neurons having a BSI larger than 0.33 in
monkeys E and B, respectively.

In addition to BSI we also computed another category selec-
tivity index, d' (body), which takes into account the mean re-
sponses to the contrasting categories as well as the variability of
the responses to the individual images of a category (see Materials
and Methods). The median d’ (body), computed using net re-
sponses, was 0.43 and 0.21 in monkeys E and B, respectively (Fig.
5C; median d’ across animals, 0.35; d's computed on raw re-
sponse produced similar results; Table 2). As expected, the distri-
bution of the d’ (body) was significantly biased toward positive
values (Wilcoxon test; p < 0.00005 in each animal). Assessing the
statistical significance of the d’ (body) for each neuron by a per-
mutation test showed that d’s larger than 0.5 (or smaller than
—0.5) were statistically significant. Taking the criterion of 0.5
(which happens to be the same one used by Ohayon et al. (2012)
who also used d’ in their face selectivity study) to define body
category selectivity, between 35 and 46% of the neurons (depend-
ing on the animal and on whether one computes d’ on raw or net
responses; Table 2) showed a significant body selectivity. Also,
pooled across monkeys, 8% of the body-patch neurons showed a
d' (body) significantly smaller than —0.5 (Fig. 5B), indicating a
significant category selectivity for nonbodies.

Thus, using several category selectivity metrics, we can con-
clude that although the midSTS body patch shows body category
selectivity at the population level, the single neurons that com-
prise this population differ greatly in their degree of body cate-
gory selectivity. Also, independent of the used category selectivity
metric, body category selectivity and the percentage of body cat-
egory selective neurons are lower than that reported for face cat-
egory selectivity in the face patches (Tsao et al., 2006; Issa and
DiCarlo, 2012; Ohayon et al., 2012).

Stimulus selectivity of single units

Figure 6 shows three single neuron examples, whereas the stim-
ulus selectivity of all recorded body-patch neurons is shown in
Figure 7A. Both figures illustrate the variation in category and
stimulus selectivity that was manifest in our sample of body-
patch neurons. Most neurons responded to many stimuli of dif-
ferent classes, including nonbodies (Figs. 6B, 7A). In fact, some
neurons showed on average stronger responses to faces compared
with nonfaces, when computing a conventional FSI (Tsao et al.,
2006) or a d’ (face), which contrasts the mean responses to faces
versus the other images (except for animals and birds because
these images depicted heads as well). The FSI was >0.33 for 16
and 21% of the body-patch neurons recorded in monkeys E and
B, respectively (a twofold greater average response to faces com-
pared with the other stimuli) and 8 and 19% of the neurons in
monkeys E and B, respectively, had a d’ (face) larger than 0.5 (the
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same criterion as Ohayon et al., 2012). A cell with a FSI of 0.98
and a d' (face) of 1.66 is illustrated in Figure 6C. These face
category selective neurons were intermingled with body-selective
neurons within single penetrations. To demonstrate this, we se-
lected neurons that had a FSI >0.33, a d’ (face) > 0.5 and a
twofold stronger response to faces compared with bodies. In the
nine penetrations in which there was at least one recorded neuron
below the selected face-selective neuron, the median FSI and d’
(face) for the face selective neurons was 0.72 and 1.18, respec-
tively, and reversed to a median FSI of —0.44 and a d’ (face) of
—0.33 for the neighboring neuron. The median BSI and d’
(body) of the face selective neurons was —0.50 and —0.57, re-
spectively, which increased significantly for the neighboring neu-
rons (median BSI, 0.73; median d’ (body), 0.31; Mann—Whitney
U'test; p < 0.05). The same reversals of the FSI, d’ (face), BSI, and
d' (body) were present for the 10 penetrations for which there
was a neuron recorded above the face selective one (median FSI,
0.86 vs —0.06; median d’ (face), 1.20 vs —0.04; median BSI,
—0.48 vs 0.23; median d’ (body), —0.57 vs 0.14; Mann—Whitney
U test; p < 0.05). Importantly, this also held for the five penetra-
tions in which a face selective neuron was recorded in between
two recorded neurons (median test on BSI and d’ (body), p <
0.05), showing that face category selective neurons were mixed
with neurons with other stimulus preferences in this body patch.

Figures 6 and 7A illustrate that the neurons in the body patch
responded to only some exemplars of a class. For example, the
neuron shown in Figure 6A responded to a minority of the body
images. This explains its relatively low d’, despite the BSI of 1 (this
neuron also showed excitatory responses to a couple of nonbod-
ies, but these were compensated by the negative net responses for
many nonbody images; its BSI computed on raw responses was
0.63). The marked within-class selectivity was examined for our
population of neurons by ranking the images of a class according
to the elicited net response of each neuron that responded signif-
icantly to at least one of the images of that class. The statistical
significance was assessed by a split-plot ANOVA (stimulus as
between-trial factor and baseline versus stimulus period as re-
peated, within trial factor) for each of the 10 classes and an excit-
atory net response to at least one image of the class was required.
The image ranking was performed with the mean responses ob-
tained in 50% of the trials and the responses of the other 50% of
the trials were then plotted as a function of the image rank. This
avoided an erroneous induction of stimulus selectivity by the
ranking procedure. This ranking analysis yielded evidence of
strong within-class selectivity for all classes in both monkeys (il-
lustrated for six classes in Fig. 7B). In fact, the net normalized
response to the “worst” image of each class (Fig. 7 B, rank 10) was
not significantly larger than zero for each of the 10 stimulus
classes in each animal (Bonferroni corrected Wilcoxon signed
rank test; p > 0.05). Even for this relatively small number of
images (10) per class, the single-unit responses varied within a
large range, being absent for some images of the class. A highly
similar within-class selectivity was also observed when ranking
the stimuli only for those neurons and classes that demonstrated
class-selectivity (a twofold stronger response to the class com-
pared with controls) or only for the class that included the pre-
ferred stimulus (among the 100 stimuli tested) of a neuron. The
strong within-class selectivity was not due to differences in stim-
ulus area, contrast, or aspect ratio. Indeed, the mean normalized
responses did not depend on the differences in these stimulus
parameters between the preferred image of a neuron and the
other images of a class (data not shown).
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Because the preferred stimulus of the
body classes varied among the single neu-
rons, the response averaged across neu-
rons appears similar across the different
bodies (Fig. 7A, Average). The preference
for bodies over other image classes that
emerged at the population level (Figs. 1D,
4) resulted mainly from the pooling of
single neurons with different stimulus
preferences and strong within-body cate-
gory selectivity but that are biased to re-
spond stronger to body compared with
nonbody images. This pooling averaged
out the different stimulus selectivities
within the body category (Fig. 7A). In fact,
despite the high within-class selectivity,
one can classify with a high accuracy (97
and 91% correct in monkeys E and B, re-
spectively) whether an image comes from
a body or an nonbody class by using the
mean responses of the population of
body-patch neurons to a stimulus (Fig.
7A, Average). This was assessed by com-
puting the area under the receiver operat-
ing characteristic curve when comparing
the distribution of the mean responses
(averaged across neurons per monkey) to
the individual body images (N = 40) and
the distribution of the mean responses
to the individual nonbody images (N =
60). Thus, although the single body-patch
neurons were heterogeneous in their se-
lectivity (Fig. 7A), the overall bias to re-
spond stronger to bodies compared with
nonbodies accounts for the body category
selectivity at the population level.

Representation of stimuli in midSTS
body patch

Thus far, we have showed that the overall
response of the midSTS body-patch neu-
rons to bodies was larger than to nonbod-
ies and that individual neurons show a
strong selectivity for body (and other) ex-
emplars. This raises the question of how
the population of midSTS neurons repre-
sents the individual images of the different
classes. To assess this, we computed the

<«

d" (body) computed on net responses are indicated for
each neuron. Insets show the PSTHs of the mean responses
to bodies (green), faces (red), and inanimate objects (in-
cluding sculptures, dark purple) for each neuron (color
code shown below example images). 4, A neuron showing
body category selectivity and strong within body class se-
lectivity. Its BSIand d” (body) computed on raw responses
was 0.63and 0.70, respectively. B, A neuron showing weak
body category selectivity. Its BSI and d" (body) computed
on raw responses was 0.20 and 0.74, respectively. C, A face
category selective neuron. Its BSI and d” (body) computed
on raw responses was —0.79 and —0.89, respectively.
The neuron preferred profiles of human faces.
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Stimulus selectivity of midSTS body-patch neurons. 4, Spiking activity matrices where each row represents the normalized responses of a neuron to each of the 100 stimuli.

Each column corresponds to a stimulus. The stimuli are grouped per class as indicated by the example images. Normalized response strength is indicated by a color code (see colored bar).
Cells are ordered by their BSI, i.e., the cells on top of the matrix are the most body-selective. The mean normalized responses, averaged across neurons, for each stimulus are shown below
the matrices (“average”). The horizontal arrows denote the example neurons and the letters corresponding to the panels of Figure 6. B, Within-category selectivity. Mean normalized
responses to the 10 stimuli within a class, ranked by response strength from best (rank 1) to worst (rank 10). For each neuron, half of the trials were used for ranking the stimuli and the
other half of the trials were used to average the responses. Normalization was performed with respect to the maximum responses across all 100 stimuli tested. Only neurons for which
there was a significant response to at least one of the stimuliin a given class were included for that class, explaining the different number of neurons () for the classes. The ranking was

performed for the six classes indicated by color coded legend.

neural response-based dissimilarities between all possible image
pairs. As a metric of neural-based stimulus dissimilarity we used
the Euclidean distance between the images in a multidimensional
space where the responses of the single neurons defined the di-
mensions (Op de Beeck et al., 2001;De Baene et al., 2007;Kayaert
et al., 2005; see Materials and Methods). Figure 8B shows the
Euclidean distance for all possible stimulus pairs for the neurons
of both monkeys combined. It is obvious that the dissimilarities
are large for pairs of body images (mean Eucledian distance, 5.32;
SEM = 0.02). In particular, this was the case for monkey bodies
(mean distance for pairs of monkey bodies, 5.48; SEM = 0.09),

mammals (5.32; SEM = 0.06) and birds (5.07; SEM = 0.09), but
pairs of human bodies showed lower dissimilarities (mean dis-
tance, 4.54; SEM = 0.06). This may reflect the fact that all human
body images, except one, depicted an upright standing person,
and thus showed less variation in posture than the other body
classes. The mean dissimilarities were the smallest for pairs of
faces (mean dissimilarity, 4.13; SEM = 0.03; human and monkey
faces combined) followed by pairs of inanimate objects (4.42;
SEM = 0.02). The dissimilarities for face versus bodies (5.36;
SEM = 0.01) or inanimate objects versus bodies (5.19; SEM =
0.01) were large but comparable to those for the body pairs.
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Figure 8.

Representation of animate and inanimate object exemplars in the midSTS body patch. 4, Dissimilarity matrix of pairwise Euclidean distances for all stimulus pairs based on

the gray level difference in the corresponding pixels. The stimuli are grouped per class as indicated by the example images. The dissimilarity is indicated by the color scale with red
indicating high dissimilarities. Note that the matrix is symmetric with respect to the zero distance diagonal. B, Dissimilarity matrix of pairwise Euclidean distances for all stimulus pairs
based on the spiking responses of 215 body-patch neurons. The same conventions as in A. C, Hierarchical clustering of the stimuli based on the spiking responses of both monkeys (N =
215 neurons). Vertical stippled lines indicate the boundaries of the major clusters. The stimulus classes are color-coded according to the legend (bottom).

To determine whether these neural dissimilarities merely re-
flect physical image dissimilarities, we computed the Euclidean
distances between the images in the multidimensional space de-
fined by the pixel gray levels, i.e., the input to the visual system
(Fig. 8A). Comparing the two dissimilarity matrices (Fig. 8 A, B),
it is clear that the pixel-based dissimilarities are quite different
from the neural dissimilarities. Indeed, the Spearman rank cor-
relation between the two matrices was very small, rg = 0.03 (n.s.,
permutation test), indicating the neural dissimilarities do not
simply reflect physical image similarities.

We examined the stimulus representation of the body-patch
neurons further by performing a hierarchical cluster analysis of

the dissimilarity matrix of Figure 8B. The advantage of this tech-
nique, compared with direct testing of the similarities in response
patterns between bodies and the other classes, is that it provides
an unbiased description of the similarities among the responses
to the stimuli, irrespectively of their class. The cluster analysis of
the spiking data when both animals were combined showed two
main clusters (Fig. 8C). One cluster contained 44 images of which
39 (97.5%) were bodies (10 monkey bodies, 9 human bodies, 10
mammals, and 10 birds). The percentage of bodies in this cluster
(97.5%) was significantly higher than the 40% expected if bodies
were randomly distributed between the two clusters (binomial
test; p < 0.01). This “body” cluster contained a subcluster con-
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sisting of the nine human bodies, two elongated objects (objects
H), and one vegetable with the same aspect ratio (a vertically
oriented corn). The body cluster also contained one human face,
which is shown in Figure 1A. Interestingly, unlike the other hu-
man face stimuli, this person had long hair, which might appear
as two limbs below the neck. The other, nonbody, cluster di-
verged into two distinct clusters with one consisting entirely of
faces. Note that human and monkey faces, despite the morpho-
logical differences between species, were dispersed within this
face cluster. A similar clustering of bodies versus other images
was also present in the individual data of each animal, but noisier
than when pooling the data across both animals (percentage of
bodies in body cluster, monkey E: 71% with 34/40 bodies in body
cluster; monkey B: 65% with 40/40 bodies in body cluster).

In summary, the pairs of body images showed high within-class
dissimilarities based on spiking responses of single units (Fig. 8B),
which is consistent with the high within-class selectivity of the single
neurons (Fig. 7B). Despite this high selectivity among the different
body exemplars, the population of body-patch neurons clustered
bodies versus nonbodies. This resulted from a combination of the
greater responses for bodies compared with nonbodies (Fig. 1D), the
relatively low dissimilarities for the nonbody image pairs, which
evoked a weaker response on average, and the relatively high dissim-
ilarities for the body—nonbody image pairs.

Because LFPs sum the activity of a population of neurons and
assuming that neighboring neurons can have different prefer-
ences within the body class but still tend to prefer bodies over
other stimulus classes, one would expect that the mean dissimi-
larities for pairs of body images would be smaller than the dis-
similarities for body—nonbody pairs for the LFP power. This was
indeed the case for the high and middle gamma power (Fig. 9):
the mean dissimilarity for the body pairs was 4.53 (SEM = 0.01)
and 4.52 (SEM = 0.01) for the high and middle gamma power,
respectively, which was lower than the mean dissimilarities for
the face-body (4.86; SEM = 0.02 and 4.97; SEM = 0.02) and for
body-inanimate object pairs (4.68; SEM = 0.01 and 4.70; SEM =
0.01). As expected, cluster analysis showed for both these gamma
bands a cluster predominantly containing bodies (39/47, 97.5%;
p < 0.01 and 37/42, 92.5%; p < 0.01 for the high and middle
gamma, respectively). For the low gamma power, the distinction
between bodies and nonbodies was less (mean dissimilarity for
body, body-face, and body-inanimate object pairs was 5.36, 5.47,
and 5.36, respectively; Fig. 9) and the cluster analysis showed a
cluster containing bodies (22/22), but only 55% of the bodies
were represented in that cluster. The clustering of bodies versus
nonbodies was weak (29/46, 72.5%; p < 0.01) and absent (21/44,
52.5%; n.s.) for the alpha and beta bands, respectively.

Classification of bodies versus nonbodies

Because the cluster analysis of the spiking activity showed distinct
clusters of the bodies versus other stimulus classes, it was ex-
pected that one could determine whether a stimulus is a body
from the population response of the midSTS body-patch neu-
rons. This prediction was tested by having a classifier decide
whether an image contains a body, or not, given only the popu-
lation response vector for that stimulus. This population re-
sponse vector consisted of a concatenation of the mean responses
(averaged across trials) of the neurons to that stimulus. For both
monkeys, separately, we trained SVMs on 70% of the stimuli of
each category and tested classification performance on the re-
maining 30%. Hence, we tested explicitly for generalization, a
hallmark of categorization. In both monkeys, the proportion of
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correct classifications for bodies versus nonbodies was high, and
well above chance level (50%; confirmed by permuting the stim-
ulus labels): 90 and 89% correct in monkeys E and B, respectively.
Interestingly, when having the classifier deciding whether a face
or nonface (excluding mammals and birds, which had heads) was
present, the classification scores were also high: 92 and 97% cor-
rect in E and B, respectively. Thus, the population of body-patch
neurons can be used to classify bodies versus nonbodies and, also,
faces versus nonfaces. This led to the question of whether other
stimulus classes can also be classified with the body-patch popu-
lation responses. To answer this question we trained SVMs to
classify an image as belonging to one of the 10 stimulus classes.
The confusion matrices (Fig. 10) show that correct classification
scores for all of the 10 classes were well above chance (Fig. 10,
diagonal; chance level = 10% correct). Interestingly, objects M
and objects H are both object sets, mainly differing in aspect ratio,
and the body-patch neurons could classify these rather well
with little confusion between these two classes (Fig. 10). The differ-
ent classes of the body category (monkey bodies, human bodies,
mammals, and birds) could also be distinguished reliably, except for
the confusion of animals and birds in monkey E (Fig. 10).

Location specificity of stimulus representation in STS

The body-selective location was bordered laterally and medially
by a region in which the activation for monkey bodies was still
stronger compared with the objects M class, but that also showed
stronger activation for monkey faces compared with objects M
(Fig. 11A). It was interesting to assess whether the single unit and
LFP selectivity would change away from the body patch. Thus, in
monkey E, we recorded also single units and LFPs 1 and 3 mm
lateral to the primary target location (Fig. 11 A, position 1). The
class selectivity of the mean single unit and high gamma LFP
power changed when moving more lateral: mean responses to the
headless monkey and human bodies became weaker and the re-
sponses to faces increased (Fig. 11B). This difference among re-
cording locations in class selectivity was highly significant
(ANOVA; interaction stimulus class and recording position, p <
0.0005 for spikes and high gamma power). A cluster analysis of
the most lateral position (Fig. 114, position 3) drew a distinction
between a face cluster, consisting of 17 of the 20 faces, and all
other images, including bodies (Fig. 11C). This contrasts with
position 1, which showed a body cluster that included 34/40 bod-
ies (percentage of body images in cluster, 71%) and was separated
from a cluster of faces and the other objects (Fig. 11C). Thus,
moving laterally away from the body patch, there is a gradual
transition from a representation of mainly bodies to one of faces.

Selectivity for body parts in the midSTS body patch

One could argue that the relatively low BSI and d’ (body) in the
midSTS body patch and the strong within-body class selectivity
results from a tuning to individual body parts rather than to the
whole body. Indeed, it is possible that different body-patch neu-
rons are selective for different body parts, i.e., some neurons
preferring a hand, other neurons a leg and still others a torso, etc.
Because some body parts were partially occluded in some of the
body images of our main stimulus set this could have contributed
to the strong within-body category selectivity that we observed
with this stimulus set. To examine this question, we measured the
responses of neurons in this body patch to segmented body parts
in a control experiment. The body part stimulus set (Fig. 2) con-
sisted of seven classes of male monkey body parts from which
three exemplars were presented at five orientations each. The
midSTS body-patch neurons responded well to these body part
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Figure9. Representation of animate and inanimate object exemplars based on the LFP power in different frequency bands. Left, The dissimilarity matrices of pairwise Euclidean distances for all
stimuli pairs, based on the LFP power in each frequency band (same conventions as in Fig. 8B). Right, The hierarchical clustering of all stimuli (same conventions as in Fig. 8(). The sites from both
monkeys are pooled together resulting in N = 199 sites for the gamma bands and N = 196 sites for the beta and alpha bands. Note that three sites from monkey B had to be excluded from the
analysis of the alpha and beta LFP power due to a close to zero maximal percentage power relative to baseline, which after normalization resulted in very large values, distorting the mean distances.
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images (mean net response to preferred
image (of the 105 body part images) was
55 spikes/s (SEM = 6; N = 52 neurons)),
indicating that isolated body parts are suf-
ficient to elicit sizeable responses from the
midSTS body patch. Because only a small
number of these neurons were also tested
with the whole-body images and these
only with a small number of trials, a
proper within-neuron comparison between
the strengths of the responses for whole
body and body parts stimuli could not be
performed. However, one can compare
the strength of the response to the body
parts in this sample of body-patch neu-
rons to the strength of the response to
whole-body images for the body-patch
neurons that were recorded with the main
stimulus set (same neuronal sample as in
Fig. 7A). This showed that the mean net
response of the latter neuronal sample to
the preferred whole-body image (44
spikes/s; SEM = 3; N = 215 cells) was
comparable to that obtained for the body
parts (n.s., Mann—Whitney U test). All 52
responsive neurons (assessed with a split-
plot ANOVA; see Materials and Methods)
showed highly selective responses to the
body part stimulus set (Fig. 12A), with a
profound selectivity for body part orien-
tation. We quantified the orientation se-
lectivity of each neuron for the body part
exemplar producing the greatest response
by computing a best-worst index:

Rbcst - Rworst
BWI=——F——,
Rbcst

where R, and R, are the net re-
sponses to the best and worst orientations
for a particular exemplar, respectively. Note
that an index of 1 means no response to the
worst orientation. The median best-worst
index for the body part eliciting the best re-
sponse was 0.97 (25™ percentile = 0.86;
75" percentile = 1.08; N = 52), demon-
strating the strong dependence of the re-
sponse on the orientation of a body part.
Figure 12B (top) also shows the Eu-
clidean distances between all the body
part stimulus pairs, based on the re-
sponses of the 52 body-patch neurons.
First, note that there is no evidence of any
clustering of the stimuli according to body
part class, e.g., a clustering of all the im-
ages depicting a hand (also supported by
hierarchical cluster analysis). Thus, these
midSTS body-patch neurons do not ap-
pear to signal body part class per se, but
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top, arrows): a penis and a leg in a grasping pose. This greater

instead show a pronounced selectivity for body part exemplars,  dissimilarity was not due to a greater overall response to these
viewed at specific orientations. Second, inspection of the dissim- ~ images (Fig. 12A, arrows): the mean net response, averaged
ilarity matrix reveals that two images show a marked increasein  across neurons, was 15 and 17 spikes/s for the penis and leg
pairwise dissimilarity relative to many other images (Fig. 12B,  image, respectively, which compares well to the mean net re-



Popivanov et al. ® Single-Unit Stimulus Selectivity in a Body Patch

A © —
TH
o ' T spikes
mm ;
Tu
DINLN R N2 8 H

response strength

Monkey E

[ aama— |
min max
Cc 3

spikes
Linkage Distance

T

BT

DAY L N2 &

Figure 11.  Comparison of the category selectivity between different medial-lateral locations
within the midSTS of monkey E. A, Coronal slice of monkey E's brain, showing the activation for bodies
(blue, contrast; monkey bodies, objects M) and faces (red, contrast; monkey faces, objects M). The
overlapping activations are in purple. Only activations that passed the FWE corrected level of p << 0.05
are shown. The white arrows show recording locations (1, center of midSTS body patch; 2, Tmmmore
lateral than 1; 3, 3 mm more lateral than 1). B, Mean normalized response per class for the spiking
activity and high gamma (y,,) band for each recording location as indicated in A. Only neurons for
which valid LFPs were obtained were included. ¢, Hierarchical dustering of the stimuli based on the
spiking responses of monkey E for the population of neurons recorded at locations 1.and 3 (4). The
stimulus dlasses are color-coded according to the legend shown at the bottom. Nindicates number of
recorded neurons within each of the populations.

sponse for all other images (15 spikes/s; SD = 3). Thus, the higher
dissimilarity for these images reflects greater differences in re-
sponse between these images and the other images within the
neurons. The higher average dissimilarity was strongly orienta-
tion selective, being present only for one of the five orientations
of these body part images (Fig. 12B, top). Interestingly, the most
marked dissimilarity was demonstrated by an upright, vertically
oriented, erect penis that has obvious ethological significance.
Note that this increased dissimilarity was not present for the
other orientations [compare the dissimilarities for the vertical
penis (Fig. 12B, left arrow) with the dissimilarities depicted for
the next vertical line in the dissimilarity matrix of Fig. 12B (top),
which indicates the data for the same image but rotated by 45°].
Finally, note that the pixel-based dissimilarities for the body part
images (Fig. 12B, bottom) reveal a different pattern compared with
the neural-based ones (Fig. 12B, top). Although the Spearman rank
correlation between the two dissimilarity matrices was significantly
different from 0 (p < 0.0001, Permutation test), it was small: r, =
0.17.

Discussion

Both the population spiking activity and LFP gamma power in
the fMRI-defined midSTS body patch was greater for bodies (in-
cluding monkey bodies, human bodies, mammals, and birds)
compared with other objects, which fits the fMRI activation. This
stronger response for bodies was absent in subgamma frequen-
cies, despite the category selective responses for those frequen-
cies. Importantly, the category selectivity at the population level
resulted from averaging responses of a heterogeneous population
of single units. The neurons showed a strong within-category
selectivity, responding to only a small proportion of bodies. De-
spite such strong within-category selectivity at the single unit
level, two distinct clusters, bodies versus nonbodies, were present
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when analyzing the responses at the population level. A classifier
that was trained using the responses to a subset of images was able
to classify untrained images of bodies with high accuracy. Fur-
thermore, the heterogeneous response properties of the neurons
within the body patch allowed accurate classifications of all other
classes, including faces and even artificial objects. In line with the
fMRI data, the category selectivity depended on the location in the
STS. The body-patch neurons showed strong selectivity for individ-
ual body parts of different orientations. Overall, these data suggest
that single units in this fMRI defined midSTS body patch show a
strong selectivity for individual body as well as nonbody images but
with an overall bias toward a stronger response to bodies.

The proportion of body-category selective neurons depended
on the metric used to define category selectivity, ranging from 33
to 53% (data pooled across both monkeys). These proportions
were smaller than those observed for face selective cells in the
neighboring face patches (Tsao etal., 2006, ML/MF 97% based on
FSI; Issa and DiCarlo, 2012, PL 83%, ML 75% based on FSI;
Ohayon et al., 2012, ML 82% based on d'). A low body-category
selectivity can result from neurons responding to other stimuli
than bodies and/or a high within-category selectivity. Indeed,
both these factors contributed to the low body category selectivity
in the body patch. First, only for 67% of the body patch neurons
a body image produced the largest response of the neuron. Sec-
ond, neurons showed a strong within-category selectivity, which
reduces the overall mean response to bodies decreasing the cate-
gory selectivity index. An often neglected issue when assessing
category selectivity is the homogeneity of the stimuli within a
category: the more homogeneous the stimuli within a class are
(e.g., only frontal human faces; Tsao et al., 2006) or only frontal
monkey faces (Issa and DiCarlo, 2012) the stronger the apparent
category selectivity will be. Our body (and face) stimuli were
rather heterogeneous compared with the face stimulus sets used
in previous studies, sampling a broad range of bodies (different
identities and postures). This might have contributed to both the
relatively low category selectivity indices and the strong within-
category selectivity. We argue that such a broader sampling of the
category space provides a more ecologically valid assessment of
the category selectivity of the neurons. Note that in general bodies
can vary in shape and posture much more than faces, possibly
leading to more selective responses within the body patch.

The relatively low category selectivity and the strong within-
category selectivity of the body-patch neurons, combined with
their stronger average response to bodies compared with non-
bodies suggests that these neurons respond to features that hap-
pen to be present more often in images of bodies than of other
objects. In other words, these neurons may not respond to bodies
or body parts per se, but to features present in body images. The
cluster analysis in which a few nonbody images, in particular the
face with the limb-like hair style, were present in the body cluster
suggests that local shape features that occur frequently in body
images play an important role in determining the neural response in
this patch. Note that each of these features need not be shared by all
body images (or orientations), explaining the within-category selec-
tivity. The identification of these features needs further work.

Bell et al. (2011) recorded in a more anterior STS region that
was activated more strongly by body parts compared with faces,
objects, and places. This region may correspond to the anterior
body patch of Popivanov et al. (2012). Bell et al. (2011) reported
that approximately half of the neurons in that anterior body part
selective region responded stronger to body parts compared with
the other three classes. This is less than what we observed in the
present sample of midSTS body-patch neurons (78%), using the
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Figure 12.  Selectivity for body parts. 4, Spiking activity matrix where each row represents
the normalized responses of aneuron to each of the 105 body part stimuli. The horizontal line at
cell number 26 separates the neurons of the two animals (below horizontal line, monkey B).
Each column corresponds to a stimulus. The stimuli were first grouped per body part class, as
indicated by the example images, then by body part exemplar (three exemplars per class) and
subsequently by orientation. Short and long tick marks at the top and bottom of the matrix
indicate the divisions between the three exemplars of a class and between the different classes,
respectively. Normalized response strength is indicated by a color code (see colored bar).
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same liberal criterion for category selectivity as Bell et al. (2011;
BSI on raw responses >0). However, it remains to be seen
whether this is a genuine difference between the two body patches
or instead is due to dismembered body parts being less effective
stimuli, compared with full (headless) bodies, in the anterior
body patch, unlike what we observed in the midSTS body patch.
Future research should compare the stimulus selectivity of the
neurons between the two body patches.

Kiani et al. (2007) found a hierarchical representation of cat-
egories with a major distinction between animate (faces and bod-
ies) and inanimate objects when analyzing the responses of a large
number of neurons recorded at random locations within anterior
IT. This differs from the bodies versus other classes (including
faces) clustering that we observed here for the midSTS body
patch. The clustering that we observed is very likely specific to the
body-selective patches, mainly resulting from the weaker re-
sponses to stimulus classes other than bodies. In fact, at more
lateral locations where responses to faces were at least as promi-
nent as to bodies; faces became distinct from all other classes. The
implication is that the category representation strongly varies
with location within IT. It is possible that the animate versus
inanimate distinction of Kiani et al. (2007) resulted from a ran-
dom sampling over a wide expanse of IT cortex that masked
strong regional differences in the hierarchical representations.

The correlation of the category selectivity between the LFP
gamma power >60 Hz and spiking activity agrees with previous
studies that observed a high correlation of the spiking activity and
power in this band (Liu and Newsome, 2006; Belitski et al., 2008;
Ray et al., 2008; De Baene and Vogels, 2010). Interestingly, the
stronger fMRI activation for bodies compared with other stimu-
lus classes agreed well with the category selectivity of the LFP
gamma power but not with the power at lower frequencies, which
is in line with some studies that observed a positive correlation
between gamma band power and the BOLD response in primates
(Mukamel et al., 2005; Niessing et al., 2005; Magri et al., 2012).

Huth et al. (2012) recently showed smooth gradients of se-
mantic, category selectivity in human cortex with fMRI. Because
of the low spatial resolution of fMRI, it could not be excluded that
the category maps seen in that study appeared smoother than
what is actually the case at a finer spatial scale. However, our data
showing a transition between body-selective and a combination
of face and body-selective population responses (for both spiking
activity and LFP gamma band power) within the STS and the
heterogeneous stimulus selectivity within the body patch sup-
ports the notion of smooth category-selective gradients. Indeed,
the relative proportions of body-selective and face-selective neu-
rons changed smoothly within STS, on a millimeter scale. The
presence of face-selective neurons inside the body patch also
agrees with a previous study demonstrating that face-selective
neurons can be found outside the face patches (Bell et al., 2011).

We showed that the body selectivity seen at the fMRI and
gamma power LFP level originates from averaging highly selec-
tive neurons that are biased, on average, to respond stronger to
bodies than other object classes. This finding has implications for
the interpretation of category-selectivity as measured with fMRI

<«

The mean normalized responses, averaged across neurons, for each stimulus are shown in the bar
below the matrices (average). B, Top, The dissimilarity matrix of pairwise Euclidean distances for all
stimulus pairs, based on the spiking responses of 52 body-patch neurons. Bottom, The dissimilarity
matrix based on the gray level difference in the corresponding pixels. The same conventions are used
as in Figure 8A. The two images that demonstrated a relatively high neural dissimilarity are shown
above the top panel and the arrows indicate their mean response (4) and dissimilarity values (B).
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(Mur et al., 2012; Vul et al., 2012) and LFP studies (Liu et al.,
2009). The category selectivity measured with these techniques
can overestimate the category selectivity that is actually present at
a finer spatial scale simply due to the averaged activity of a large
population of neurons, which may have heterogeneous stimulus
selectivity and strong within-category selectivity.

The present study shows that categorization of superordinate
categories (“bodies” versus “nonbodies”) can be performed quite
accurately based on the responses of a small population of neu-
rons in the midSTS body patch. The heterogeneous but biased
selectivity within the body patch allows both the classification of
bodies versus other categories by a weighted sum of the responses
(as shown by the SVM classification analysis) and the identifica-
tion of bodies by differentiating the responses of different units
within the patch. Responses of the same neuronal population can
also categorize faces versus other objects and even carry informa-
tion about other inanimate object classes. How this rich and di-
verse repertoire of responses eventually relates to behavioral
categorization and identification of bodies and perhaps of other
stimuli, however, will require the application of causal techniques.
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