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Hidden Complexity of Synaptic Receptive Fields in Cat V1
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In the primary visual cortex (V1), Simple and Complex receptive fields (RFs) are usually characterized on the basis of the linearity of the
cell spiking response to stimuli of opposite contrast. Whether or not this classification reflects a functional dichotomy in the synaptic
inputs to Simple and Complex cells is still an open issue. Here we combined intracellular membrane potential recordings in cat V1 with
2D dense noise stimulation to decompose the Simple-like and Complex-like components of the subthreshold RF into a parallel set of
functionally distinct subunits. Results show that both Simple and Complex RFs exhibit a remarkable diversity of excitatory and inhibitory
Complex-like contributions, which differ in orientation and spatial frequency selectivity from the linear RF, even in layer 4 and layer 6
Simple cells. We further show that the diversity of Complex-like contributions recovered at the subthreshold level is expressed in the cell
spiking output. These results demonstrate that the Simple or Complex nature of V1 RFs does not rely on the diversity of Complex-like
components received by the cell from its synaptic afferents but on the imbalance between the weights of the Simple-like and Complex-like
synaptic contributions.

Introduction
Hubel and Wiesel initially distinguished two types of cells in cat
and monkey primary visual cortex (V1) with respect to the prop-
erties of their spiking receptive fields (RFs): Simple cells, which
are selective to the position and contrast polarity of oriented
stimuli; and Complex cells, which are selective to the orientation
of contours but not to their polarity and precise location (Hubel
and Wiesel, 1962, 1968). In terms of RF architecture, Simple RFs
have been mostly described as a single spatiotemporal filter fol-
lowed by a half-rectifying nonlinearity (LN model) (Mancini et
al., 1990; Heeger, 1992; DeAngelis et al., 1993). In contrast, Com-
plex RFs have been classically modeled as two parallel LN
branches, with linear spatiotemporal filters 90° out of phase and
fully rectifying output nonlinearities (energy model) (Adelson
and Bergen, 1985; Watson and Ahumada, 1985).

Many studies have pointed out that a significant proportion of
V1 cells have RF properties intermediate between these Simple and
Complex cell archetypes (Movshon et al., 1978; Emerson et al., 1987;
Szulborski and Palmer, 1990; Baker, 2001). Recently, the spike-
triggered covariance technique (STC), which relies on a principal
component analysis of the spike-triggered ensemble, has been used

in Macaque V1 to show that Simple and Complex discharge fields
cover up multiple Complex-like subunits inconsistent with a strict
dichotomy between Simple and Complex RF architectures (Rust et
al., 2005; Chen et al., 2007). However, a complete description of both
the 2D spatial structure and the temporal dynamics of the Complex-
like subunits is still missing. It also remains largely unknown how the
properties of these RF subunits correlate with the degree of Simple-
ness of the cell RF. Moreover, the issue of the functional diversity of
RF subunits in Simple and Complex cells of cat V1 is still unclear
(Touryan et al., 2002, 2005; Chen et al., 2007).

In the present study, we investigated the selectivity of the
Complex-like components of cat V1 RFs with 2D ternary dense
noise (DN) stimulation. As spike-triggered methods remain lim-
ited by the spike threshold operation to fully explore the func-
tional space covered by the synaptic afferent (Rust et al., 2005),
we measured the spatiotemporal selectivity of Simple-like and
Complex-like RF subunits directly at the subthreshold level. We
show that the Complex-like components of cat V1 cells rely on a
large diversity of stimulus feature selectivity, regardless of the
Simpleness of the cell RF. In both Simple and Complex cells, we
found excitatory and inhibitory Complex-like subunits covering
a large spectrum of orientation and spatial frequency tuning.
Furthermore, we show that this diversity of feature selectivity
measured at the subthreshold level is expressed in the cell spiking
output. These results demonstrate quantitatively that the Simple
or Complex nature of RFs in cat V1 does not rely on the diversity
of Complex-like components received by the cell from its affer-
ents but on the imbalance between the weights of the Simple-like
and Complex-like synaptic contributions.

Materials and Methods
Electrophysiology. Data presented here were obtained from area 17 of anesthe-
tized(alfatesin,3mg/kg/h)andparalyzed(pancuroniumbromide,0.2mg/kg/h)
cats of either sex, according to the American Physiological Society’s Guiding
Principles in the Care and Use of Animals. Animals used in these experiments

Received Jan. 30, 2013; revised Feb. 28, 2014; accepted March 5, 2014.
Author contributions: J.F., C.M., Z.F.K., and Y.F. designed research; J.F., C.M., M.L., O.M., and K.S. performed

research; J.F. analyzed data; J.F., C.M., M.L., and Y.F. wrote the paper.
This work was supported by Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche

(Natstats and V1-Complex), and EC Grants BrainScales FP7-2010-IST-FETPI 269921 and Brain-i-nets FP7-2009-ICT-
FET 243914. K.S. and Z.F.K. were supported by National Neuroscience Program (NAP) to Z.F.K. We thank Gérard
Sadoc for invaluable technical assistance in developing stimulation software and kernel analysis library tools and
Andrew Davison for comments and suggestions on the manuscript.

The authors declare no competing financial interests.
Correspondence should be addressed to either Dr. Julien Fournier or Dr. Yves Frégnac, Unité de Neurosci-
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have been bred in the Central Centre National de la Recherche Scientifique An-
imal Care at Gif-sur-Yvette (French Agriculture Ministry Authorization B91–
272-105) under the required veterinary and National Ethical Committee
supervision. Intracellular electrodes were made from thick wall borosilicate pi-
pettes filled with 2 M potassium methyl sulfate and 4 mM KCl. Electrode resis-
tances ranged between 60 and 90 M�. Recordings were performed using an
Axoclamp 2A amplifier. Two cells of our population were labeled with biocytin,
and their axonal and dendritic arborizations were reconstructed.

Visual stimuli. Visual stimuli were generated using in-house software
(Elphy, Gerard Sadoc, UNIC-Centre National de la Recherche Scienti-
fique) and presented on a �-corrected monitor with a refresh rate of 150
Hz and a background luminance of 12 cd � m �2. The ON and OFF re-
gions of the RF were first characterized with sparse noise stimuli consist-
ing of nonoverlapping white (23 cd � m �2) or black (1 cd � m �2) squares
presented one at a time. Cells were then stimulated by a 2D ternary DN,
which consisted of random sequences of 10 � 10 (15 � 15 for one cell)
nonoverlapping squares, which could be either white (23 cd � m �2) or
black (1 cd � m �2), or gray (12 cd � m �2) with equal probability. The
stimulus refresh rate ranged from 30 to 75 Hz. To maximize the size of
the stimulus dataset, the seed used for initializing the random process
was changed for each sequence.

RF characterization. The Simple or Complex nature of the cell RF was
estimated from the spatial antagonism between ON and OFF subregions
mapped with sparse noise stimuli, using the Pearson’s correlation coefficient
between ON and OFF responses at time of maximal response (�(ON,OFF))
(Priebe et al., 2004; Martinez et al., 2005; Mata and Ringach, 2005). This
measure was further scaled to a 0–1 range so that the index tended to 0 for
Complex RFs and to 1 for Simple RFs:

RF Simpleness � 0.5 � (1 � �(ON,OFF)) (1)

This index was computed on ON and OFF spiking responses for the
majority of the cells (n � 27 of 38) or at the subthreshold level (n � 11 of
38) when the number of spikes was insufficient to compute a reliable RF
estimate. Cells were considered as Simple or Complex when their RF
Simpleness was �0.5 or �0.5, respectively. The results presented in this
study were globally unchanged if we considered for all cells the correla-
tion index computed from subthreshold ON and OFF responses: only
one cell that was classified as Simple from its spiking response appeared
as Complex at the Vm level. The RF Simpleness, defined as in Equation 1,
was highly correlated with other classical indices, such as the discreteness
index (Dean and Tolhurst, 1983) (r � 0.90; p � 10 �11; slope � 0.93;
intercept � 0.02) or the segregation index (Van Hooser et al., 2013) (r �
0.89; p � 10 �11; slope � 0.85; intercept � 0.22), and our results were
largely insensitive to the exact metric used to classify RFs.

To further characterize in detail the functional properties of the
Simple-like and Complex-like components of the RF, we estimated the
first- and second-order Volterra kernels from the subthreshold response
to 2D DN, assuming a current-based model of the cell membrane. The
estimated kernels were then represented as a bank of parallel LN
branches, based on the eigenvectors of the second-order kernel (Mar-
marelis, 1989; Westwick and Kearney, 2003). In the following sections of
Materials and Methods, we first present the theoretical background for
obtaining the bank of filters from the estimated Volterra kernels and then
describe how these mathematical tools were used in practice to recover
the filter bank of the subthreshold RF.

From Volterra kernel expansion to filter bank representation: back-
ground and theory. The selectivity of a visual neuron to the first- and
second-order correlations of a stimulus can be estimated by fitting the
cell response (R(t)) with the sum of the contributions of the first- and
second-order Volterra kernels, which correspond to weighting func-
tions in the first and second-order stimulus space, respectively:

R�t	 � h0 � �
x,y,�

h1st �x,y,�	 � S�x,y,t � �	 �

�
x1,y1,�1

�
x2,y2,�2

h2nd�x1,y1,�1; x2,y2,�2	 � S�x1,y1,,t � �1	 � S�x2,y2,,t � �2	

(2)

which can be reformulated as a matrix product:

R�t	 � h0 � S�t	
 � h1st � S�t	
 � h2nd � S�t	

where S(t) is the stimulus input vector at time t, and h0, h1st, and h2nd

correspond to the zero-, first-, and second-order Volterra kernels,
respectively.

In the present study, we estimated the first- and second-order Volterra
kernels from V1 cell subthreshold responses evoked by 2D DN stimuli.
Before detailing practically how Equation 2 was solved (see Filter bank
decomposition of V1 subthreshold responses), we first explain here how
the estimated Volterra kernels were represented as a bank of parallel
filters. Because of the high dimensionality of the DN stimulus, the esti-
mated h2nd kernel is not the most optimal way to visualize and quantify
the selectivity of the cell to the second-order correlations of the stimulus.
One convenient alternative is to reexpress the estimated second-order
kernel as an orthonormal basis of eigenvectors (Westwick and Kearney,
2003; Marmarelis, 2004). By definition, this set of eigenvectors respects
the following equation:

h2nd � B � � � B� (3)

where B is the matrix containing the eigenvectors in its columns and � is
a diagonal matrix of eigenvalues, which indicate the contributions of
each eigenvector to h2nd.

Therefore, by replacing h2nd in Equation 2, we obtain:

R�t	 � h0 � S�t	
 � h1st � S�t	
 � B � � � B� � S�t	 (4)

which can be developed as follows:

R�t	 � h0 � �
x,y,�

h1st�x,y,�	 � S�x,y,t � �	 �

�
k
�	2,k � ��

x,y,�
h2,k�x,y,�	 � S�x,y,t � �	�2� (5)

where h2.k are the eigenvectors of h2nd and 	k are their respective
eigenvalues.

The eigenvector decomposition of h2nd thus operates a change of co-
ordinates, which allows reformulating the second-order Volterra kernel
of the RF as a parallel set of first-order-dimensioned filters h2.k (eigen-
vectors) whose outputs are squared and weighted with specific coeffi-
cients (eigenvalues).

Although the eigenvalues computed in the eigenvector expansion de-
fine the relative weight of each eigenvector contribution to the cell re-
sponse, they are not indicative of their significance. In the present study,
we used the same approach as described by Rust et al. (2005) and used
bootstrapping to identify the eigenvectors whose contribution to the h2nd

variance was above chance level ( p � 0.05). More precisely, the estimated
h0 and h1st contributions (the first terms of Eq. 5) were subtracted from the
cell response. The residual response was then randomly time shifted relative
to the stimulus sequence, h2nd was estimated, and its eigenvalues were deter-
mined. By repeating this procedure 300 times, we obtained the distribution
of eigenvalues expected when the stimulus and the response are not corre-
lated. If the largest (or smallest) eigenvalue of h2nd was not in the confidence
interval of this distribution, we concluded that the corresponding eigenvec-
tor contributed significantly to the second-order kernel output. This eigen-
vector contribution was then subtracted from the response, and we assessed
whether the next largest (or smallest) eigenvalue contributed significantly to
the rest of the response.

The selected significant eigenvectors h2.k correspond to a minimal set
of orthogonal vectors, which describe entirely the functional space cov-
ered by the significant components of the second-order kernel. Still, it is
not unique, and any linear combination of these eigenvectors would be
equivalent provided it covers the same functional space. It is noteworthy
that, although the eigenvectors are orthogonal, this constraint can be
achieved in many different ways along the spatial and temporal dimen-
sions; in particular, there is no constraint imposing orthogonality of the
eigenvectors in the orientation or the spatial phase domain: these special
cases of spatial quadrature simply reflect that the second-order kernel
contains distinct components selective to different ranges of orientation
or spatial phase, and which can be reexpressed conveniently by a linear
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sum of two orthogonal functional axis spanning the appropriate domain
of selectivity. Similarly, because of the orthogonality constraint, the ex-
citatory or inhibitory nature of the recovered eigenvectors cannot be
directly interpreted as purely excitatory or inhibitory inputs. However,
the sign of a given eigenvalue is indicative of the net excitatory/inhibitory
balance along the stimulus feature for which the eigenvector is selective.

This method, originally described by Marmarelis (1989) (see also
(Westwick and Kearney, 2003; Marmarelis, 2004) as the Principal Dy-
namic Mode method is virtually equivalent to the principal component
analysis of the covariance matrix performed in spike-triggered covariance
methods (Touryan et al., 2002; Rust et al., 2005; Schwartz et al., 2006), except
that the second-order Volterra kernel is estimated by a least-squares method
rather than by reverse correlation. Moreover, for the purpose of determining
subthreshold RF subunits, the first- and second-order kernels were interpo-
lated at �1 ms resolution, to allow the estimation of the time constant pa-
rameter in the current-based model used to estimate the subthreshold filter
bank (see Filter bank decomposition of V1 subthreshold responses). In prac-
tice, this interpolation is similar to classical peristimulus triggered averaging
methods and relatively straightforward: by considering that every single
frame of the stimulus sequence consists of one single 1 ms impulse in an
interstimulus interval and is zero elsewhere, solving Equation 2 is indeed
equivalent to solve independently the following set of equations:

for i � 1:T

Ri�t	 � h0 � S1
�t	 � h1st
i � S1
�t	 � h2nd

i � S1�t	 (6)

where T correspond to the number of 1 ms time bins in the interstimulus
interval, S1(t) corresponds to the stimulus impulses, and Ri(t) corre-
sponds to the response down-sampled at the stimulus frequency by tak-
ing the value at the ith 1 ms time bin. The estimated h1st

i and h2nd
i thus

give the value of the first- and second-order kernels at successive time
bins of the interstimulus interval. The eigenvectors of the second-order
kernel were obtained by concatenation of the eigenvectors of the succes-
sive h2nd

i kernels, multiplied by their respective eigenvalue. The resulting
orthogonal vectors were then normalized to form an orthonormal eigen-
vector basis of the estimated h2nd kernel.

Filter bank decomposition of V1 subthreshold responses. As the present
study addresses the issue of the selectivity of the second-order RF com-
ponents at the subthreshold level, we searched for an optimal way to
apply the filter bank decomposition method described above to intracel-
lular responses. One issue is that the filter bank recovered directly from
the membrane potential response (by equating R(t) with Vm(t) in Eq. 2)
is unlikely to match the functional properties of the synaptic inputs be-
cause the latter are filtered by the membrane time constant (Pillow and
Simoncelli, 2003). To take into account the membrane filtering of the
filter bank components, we reformulated the Volterra kernel expansion
considering the following current-based model of the cell response:

�mb �
dVm

dt
�t	 � Vsyn�t	 � �Vm�t	 � Vrest) (7)

in which Vsyn corresponds to the synaptic component of the cell response
(Vsyn � Isyn � Rmb), Vrest corresponds to the resting potential, and �mb

corresponds to the membrane time constant. After replacing Vsyn by the
second-order Volterra expansion formulated in Equation 2, Equation 7
becomes:

Vm�t	 � �mb �
dVm

dt
�t	 � h0 � �

x,y,�
h1st�x,y,�	 � S�x,y,t � �	 �

�
x1,y1,�1

�
x2y2�2

h2nd�x1, y1, �1; x2, y2, �2	 � S�x1, y1, t � �1	

� S�x2, y2, t � �2	 (8)

with h0 corresponding to Vrest and the outputs of h1st and h2nd corre-
sponding to the evoked synaptic component Vsyn.

Practically, the derivative of the membrane potential (dVm/dt) was
estimated from the Fourier transform of the membrane potential multi-
plied by e�2i
f. Vm and dVm/dt were low-pass filtered at 75 Hz and resa-

mpled with 1 ms resolution. When necessary, we restricted spatially and
temporally the stimulus positions over which we estimated the second-
order kernel parameters, to keep a ratio of at least 1:5 between the num-
ber of kernel parameters and the number of data points. Equation 8 was
then solved for different presumed values of time constant �mb, using the
Cholesky factorization implemented by the fast orthogonal algorithm of
Korenberg (1988). We thus obtained a collection of Volterra kernel esti-
mates (h1st

�mb and h2nd
�mb ), each corresponding to one particular assumption

of the membrane time constant (�mb). The eigenvectors of the second-
order kernel estimates were calculated, the significant eigenvalues were
identified ( p � 0.05, see above), and we reconstructed the Volterra ker-
nel output Vsyn

�mb according to Equation 5, considering only the eigenvec-
tors that were significant. The reconstructed membrane voltage response
Vm

�mb corresponding to each assumption of time constant was then calcu-
lated by convolution with the membrane time constant:

V̂m
�mb�t	 � h0 � �

t

e�

t


�*mb � V̂syn
�mb (t � t
) (9)

We then measured the goodness-of-fit as the percentage of variance ex-
plained by each reconstructed membrane voltage V̂m

�mb and identified the
time constant value that gave the best fit (�*mb). The h1st and h2nd kernels
estimated with this assumption of time constant were selected as the best
current-based estimate of the RF. Eventually, the RF filter bank was defined
as the set of subunits corresponding to the first-order kernel h1st and the
collection of significant eigenvectors h2.k of the second-order kernel.

Validation of filter bank decomposition on simulated RFs. To validate
our approach, we simulated current-based second-order RF models con-
sisting of multiple LN branches (Fig. 1A), with one filter contributing
linearly to the response (E0) and several filters with positive or negative
square output nonlinearities (E1, E2, I1,I2). The filter bank output vsyn

was transformed into membrane voltage fluctuations according to a
current-based process (Eq. 7). The simulated response to DN stimulation
was fitted with the subthreshold filter bank estimation method described
above. The estimated filter bank was compared with the filter bank ex-
pected from the RF model parameters: the estimated Simple-like subunit h1st

was compared with the filter of the model whose output contributed linearly
to the response �h1st

model � E0	; the estimated Complex-like subunits h2.k were
compared with the eigenvectors of the expected second-order kernel �h2nd

model),
computed from the filters of the model whose linear outputs were fully
rectifying (Westwick and Kearney, 2003):

h2nd
model � �

k�1,2
Ek � Ek


 � �
k�1,2

Ik � Ik

 (10)

The estimated filter bank perfectly recovered the expected RF subunits
and their relative weights (eigenvalues) (current-based estimate, Fig. 1B)
and the estimated optimal time constant value (Fig. 1C) always recovered
exactly the time constant used in the simulation (Fig. 1D). The success of
this current-based RF estimation method relies on the reduction of di-
mensionality performed before assessing the goodness-of-fit, when se-
lecting the significant eigenvectors to approximate the output of the
second-order kernel: if this step is omitted and the full second-order
kernel is used to reconstruct the response, no optimal solution appears
over the set of assumed time constant values (Fig. 1C, gray line). Filter
banks were also estimated from these same simulated RFs with a direct
Vm-based method, by neglecting the membrane filtering in the Volterra
kernel expansion (i.e., by equating R(t) with Vm(t) in Eq. 2; Vm-based
estimate, Figure 1B). In this case, the recovered filter bank did not match
the RF subunits expected from the model: their temporal profiles were
altered, their relative weights were misestimated, and additional spurious
components appeared �hexc

2.3 and hexc
2.4; Fig. 1B	.

Filter bank decomposition of V1 spiking responses. Spike times were
recorded by detecting the crossing of the membrane voltage with a �30
mV threshold. We then selected cells for which we had at least 25 times
more spikes than stimulus dimensions (n � 12 of 38) for estimation of
their spiking filter bank. The recorded spike train was down-sampled to
the stimulus frequency, and the zero-, first-, and second-order Volterra
kernels (h0, h1st, and h2nd, respectively) were estimated by fitting Equa-
tion 2 to the spiking response. The significant eigenvectors of the spiking
second-order kernel (h2nd) were then identified by bootstrapping ( p �
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0.05; see above), and the filter bank was defined as the collection of filters
consisting of the normalized first-order kernel h1st, and the collection of
significant eigenvectors h2.k of the second-order kernel. This method is
equivalent to the classical spike-triggered covariance technique used in
earlier studies (Touryan et al., 2002, 2005) because the covariance matrix
estimated in STC methods is closely related to the second-order kernel
estimated by cross-correlating the stimulus with the spike train (Mar-
marelis, 2004). For the sake of comparison, we computed the spike-
triggered ensemble and estimated the spike-triggered average (STA) and
the significant eigenvectors of the spike-triggered covariance matrix, as
described previously (Rust et al., 2005; Schwartz et al., 2006) (data not
shown). Compared with the Volterra kernel approach used in the present
study, the STA/STC technique led to very similar results: across these 12
cells, the RF subunits recovered with both approaches were highly cor-
related (average correlation value: 0.91), and we found almost the same
number of second-order components with the STA/STC approach (n �
28) than with the Volterra approach (n � 31).

Measures of RF subunit weights. To avoid misestimating the RF sub-
units weights due to overfitting of the response by the estimated filters,
the weighting coefficients of the h1st and h2.k subunits were fitted to a set
of data, which had not been used for kernel estimation. Because we had
only single-trial data, this fitting dataset was constructed as follows: we
estimated the filter bank on 95% of the total recording length, recon-
structed the output of the estimated filters for the remaining 5%, and
repeated this procedure until we completed the reconstruction of the full
single-trial response. The weighting coefficients of the filter bank sub-
units were then estimated by fitting the following equation to the re-
corded response Vm(t):

Vm�t	 � h0 � �1st � V� m
1st�t	 � �

k
�2.k � V� m

2.k�t	 (11)

where V� m
1st �t	 and V� m

2.k are the reconstructed outputs of the filter bank
subunits, filtered by the estimated membrane time constant �mb*:

V� m
1st�t	 � �

t

e�

t


�*mb � ��
x,y,�

h�1st�x,y,�	 � S�x,y,t � t
 � �	�
(12)

V� m
2.k�t	 � �

t

e�

t


�*mb � ��
x,y,�

h2.k�x,y,�	 � S�x,y,t � t
 � �	�2

(13)

where h1st denotes the first-order kernel normalized to unity Euclidian
norm.

The relative weight of each eigenvector h2.k (Complex-like subunit
relative weight) was defined by normalization with the weight of the
first-order kernel h1st:

Complex-like subunit relative weight �
�� �2.k �

�1st
(14)

where ��2.k� denotes the absolute value of the coefficient.
The balance between the inhibitory and excitatory components of the

filter bank was defined as follows:

“inhibitory-excitatory” balance �

����inh
2.k�

����inh
2.k�� ����exc

2.k�
(15)

Figure 1. Validation of the filter bank decomposition method. A, Architecture of the simulated second-order RF models. The DN stimulus was passed through a set of gabor-like linear filters with
separable spatial (XY) and temporal (time) profiles. The linear outputs were combined nonlinearly such that E0 contributes linearly to the filter bank output (vsyn) whereas Ek and Ik outputs are
rectified with positive or negative square functions, respectively. The filter bank output vsyn was then transformed into membrane voltage fluctuations according to a current-based process with a
membrane time constant �mb. B, Green represents eigenvalues and filter bank expected from the RF model simulated in A. The expected linear filter h1st corresponds to E0; the expected second-order
filters h2.k correspond to the eigenvectors of the expected second-order kernel, computed from E1, E2, I1, and I2 (see Materials and Methods and Eq. 10). Black represents eigenvalues and filter bank
recovered from the simulated response with our current-based RF estimation method (current-based estimate). Gray represents eigenvalues and filter bank recovered from the simulated response when the
membrane filtering is neglected (i.e., considering R(t)�Vm(t) in Eq. 2, Vm-based estimates). C, Goodness-of-fit measured as the percentage of variance of the simulated response explained by the current-based
RFs estimated for different assumptions of time constant value (i.e., for different values of�mb in Eq. 8, tested time constant). Black line indicates the percentage of explained variance obtained when considering
only the significant eigenvectors of the second-order Volterra kernel estimates. The estimated time constant corresponds to the optimal time constant in the least-squares sense. The first- and second-order
Volterra kernels estimated with this time constant value (B, black) are considered as the best current-based estimate of the Volterra kernels of the RF. Gray line indicates the percentage of explained variance
obtained when considering the output of the full second-order Volterra kernel estimates. D, Comparison of the membrane time constant used in the simulation (Simulated time constant) with the optimal time
constant value (Estimated time constant), recovered with our current-based RF estimation method.
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Predictive correlation. The ability of each filter bank to predict the
subthreshold response to DN (Predictive correlation) was quantified by
the Pearson’s correlation coefficient between the reconstructed filter

bank output �V̂m � h0 � �1st � V� m
1st�t	 � �k�2.k � V� m

2.k�t	� and the

recorded response (Vm), considering a set of single-trial data which had
not been used for kernel estimation (same dataset as the one used to
estimate the subunit weights, see above).

The ability of the filters h2.k to predict the second-order components of
the response (Second-order predictive correlation) was measured as the
Pearson’s correlation coefficient between the Vm fluctuations recon-
structed from the h2.k filters (V̂m

2nd�t	 � �k �2.k � V� m
2.k�t	) and the com-

ponents of the recorded response, which remained to be explained after
the zero- and first-order kernel contributions were removed
(Vm

2nd�t	 � Vm�t	 � �h0 � �1st � V� m
1st�t		).

STA of subthreshold filter bank components. The correlation (STA) be-
tween the recorded spike train (Spike(t)) and the estimated subthreshold
filter bank components was estimated by multidimensional linear regres-
sion, fitting the following equation for different time lags �:

Spike(t) � (STA1st(�) � V� m
1st�t � �	) �

�
k

�STA2.k��	 � V� m
2.k�t � �		 � b (16)

where V� m
1stand V� m

2.k correspond to the reconstructed outputs of the sub-
threshold RF subunits, filtered by the estimated membrane time constant
(i.e., the unweighted Vm contribution of each RF subunit; see Eqs. 12 and
13, respectively) and b is a constant parameter. To avoid overfitting, the
STAs were estimated from a dataset of single-trial responses, which had
not been used for the kernel estimation (same fitting dataset as described
above). Only cells that showed at least 50 times more spikes than the
number of subthreshold subunits were included in this analysis (n � 24).

The estimated STA1st and STA2.k correspond to the cross-correlation
between the recorded spike train and the stimulus projected onto the set
of RF subunits identified at the subthreshold level, filtered by the esti-
mated membrane time constant. They are equivalent to spike-triggered
averages and indicate the selectivity of the spike response to the compo-
nents of the stimulus matching the feature selectivity of the subthreshold
RF subunits. The amplitudes of the STAs at zero time lag (i.e., STAx(0))
were measured as indicators of the weight of each subunit in the cell
spiking response. The relative weights of the Complex-like subunits
(STA2.k) were then defined by normalization with the weight of the first-
order subunit (STA1st):

Complex-like subunit relative weight (STA) �
�� STA2.k(0) �

STA1st(0)

(17)

The statistical significance of the contribution of each RF subunit to the
spiking response was measured by comparing the cross-correlation value
estimated at zero time lag STAx(0) to the distribution of cross-correlation
values recovered at long correlation delays ( p � 0.01).

Tuning properties of RF subunits. The tuning properties of the esti-
mated RF subunits were quantified from their 2D spatial power spectrum
at time of maximal response: the preferred orientation and spatial fre-
quency were deduced from the position of the maximum in the spatial
power spectrum; the orientation tuning curve was measured at best spa-
tial frequency and fitted by the sum of two von Mises distributions,
forced to be at 90° one of the other; the half-width at half-height
(HWHH) was measured from the fitted curve. Filters were considered to
have similar orientation and spatial frequency preferences when they
differed by �30 o and 0.5 octave, respectively. Their preferred spatial
phases were then measured from the phase of the 2D Fourier transform
at optimal orientation and spatial frequency. The selectivity of the excit-
atory and inhibitory RF subunits was compared using the HWHH and
the preferred spatial frequency measured in the excitatory and inhibitory
pooled power spectra. The excitatory and inhibitory pooled power spec-
tra were calculated for each filter bank as the sum of the power spectra of

the excitatory and inhibitory subunits, respectively, weighted by the co-
efficients of the subunits (�2.k).

Spatiotemporal envelope of RF subunits. The significance of the filter
bank subunits in each spatiotemporal position (z-score) was estimated
by bootstrapping, using the SD of the filter values measured over the
collection of h1st and h2.k estimated when the response was time shifted
relative to the stimulus sequence. Areas defined by contours delimiting
99% significant regions (z-score � 2.33) were plotted as a function of
time for each filter of the bank. The maximal spatial extent of these
contours (measured by their apparent visual diameter expressed in de-
grees of solid angle) as well as the timing of this maximum (peak latency)
were measured for each filter of the bank. The onset latency was derived
from the time derivative of the filter spatial extent: we defined a size
threshold corresponding to half of the maximal spatial extent and
went backwards in time until the derivative of the filter size fell to
�10% of the derivative calculated at half-amplitude, for five contin-
uous time steps (5 ms).

Results
A total of 38 cells were recorded intracellularly in the primary
visual cortex (V1) of the anesthetized cat. The Simple or Complex
nature of their RF (Simpleness) was estimated from the spatial
antagonism between ON and OFF subregions mapped with
sparse noise stimuli (Priebe et al., 2004) (see Materials and Meth-
ods). We then investigated the selectivity of the Simple-like and
Complex-like components of both Simple and Complex cell RFs
from synaptic responses evoked by 2D ternary DN. We first fo-
cused our analysis on the RF components estimated at the sub-
threshold level and further assessed their contribution to the cell
spiking response.

Recovering the Simple-like and Complex-like RF subunits at
the subthreshold level
The decomposition of the sensory response into kernel series
provides a systematic method to identify the linear and nonlinear
components of RFs. In the present study, we estimated the first-
and second-order Volterra kernels of V1 subthreshold RFs from
DN responses (Fig. 2A) with a least-squares method. In this Vol-
terra expansion, the first-order kernel h1st quantifies the linear
components of the response, which are evoked along individual
stimulus positions (Fig. 2B). It reveals the stimulus feature for
which the cell receives net excitatory and inhibitory contribu-
tions in a push-pull arrangement and can be considered as the
Simple-like RF component in the strict sense. In contrast, the
second-order kernel h2nd measures the nonlinear components of
the response selective to pairwise correlations between stimulus
positions (Fig. 2B). It can be considered as the Complex-like
component of the RF: the diagonal elements of the second-order
kernel (h2Diag, Fig. 2B) correspond to contributions that are in-
sensitive to the polarity of the contrast along individual positions
of the stimulus, whereas the off-diagonal terms provide informa-
tion on the stimulus features to which these polarity-invariant
components are selective.

Because of the high dimensionality of the second-order space
associated with 2D DN stimuli, the spatiotemporal selectivity of
the Complex-like RF components is not easily readable from the
structure of the second-order kernel. We thus searched for a
more efficient and parsimonious representation of the second-
order kernel and opted for a decomposition method similar to
the principal component analysis of the spike-triggered covari-
ance matrix described in other studies (Touryan et al., 2002; Rust
et al., 2005). Practically, after the Volterra kernels were estimated,
we computed the eigenvectors of the second-order kernel and
identified those with eigenvalues above chance level (Fig. 2C, left;
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see Materials and Methods). This set of significant eigenvectors
corresponds to an orthonormal basis of linear filters (h2.k), di-
mensioned as the first-order kernel, which, by definition, ac-
count for the significant component of the second-order kernel
provided a quadratic transformation of their linear output (Fig.
2C, right; see Materials and Methods). The second-order kernel
can thus be reformulated as a set of eigenvectors whose linear
outputs are fully rectified and weighted with specific coeffi-
cients (eigenvalues). The excitatory or inhibitory nature of the
eigenvector contribution is defined by the sign of the weight-
ing coefficient (which determine the sign of the square output
function).

Eventually, the RF is thus represented as a parallel bank of
multiple LN input branches composed of one Simple-like sub-
unit h1st corresponding to the first-order kernel and a set of
Complex-like subunits h2.k corresponding to the significant
eigenvectors of the second-order kernel (Fig. 2D). This filter bank
decomposition of subthreshold RFs is virtually equivalent to the
spike-triggered covariance technique (Touryan et al., 2002; Rust
et al., 2005), except that the second-order nonlinearities of the RF
are initially estimated by a least-squares method rather than by
reverse correlation. Moreover, to account for the membrane fil-
tering of the synaptic inputs, we used a more realistic current-
based model of the cell membrane under the assumption that the
filter bank output is converted into membrane voltage fluctua-
tions through a passive leak process (see Materials and Methods;
Eq. 7). The membrane time constant parameter was estimated in
the least-squares sense, concomitantly with the kernels coeffi-
cients (see Materials and Methods). For all cells, we found an
optimal time constant value that best explained the response (Fig.
2E). Over our cell population, the estimated time constant values
ranged from 5 to 27 ms (average � 14 ms; Fig. 2F). Although
these values fit well with the range of membrane time constants
measured at rest, in vivo in V1 cells (Monier et al., 2008), they
should not be taken as an accurate estimate of the membrane
time constant of the cell under DN stimulation: they only corre-
spond to an optimal approximation of the membrane time con-
stant, assuming that the evoked membrane voltage fluctuations
result from a current-based RF. Still, simulations of RF models
showed that this time constant parameter reduces the spurious
effect of the membrane filtering on the selectivity and the relative
weights of the estimated RF subunits (Fig. 1; see Materials and
Methods). Over our cell population, this current-based decom-
position method always provided a better fit of the evoked re-
sponse (in the least-squares sense) than a more straightforward
Vm-based method neglecting the filtering of the synaptic inputs
by the cell membrane (data not shown).

Subthreshold subunits of Simple and Complex V1 RFs
Figure 3 shows the spatiotemporal profiles of the Simple-like and
Complex-like RF subunits recovered from the subthreshold re-
sponses of two Complex cells (Fig. 3A; RF Simpleness: cell 1, 0.35;
cell 2, 0.17). The Complex-like RF subunits are mostly shaped as
typical Simple RFs, with several subfields of alternating polarities,

Figure 2. Filter bank decomposition of subthreshold RFs. A, Ternary DN stimulus and single-
trial intracellular response (cell 2). The period of visual stimulation is indicated by the horizontal
black line. Spike amplitudes have been cut off at �30 mV. B, Left, First-order kernel estimate
(h1st, cell 2). Middle, Second-order Volterra kernel estimate (h2nd, cell 2). Nonlinear contribu-
tions evoked by pairwise combinations of stimulus dimensions correspond to the intersections
between rows and columns in the second-order kernel. Right, Diagonal of the second-order
kernel (h2Diag). C, Left, Distribution of eigenvalues obtained from the eigenvector expansion of
the h2nd kernel (cell 2) (circled symbols represent identified significant eigenvalues; see Mate-
rials and Methods). The sign of the eigenvalue indicates the excitatory (exc) or inhibitory (inh)
impact of the contributions conveyed by the corresponding eigenvector. Middle, Each eigen-
vector (h2.k) corresponds to a linear filter dimensioned as the first-order kernel. Right, The
contribution of each eigenvector to the second-order kernel is given by its autocorrelation
matrix �h2.k � h2.k

T), weighted by the corresponding eigenvalue. D, The second-order Vol-
terra expansion of the RF can be reexpressed as a bank of parallel filters whose linear outputs are
passed through a second-order polynomial output function: the first-order kernel (h1st, Simple-
like subunit) contributes linearly to the filter bank output, whereas the outputs of the significant
eigenvectors (h2.k, Complex-like subunits) are squared. E, Goodness-of-fit measured as the

4

percentage of variance of the DN response explained by the current-based Volterra kernels
estimated with different assumptions of membrane time constant value (tested time constant;
see Materials and Methods). In all cells of our population, our current-based RF estimation
method always led to a clear least-squares optimum (estimated time constant) among the
tested time constant values. F, Distribution of estimated time constant values recovered from
our V1 cell population, for cells whose second-order Volterra kernel revealed at least one sig-
nificant eigenvector (n � 34 of 38).
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indicative of their orientation selectivity. As reported previously
in Macaque V1, we first notice that the Complex-like subunits of
these Complex RFs cover a much larger functional space than
expected from the energy model: both cells in Figure 3 reveal
more than two Complex-like subunits, which can be excitatory or
inhibitory and whose spatial profiles cover a variety of orienta-
tion preference and spatial frequency selectivity (Fig. 3B,C).

Figure 4 illustrates the Simple-like and Complex-like subunits
of two typical Simple cells (Fig. 4A; RF Simpleness: cell 3, 0.81; cell
4, 0.82), a layer 4 spiny stellate neuron (Fig. 4B, cell 3) and a layer
5/6 pyramidal neuron (Fig. 4B, cell 4). If these cells were respond-
ing to DN as predicted by the LN model, our analysis should
reveal only one complex-like excitatory subunit, with the same
selectivity as the linear Simple-like component. In contrast,

the filter bank of these Simple cells re-
vealed several Complex-like subunits
(Fig. 4C,D), both excitatory and inhibi-
tory and whose spatial profiles are mark-
edly different from that expressed by the
Simple-like subunit.

Across the whole population of V1 cells
that we recorded, �90% (34 of 38) revealed
at least one Complex-like subunit (Fig. 5A);
�50% of the Complex cells (13 of 27)
showed three or more excitatory Complex-
like subunits, and �65% of the Simple cells
(7 of 11) had at least two excitatory
Complex-like subunits. Also, �55% of the
Complex cells (15 of 27) and �65% of the
Simple cells (7 of 11) exhibited at least one
inhibitory Complex-like subunit. Overall,
we found that the total number of
Complex-like RF subunits recovered at the
subthreshold level is not correlated with the
Simpleness of the RF (p � 0.78).

Although the recovered Complex-like
subunits cannot be taken literally as the
structural correlate of presynaptic cells,
they still correspond to a minimal repre-
sentation of the functional space covered
by the Complex-like synaptic inputs of the
cell; as such, they are indicative of an at least
equivalent functional diversity among the
effective presynaptic afferents. Our data
are thus consistent with previous spike-
triggered covariance analysis performed
in Macaque V1 (Rust et al., 2005) and fur-
ther show at the intracellular level that the
characterization of cat V1 RFs as either
Simple or Complex does not reflect the
diversity of Complex-like contributions
received from the synaptic afferents.

We further investigated how the rela-
tive weights of these Complex-like RF
subunits scale with the Simpleness of the
RF. To avoid overfitting of the cell re-
sponse, the weighting coefficients of the
filter bank were estimated on a stimulus
dataset, which had not been used for ker-
nel estimation (see Materials and Meth-
ods). The weights of the Complex-like
subunits were normalized by the weight of
the Simple-like subunit (Complex-like

subunit relative weight h2.k/h1st). We found that the relative
weights of the Complex-like subunits were significantly corre-
lated with the RF Simpleness: both excitatory and inhibitory
Complex-like subunits contributed less to the cell response rela-
tive to the Simple-like component as the cell RF was more Simple
(Fig. 5B; excitatory: r � �0.56; p � 10�8; inhibitory: r � �0.6;
p � 10�4). Our data thus demonstrate that the Simple or Com-
plex nature of cat V1 RFs does not depend on the number of
functionally distinct Complex-like influences the cell receives but
rather on the imbalance between the synaptic weights of the
Complex-like and Simple-like contributions (Chance et al., 1999;
Tao et al., 2004). For cells that revealed both excitatory and in-
hibitory Complex-like components (n � 22), we measured the
sum of the weights of the inhibitory subunits over the sum of the

Figure 3. Subthreshold RF subunits of two V1 complex cells. A, ON and OFF regions of the discharge fields of cells 1 and 2 mapped with
sparse noise stimuli. The RF Simpleness is measured from the spatial correlation between ON and OFF subfields, scaled to a 0 –1 range (see
Materials and Methods). B, C, Simple-like and Complex-like RF subunits estimated from the subthreshold response evoked by DN for two
Complex cells (B: cell 1; C: cell 2). Left column, 2D spatial power spectrum, measured at time of maximal spatial extent. Each spectrum is
normalized with the relative weight of the subunit indicated on the left. Middle column, Spatial profiles (XY) at time of maximal spatial
extent, expressed in z-score values. Right column, Spatiotemporal profiles obtained by projection along the x- or y-axis (thick border in the
XY map), depending on the preferred orientation of the corresponding subunit. The vertical line indicates the time at which the spatial
extent is maximal. To facilitate RF visibility, the spatiotemporal profiles have been enlarged relative to the actual size of the DN stimulation
grid. The thin gray lines delineate the pixel positions of the DN stimuli. The relative weights of the Complex-like subunits (normalized by the
weight of the Simple-like subunit) are indicated on the left hand side of the filter bank.
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weights of all Complex-like RF subunits
(excitatory � inhibitory).Wefoundthat this
“inhibitory–excitatory” balance is signifi-
cantly correlated with the degree of Sim-
pleness of the RFs (Fig. 5C; r � 0.54, p �
0.01), suggesting that the Complex-like
contributions received by Simple cells are
composed of proportionally more inhibi-
tory synaptic inputs than in Complex
cells. These results were globally un-
changed if we considered other classical
metrics of RF classification, such as the
discreteness index (Dean and Tolhurst,
1983) or the segregation index (Van
Hooser et al., 2013) (data not shown).

We quantified the ability of the RF
subunits to explain the membrane voltage
fluctuations evoked by DN stimuli, by
measuring the correlation between pre-
dicted and recorded responses on single-
trial datasets, which had not been used for
kernels estimation (predictive correlation;
see Materials and Methods). The prediction
of DN responses by the subthreshold filter
banks showed an average predictive correla-
tion of 0.31 (ranging from 0.08 to 0.80; Fig.
6A), similar to average scores reported pre-
viously from extracellular studies, which
used stimuli of comparable dimensionality
and included both Simple and Complex RF
types (David et al., 2004; Chen et al., 2007).
These scores are to be interpreted as lower
bound estimates because they were estab-
lished from predictions of single-trial re-
sponses (response variability was not
averaged out). We found that the ability of
the filter bank to predict DN responses
largely depended on the Simpleness of the RF
(r � 0.7, p � 10�5). This correlation, how-
ever, mostly relied on the contribution
yielded by the Simple-like RF component:
when we considered only the Complex-like
components of the DN responses, by sub-
tracting the Simple-like contributions (see
Materials and Methods), we found that response prediction was im-
proved in a comparable fashion in both Simple and Complex RFs
(second-order predictive correlation; Fig. 6B; r � 0.03, p � 0.89).

Tuning properties of subthreshold RF subunits
To quantify in more detail the spatial tuning properties of V1 RF
subunits, we measured their preferred orientation, orientation
tuning width, and preferred spatial frequency from their spatial
power spectrum at time of maximal response (Fig. 7A). The pre-
ferred orientation of the Complex-like subunits was measured
relative to that of the Simple-like component (Relative Orienta-
tion). Over the cell population, 58% of the excitatory Complex-
like subunits were tuned to orientations close (
30°) to that
expressed by the Simple-like subunit, whereas 22% were tuned to
oblique (
30 – 60°) and 20% to orthogonal features (
60 –90°)
(Fig. 7B, left). This distribution was in contrast with that mea-
sured from the inhibitory Complex-like subunits, which revealed
a slight bias for orientation orthogonal to the preferred orienta-
tion of the Simple-like subunit (Fig. 7B, right; 
30° for 27% of

the filters; 
30 – 60° for 27% of the filters; 
60 –90° for 46% of
the filters).

The orientation tuning widths (HWHH) of the Simple-like and
Complex-like RF subunits were not significantly different (Fig. 7C;
34° and 35° on average, respectively, p � 0.82), and excitatory and
inhibitory Complex-like subunits also had similar orientation tun-
ing widths (35° and 34° on average, respectively, p � 0.86), consis-
tent with previous reports based on direct measurements of
excitatory and inhibitory conductances (Monier et al., 2003).

The comparison of preferred spatial frequencies (Fig. 7D)
showed that the excitatory Complex-like subunits are tuned to
higher spatial frequencies compared with the Simple-like sub-
units (paired t test, p � 10�6) or with the inhibitory Complex-
like subunits (paired t test, p � 0.01). This latter difference was
mostly because 23% (n � 7) of the inhibitory Complex-like sub-
units were not selective to orientation (i.e., with a preference for null
spatial frequencies in the Fourier domain), whereas only 2% (n � 2
filters) of the excitatory subunits were in the same case. These
inhibitory Complex-like subunits with no orientation selectivity

Figure 4. Subthreshold RF subunits of two V1 simple cells. A, ON and OFF regions of the discharge fields of cells 1 and 2 mapped
with sparse noise stimuli. The RF Simpleness is measured from the spatial correlation between ON and OFF subfields, scaled to a
0 –1 range (see Materials and Methods). B, Cells 3 and 4 were reconstructed after intracellular labeling with biocytin. Black and red
represent dendrites and axons, respectively. Cell 3 can be identified as a stellate spiny neuron of upper layer 4, whereas cell 4 is a
spiny pyramidal cell at the border of layer 5/6. C, D, Simple-like and Complex-like RF subunits estimated from the subthreshold
responses evoked by DN for two Simple cells (C, cell 3; D, cell 4). Same conventions as in Figure 3B.
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were mainly found in Simple cells (5/7, Fig. 7D) and generally
revealed one single subregion, which was neither elongated nor
shaped for any oriented feature detection but still covered several
positions of the cell RF (Fig. 4, C,D).

To relate our findings to classical LN models, we measured the
preferred spatial phase of RF subunits tuned to similar orienta-
tion (
30 o) and spatial frequency (
0.5 octave) and identified
those with closely matching spatial phase (
30 o) or in spatial
phase quadrature (i.e., 90 o out of phase, 
30 o). In the case of
Simple cells, we found that �35% (4 of 11) had one dominant
Complex-like subunit with a feature selectivity matching that of
the Simple-like component, as expected from an LN model. Nev-

ertheless, all of these Simple cells also exhibited additional
Complex-like subunits (among which some were suppressive).
In the case of Complex cells, �50% (14 of 27) showed two dom-
inant excitatory Complex-like subunits in spatial phase quadra-
ture, as expected from the energy model of Complex cells. Again,
a majority of these Complex cells (11 of 14) also showed excit-
atory and/or inhibitory Complex-like subunits with additional
feature selectivity. These complex RFs with multiple Complex-
like components and a pair of dominant excitatory subunits con-
sistent with the energy model are reminiscent of previous results
obtained in awake monkeys with spike-triggered covariance anal-
ysis (Chen et al., 2007).

Over our cell population, the orientation or spatial frequency
selectivity of the Complex-like RF subunits was not correlated
with the degree of Simpleness of the RFs. Our analysis thus dem-
onstrates quantitatively that the Complex-like synaptic inputs of
cat V1 RFs cover a broad spectrum of orientation and spatial
frequency selectivity, regardless of the Simple or Complex nature
of the RF. Although we could not correlate across our cell popu-
lation the diversity of Complex-like RF subunits to cell types or
laminar positions, the two reconstructed cells of our dataset (cells
3 and 4) show that, in layer 4 or 6, typical Simple cells with
spatially nonoverlapping ON and OFF subfields can also exhibit a
large repertoire of feature selectivity in their Complex-like syn-
aptic afferents.

Spatiotemporal envelope of subthreshold RF subunits
We compared the spatiotemporal profiles of the Simple-like and
Complex-like RF subunits by measuring their spatial extents and
their relative timing. The maximal spatial extent covered by each
RF subunit was measured as the largest area delineated by the
99% significant response contour. We found that, in most cells,
the Complex-like RF subunits had significantly smaller size than
the Simple-like component (Fig. 8A; paired t test, p � 10�12):
whereas the Simple-like components had their largest spatial
spread ranging from 0.4 to 4.3 degrees of visual angle (average �
1.70 degrees), the size of the Complex-like subunits ranged from
0.4 to 2.9 degrees (average � 1.4 degrees). The size of the Simple-
like and Complex-like subunits tended to increase and decrease,
respectively, with the Simpleness of the RF (h1st: r � 0.40, p � 0.02;
h2.k: r � �0.21, p � 0.02), resulting in a significant shrinkage of the

Figure 5. Subthreshold filter bank and RF Simpleness. A, Number of identified Complex-like
subunits as a function of the Simpleness of the RF, for each cell of our population. Red represents
number of excitatory subunits. Blue represents number of inhibitory subunits. B, Weights of the
Complex-like RF subunits (h2.k), normalized by the weight of the corresponding Simple-like
subunit (h1st) (Complex-like subunit relative weight; see Materials and Methods), as a function
of the RF Simpleness of the cell. Red represents excitatory subunits. Blue represents inhibitory
subunits. The red and blue lines indicate the linear regressions across excitatory and inhibi-
tory subunits, respectively (excitatory: r � �0.56, p � 10 �8; inhibitory: r � �0.6, p �
10 �4). C, Balance between inhibitory and excitatory subunits as a function of the RF
Simpleness, for cells that showed both excitatory and inhibitory subunits (n � 22; r �
0.54, p � 0.01). The inhibitory– excitatory balance was measured, for each filter bank, as
the sum of the weights of the inhibitory subunits, normalized by the sum of the weights of
both excitatory and inhibitory subunits (inh/(exc � inh)).

Figure 6. Prediction of subthreshold responses to DN. A, Correlation between the Predictive
correlation values, measured for each filter bank, and the RF Simpleness of the cells. The pre-
dictive correlation measures the Pearson’s correlation coefficient between the filter bank pre-
diction and the recorded response to DN. This correlation was measured on single-trial
subthresold responses (see Materials and Methods; mean: 0.31; r � 0.7, p � 10 �5). B, Same
as in A, except that the predictive correlation was measured after subtracting the contribution of
the Simple-like RF subunit from the predicted and recorded responses (second-order Predictive
correlation) (mean: 0.18; r � 0.03, p � 0.89).
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Complex-like subunits relative to the
Simple-like subunits in more Simple RFs
(r � �0.48, p � 10�5). No significant dif-
ference was found between excitatory and
inhibitory Complex-like subunits regarding
their spatial extent.

In the temporal domain, the Simple-
like and Complex-like RF components re-
vealed a systematic temporal interplay
(Onset latency, Fig. 8B): the inhibitory
Complex-like subunits were systemati-
cally delayed compared with the excit-
atory Complex-like subunits (average
delay � 23 ms; paired t test, p � 10�4),
which themselves generally appeared with
a slightly delayed onset relative to the
Simple-like component (average delay �
3 ms; paired t test, p � 0.01). The onset
latency of the Simple-like or Complex-
like RF subunits was not significantly cor-
related with the RF Simpleness, but the
delay between the Simple-like and the ex-
citatory Complex-like subunits increased
significantly with more Simple RFs (r �
0.35, p � 10�3). A tight temporal arrange-
ment was also observed when comparing
the times to maximal spatial extent (Peak
latency, Fig. 8C): the excitatory Complex-
like subunits reached their maximal
spatial spread before the Simple-like com-
ponents (paired t test, p � 10�5), whereas
the inhibitory Complex-like subunits ex-
pressed their full spatial profile signifi-
cantly later (paired t test, p � 10�5). This
temporal interplay between excitatory
and inhibitory RF subunits suggests the
existence of a Complex-like inhibition
whose effective contribution would be
systematically delayed and/or have longer
time constants than the Complex-like ex-
citatory components (Levy et al., 2013).

Complex-like components of V1 cell
spiking responses
For a subset of cells, we estimated the
Simple-like and Complex-like subunits of
spiking RFs, using the first- and second-
order Volterra kernels measured from
spiking responses (n � 12; 8 Complex cells and 4 Simple cells;
conservative threshold: �25 times more spikes than spatiotem-
poral positions in the stimulus space; see Materials and Meth-
ods). Figure 9A, B shows the filter banks obtained from the
spiking responses of cells 2 and 3, respectively. The filter bank
estimated directly from their spiking response revealed a much
lesser number of Complex-like subunits than observed at the
subthreshold level (Figs. 3C and 4C, respectively).

Over the analyzed subset of cells, we recovered half as many
Complex-like RF subunits at the spiking level than at the sub-
threshold level (31 vs 61; Fig. 9C). Moreover, the Complex-like
subunits recovered from spiking responses tended to better
match the LN and energy models of Simple and Complex cells
than what we observed at the subthreshold level (Touryan et al.,

2002). Nevertheless, it is likely that the discrepancy between sub-
threshold and spiking filter bank estimates is attributable, at least
in part, to an insufficient number of recorded spikes, relative to
the dimensionality of the stimulus (Rust et al., 2005). Therefore,
on the sole basis of this comparison, we could not conclude
whether or not the diversity of feature selectivity observed at the
subthreshold level is represented in the cell spiking output.

To answer this question despite the relatively low number of
collected spikes, we reduced the dimensionality of the stimulus
space and computed STAs of the stimulus projected onto the RF
subunits identified at the subthreshold level. Practically, for cells
that showed a sufficient number of spikes (n � 24, see Materials
and Methods), we estimated the cross-correlation (STA) between
the recorded spike train and the reconstructed response of each
subthreshold subunit, for different time lags (Fig. 10A). Figure

Figure 7. Tuning properties of Simple and Complex RF subunits. A, The tuning properties of each subunit were measured from
their 2D spatial power spectra at the time of maximal response. The preferred orientation and spatial frequency were deduced from
the maxima coordinates in the corresponding 2D Fourier space. The HWHH was measured from a von Mises distribution fitting the
orientation tuning curve obtained at best spatial frequency (see Materials and Methods). B, Distribution of the preferred orienta-
tions of excitatory (red) and inhibitory (blue) Complex-like subunits, measured relative to the preferred orientation of the corre-
sponding Simple-like subunit (Relative Orientation). We considered only cases in which both Simple-like and Complex-like
subunits were orientation selective. Units are polar angle expressed in degrees. C, Distributions of orientation tuning widths
(HWHH) of the Simple-like subunits (gray), and the excitatory (red) and inhibitory (blue) Complex-like subunits. Units are degrees.
D, Distributions of preferred spatial frequencies for the Simple-like subunits (gray), and the excitatory (red) and inhibitory (blue)
Complex-like subunits. The first class of each histogram represents orientation unselective filters (i.e., filters that showed maximal
energy at the null frequency position in their 2D power spectrum: fx � 0; fy � 0). Units are cycles per degree. Light and dark colors
represent Complex and Simple cells, respectively.
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10A, B shows the STAs obtained for the same 4 cells as presented
in Figures 3 and 4. In all cases, the excitatory Complex-like com-
ponents showed a significant (p � 0.01) positive deflection at the
time of spike emission, whereas the amplitude of the inhibitory
Complex-like contributions decreased. The spiking response of
these cells was thus significantly correlated with the inputs re-
ceived along the stimulus feature expressed in the subthreshold
RF subunits. The weight of each RF subunit contribution to the
cell spiking response was measured from the amplitude of the
STAs at time of spike emission (i.e., at t � 0 on the STA abscissa).
The weights of the Complex-like subunits were expressed relative
to that of the Simple-like component (Complex-like subunits

relative weight, STA; see Materials and Methods). We found that
the relative weights of the Complex-like subunits measured from
the STAs were highly correlated with those we had previously
estimated at the subthreshold level (Complex-like subunits rela-
tive weight, Vm) (excitatory subunits: r � 0.82, p � 10�12; inhib-
itory subunits: r � 0.7, p � 10�3; Fig. 10C). This result

Figure 8. Spatiotemporal properties of simple and complex RF subunits. A, Left, Comparison
of the maximal spatial extents of excitatory (red) and inhibitory (blue) Complex-like subunits
with the maximal spatial extent of the corresponding Simple-like subunit. Right, Distributions
of the maximal spatial extents of the Complex-like subunits. Units are the apparent diameter
expressed in visual degrees of solid angle. B, Left, Onset latencies of excitatory (red) and inhib-
itory (blue) Complex-like subunits compared with the onset latency of the corresponding
Simple-like subunits. Right, Distributions of the onset latencies of the Complex-like subunits.
Units are milliseconds. C, Left, Comparison of the peak latencies of excitatory (red) and inhibi-
tory (blue) Complex-like subunits with the peak latency of the corresponding Simple-like sub-
units. Right, Distribution of the peak latencies of the Complex-like subunits. Light and dark
colors represent Complex and Simple cells, respectively.

Figure 9. RF subunits of spiking RFs. A, Filter bank recovered from the spiking RF of cell 2
(same Complex cell as in Fig. 3C). Same conventions as in Figure 3. B, Filter bank estimated from
the spiking RF of cell 3 (same Simple cell as in Fig. 4C). Same conventions as in Figure 3. C,
Number of Complex-like subunits recovered from spiking RF estimates, as a function of the RF
Simpleness of the cell. Red represents excitatory subunits. Blue represents inhibitory subunits.
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demonstrates that the Complex-like RF
subunits identifiable at the subthreshold
level are represented in the spiking re-
sponse in the same proportion as their rel-
ative subthreshold contribution. We
conclude that the diversity of feature se-
lectivity observed at the subthreshold level
in cat V1 RFs is expressed in the cell spik-
ing output and is thus propagated to
downstream network targets.

Discussion
The present study is based on a new ana-
lytical method never performed before at
the intracellular level and provides new
insights into the functional organization
of cat V1 RFs. Our conclusions are based
on a second-order analysis of V1 synaptic
responses evoked by 2D ternary DN. The
estimated subthreshold RFs were decom-
posed into a parallel set of multiple LN
branches consisting of a Simple-like sub-
unit, whose linear output accounts for the
push-pull components of the RF, and a
variable number of Complex-like sub-
units, which contribute in a full-rectified
manner to the cell response.

Our data show that, at the synaptic
level, the Complex-like RF subunits of cat
V1 cells rely on a large diversity of feature
selectivity, regardless of the Simple or
Complex nature of the RF. In both Simple
and Complex cells, we found multiple
Complex-like RF subunits whose tuning properties can differ
largely from that expressed by the Simple-like RF component.
We show that, although excitatory Complex-like subunits are
often tuned for orientations close to that expressed in the Simple-
like subunit (
30 o), a substantial proportion is selective for
oblique and crossed orientations (42%). Complex-like inhibitory
subunits also exhibit orientation preference, which differs nota-
bly from that of the Simple-like subunit. We also found a sub-
stantial proportion of Complex-like inhibitory subunit, which
exhibited no orientation selectivity, especially in Simple cells.
These inhibitory components constitute additional evidences fa-
voring the existence of an orientation unselective Complex inhi-
bition, which could participate, at least in some V1 cells (�45%,
5 of 11; in our population), to the contrast-invariance of V1 cell
selectivity (Hirsch et al., 2003; Lauritzen and Miller, 2003; Nowak
et al., 2008; Liu et al., 2009; Shapley and Xing, 2013). Interest-
ingly, our data further show that the balance between the relative
weights of inhibitory and excitatory Complex-like subunits tends
to increase with the RF Simpleness. It suggests that the Complex-
like inputs to Simple cells consist of relatively more inhibition
than those of Complex cells, consistent with earlier reports of a
major role of intracortical inhibition in shaping Simple cell RFs
(Sillito, 1975; Debanne et al., 1998).

Consistent with previous results obtained in Macaque V1 us-
ing STC techniques (Rust et al., 2005; Chen et al., 2007), we found
that Simple and Complex RFs in cat V1 are not fully accounted
for by the LN or the energy model respectively. Instead, our data
show that, regardless of the Simpleness of their RFs, V1 cells re-
ceive a diversity of feature selectivity from their synaptic affer-
ents; Simple and Complex RFs primarily differ with respect to the

weight of their Complex-like subunits relative to the Simple-like
component. The discrepancy between our data and previous STC
analyses performed in cat V1 with DN or natural images
(Touryan et al., 2002, 2005; Felsen et al., 2005) is most likely the
result of an insufficient number of spikes relative to the dimen-
sionality of the stimulus (as suggested earlier, see Rust et al.,
2005). In our own data, we observed that the collection of RF
subunits estimated from subthreshold responses was not readily
retrievable from the Volterra kernels estimated directly from
spiking responses. However, by mapping the spiking RF in the
functional space defined by the RF subunits identified at the sub-
threshold level, we were able to reduce the dimensionality of the
parameter space and assess the stimulus feature selectivity repre-
sented in the spike train. Our results showed that the Complex-
like subunits of the subthreshold RF contribute to the spiking
response in proportion to their relative weights. The functional
diversity of Complex-like contributions observed in the synaptic
afferents is thus expressed in the cell spiking output and trans-
mitted to postsynaptic targets. This is consistent with recent
results based on spiking responses to stimuli of lower dimension-
ality and showing, in cat V1, significant deviations of Simple cell
RFs from the classic LN model (Levy et al., 2013). Cat and Ma-
caque V1 are therefore comparable with respect to the computa-
tional richness of Complex-like nonlinearities encountered in
Simple and Complex cell RFs (Rust et al., 2005; Chen et al., 2007).

It is noteworthy that the collection of RF subunits recovered in
the present study probably still underestimates the functional
space covered by the cell synaptic afferents: on the first hand, the
signal-to-noise ratio of the response constrains the number of
significant subunits that can be recovered in a given period of

Figure 10. STA of subthreshold RF subunits. A, The STA (right) of the RF subunits identified at the subthreshold level was
measured as the cross-correlation between the recorded spike train (green) and the reconstructed outputs of the subthreshold RF
subunits (cell 2). B, STAs of the Simple-like (h1st) and Complex-like (h2.k) components identified at the subthreshold level for cells
1, 3, and 4. C, Correlation between the relative weights of the Complex-like subunits measured from the STA amplitudes and those
previously measured at the subthreshold level (Vm ). The STA relative weights of the Complex-like components (h2.k) were defined
from the amplitude of the STA at zero time lag (STA2.k(0)), normalized by the Simple-like component (STA1st(0); see Materials and
Methods). The red and blue lines indicate the linear regressions, established across excitatory and inhibitory Complex-like com-
ponents, respectively (excitatory: r � 0.82, p � 10 �12; inhibitory: r � 0.7, p � 10 �3). Open symbols represent nonsignificant
STAs.
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time; on the other hand, it is likely that the nonlinear contribu-
tions conveyed through recurrent or feedback connections of the
cortical network are difficult to estimate with a catenary second-
order RF architecture.

The diversity of feature selectivity measured in the sub-
threshold RF subunits is remarkably consistent with previous
conductance measurements, also performed in cat V1, which
demonstrated substantial excitatory and inhibitory conductance
inputs for orientations far away from the cell preferred orienta-
tion (Monier et al., 2003, 2008). Our results further show that
these synaptic contributions cover a functional space defined by
multiple Complex-like components with distinct feature selectiv-
ity. In agreement with previous conductance measurements
(Monier et al., 2003; Boudreau and Ferster, 2005), we also found
a systematic temporal interplay between excitatory and inhibi-
tory Complex-like subunits, inhibitory components arriving
with an average delay of �20 ms relative to the excitatory com-
ponents. Still, the exact functional role of this delayed Complex-
like inhibition remains unclear. One possibility would be that it
contributes to the dynamic sharpening of the orientation selec-
tivity observed at the spike level in some V1 neurons (Ringach et
al., 1997, 2002; Schummers et al., 2002; Shapley et al., 2003; Xing
et al., 2005). It may also play a major role in adapting V1 neural
code to the contrast of visual stimuli (Levy et al., 2013). As re-
ported in V1 (Monier et al., 2008) and other sensory cortices
(Wehr and Zador, 2003), this delayed inhibition contributes to
sharpening the temporal precision of the spiking response, gen-
erating selective spiking opportunity windows for certain stimu-
lus configurations (Pouille and Scanziani, 2001). Consistent with
this view, in our data, the STAs of the subthreshold Complex-like
components showed an almost systematic temporal sequence of
excitatory and inhibitory contributions (Fig. 10A,B) in which the
spike emission is preceded by an early increase of excitatory compo-
nents concomitant to a decrease of inhibitory contributions and
often followed by an inhibitory rebound. Although the estimated
excitatory and inhibitory RF subunits cannot be strictly interpreted
as pure conductance changes, this inferred sequence of an early ex-
citation followed by a delayed inhibition at time of spike emission
likely reflects equivalent changes in the sign of the balance between
concomitantly activated excitatory and inhibitory circuits.

Although the Simple-like RF subunits may result from the
push-pull arrangement of excitatory and inhibitory feedforward
inputs selective for the same orientation, the diversity of feature
selectivity expressed by the Complex-like RF subunits is not con-
sistent with a strict iso-orientation preference rule for excitatory
and inhibitory connections as generally posited (Ferster and
Miller, 2000; Priebe and Ferster, 2012). Although the estimated
Complex-like subunits do not necessarily correspond to the RFs
of neurons presynaptic to the recorded cell, they bear a striking
resemblance to the linear RF of V1 Simple cells, which suggests
that they originate from within the cortex (Rust et al., 2005; Chen
et al., 2007). Moreover, the distribution of preferred orientation
that they reveal (Fig. 7B) is consistent with the distributions of
excitatory and inhibitory axonal projections over adjacent orien-
tation columns reported by anatomical studies (Kisvárday et al.,
1997; Karube and Kisvárday, 2011). The diversity of orientation
and spatial frequency preferences reported here thus supports the
hypothesis that the Complex-like components of V1 RFs arise
from lateral interactions between adjacent cortical columns. Un-
der this assumption, our results are consistent with the proposal
that the Simple or Complex nature of V1 RFs arises from the
balance between feedforward and lateral connectivity (Chance et
al., 1999; Tao et al., 2004).

Advancing our knowledge on the functional properties of
second-order nonlinearities in V1 RFs may improve our under-
standing of how visual cortex processes visual cues. The diversity
of Complex-like RF subunits recovered in the present study raises
the question of the computational benefit of integrating over
such a large repertoire of feature selectivity. Because features in
natural images often combine multiple orientations and spatial
frequencies in the same location, filtering the visual input
through multiple Complex-like RF components, covering a large set
of stimulus selectivity, may contribute to the detection of high-order
correlations of the visual scene (Victor et al., 2013). The expression of
adaptive gain control processes over this variety of Complex-like
subunits could also account for contextual changes in the selectivity
of V1 RFs (Fournier et al., 2011). Such distributed gain control
would fit with adaptive shifts in orientation tuning curves (Müller et
al., 1999; Dragoi et al., 2001; Felsen et al., 2002) or with long-lasting
changes observed through imposed Hebbian supervision (Debanne
et al., 1998). We propose that the wide functional spectrum of
Complex-like synaptic contributions to Simple and Complex RFs
constitutes a multicompetent substrate for adaptating V1 cells to the
statistics of visual inputs.
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