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Progressive Degeneration of Dopaminergic Neurons through
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Progressive neurodegenerative diseases are among the most frequently occurring aging-associated human pathologies. In a screen for
Caenorhabditis elegans mutant animals that lack their normal complement of dopaminergic neurons, we identified two strains with
progressive loss of dopaminergic neurons during postembryonic life. Through whole-genome sequencing we show that both strains
harbor dominant (d), gain-of-function mutations in the Transient Receptor Potential (TRP) mechanosensory channel trp-4,a member of
the invertebrate and vertebrate TRPN-type of the TRP family channels. Gain-of-function mutations in TRP channels have not been
previously implicated in dopaminergic neuronal degeneration. We show that trp-4(d) induces cell death in dopamine neurons through a

defined, calcium-related downstream pathway.
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Introduction

In an ever-aging population, neurodegenerative disorders, char-
acterized by progressive loss of structure or function in various
neuronal cell types, are bound to increase. Although several ge-
netic causes of neurodegenerative diseases have been discovered,
for the majority of them the causes as well as the underlying
molecular mechanisms remain elusive. Nevertheless, family his-
tories and lessons from GWAS suggest a substantial contribution
of still undiscovered genetic susceptibility factors to disease etiol-
ogy (Lesage and Brice, 2009; Lill and Bertram, 2011). Studies
using various animal models of neurodegenerative disease have
collectively illuminated some aspects of the molecular pathology
of such conditions (Harrington et al., 2010; Lee et al., 2012). In
addition, these studies uncovered novel triggers of neuronal cell
death, which resulted in the discovery of downstream molecular
mechanisms contributing to the process (Driscoll and Chalfie,
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1991; Hong and Driscoll, 1994; Yoon et al., 2000; Kim et al., 2007;
Ni et al., 2008). Thus, identifying new genetic causes of neuronal
degeneration in model organisms can enhance our mechanistic
insights into neurodegenerative diseases in humans.

Despite their differences, most major neurodegenerative dis-
eases share several clinical, pathological, and molecular charac-
teristics, such as the occurrence of oxidative stress, protein
misfolding, and calcium dyshomeostasis (Gorman, 2008). Spe-
cifically, Ca*" dysregulation has been suggested to contribute to
the etiology as well as progression of various neurological diseases
(Bezprozvanny, 2009; Nikoletopoulou and Tavernarakis, 2012),
including Parkinson’s disease (Chan et al., 2007; Gandhi et al.,
2009; Surmeier et al., 2010), Alzheimer’s disease (Bojarski et al.,
2008), amyotrophic lateral sclerosis (Grosskreutz et al., 2010),
and Huntington’s disease (Giacomello et al., 2011; Wu et al,,
2011). Particularly relevant to intracellular Ca** homeostasis is
the family of Transient Receptor Potential (TRP) channels,
known to be involved in initiating Ca*>* entry pathways as well as
maintaining cytosolic, endoplasmic reticulum (ER), and mito-
chondrial Ca*™" levels (Gees et al., 2010). Because of their role in
ion homeostasis and their expression in the nervous system, TRP
channels have been increasingly considered as contributing fac-
tors to neuronal degeneration (Selvaraj et al., 2010; Vennekens et
al., 2012), but their precise role in degenerative conditions is
largely unexplored. Furthermore, mutations in TRP channel
family have not been previously implicated as causal to dopami-
nergic degeneration.

Given the importance of studying the genetic basis of neuro-
degenerative conditions, it is perhaps surprising that only a few
model system studies have attempted to screen in an unbiased
manner for mutants in which neurons initially develop but pro-
gressively degenerate. We have undertaken such an approach and
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describe here a novel Caenorhabditis elegans mutant with robust
and progressive degeneration of dopaminergic neurons during
postembryonic development. We show that a single amino acid
substitution in a TRP channel is responsible for the phenotype,
implicating mutations in TRP family channels as a direct cause of
dopaminergic degeneration for the first time. We provide in-
sights on the mode of cell death and the downstream mechanisms
of action, revealing the involvement of intracellular Ca** ho-
meostasis in the process of dopaminergic cell death.

Materials and Methods

C. elegans strains. Strains were maintained as previously described
(Brenner, 1974). C. elegans hermaphrodites were used in all experiments,
unless otherwise stated. Strains used were as follows: BY200: vtIs1[dat-
1L::gfp;srol-6(d) [; MDH26: trp-4(ot337);vtls1; MDHA41: vtlsI;norEx38/[dat-
Le:trp-4(d);ttx-3::cherry[;vtlsl; MDH43: norEx40[dat-1::trp-4(d);ttx-3::
cherry;vtlsl, OH6071: trp-4(0t337);vtlsl,vsls33[dop-3::rfp]; MDH233:
trp-4(0t337);eri-1(mg366);lin15B(n744);vtlsl; MDHI123: trp-4(ot337);
unc-79(el068),ced-4(n1162);vtlsl,vsIs33; MDHS86: unc-79(el068)ced-
4(n1162); vtlsl,vsIs33; MDH124: trp-4(0t337); ced-3(n717);vtls1,vsIs33;
MDHS51: ced-3(n717); vtls1,vsIs33. OH9051: ot[s259/dat-1::¢fp]; MDH-
28: trp-4(0t337);0tls259; MDH22: crt-1(bz29);0t1s259; MDH23: trp-
4(0t337);crt-1(bz29);0t1s259; MDH20: crt-1(0k948);0t1s259; MDH21:
trp-4(0t337);crt-1(0k948);0t1s259; MDH90: itr-1(sa73);vtIs1; MDH89:
itr-1(sa73);trp-4(0t337);vtlsl; MDH126: cnx-1(0k2234);vtls1; MDH127:
trp-4(0t337); cnx-1(0k2234); vtIs1; MDH128: cnx-1(0k2234);crt-1(0z29);
trp-4(0t337);0t1s259. bxIs19[Ptrp-4::gfp,ttx-3::gfp]; MDH84: crt-
1(0k948);bxIs19; MDH141: dat-1(0k157);trp-4(0t337);vtls1; MDH112:
cat-2(el112);vtlsI; MDHI129: cat-2(el112);trp-4(0t337);vtIs]; MDH66:
norEx7[dat-1::hcalbindin-1;ttx-3::cherry];trp-4(ot337);vtIs1; MDHI119:
norEx34[dat-1::hcalbindin- 1;ttx-3::cherry;trp-4(0t337);vtlsl; MDH121:
norEx36[dat-1::hcalbindin-1;ttx-3::cherry]; trp-4(ot337);vtlsl; MDH97:
norEx24[dat-1::mdh-1;ttx-3::mcherry|;trp-4(0t337);vtlIs1; MDH98:
norEx25[dat-1::mdh-1;ttx-3::mcherry];trp-4(0t337);vtIs1; MDH99:
norEx26[dat-1::mdh-1;ttx-3::mcherry|;trp-4(ot337);vtIs1; MDH138:
bxIs19[trp-4::gfp;ttx-3::gfp]; otIs181[dat-1::mcherry;ttx-3::mcherry];
MDHI139: dpy-11(e224) unc-68(e450);trp-4(0t337);0tls259; MDH140:
dpy-11(e224),unc-68((e450);0tIs259; MDH150: norEx47 [dat-1::GFP-
TRP-4;r0l-6]; MDH169: crt-1(0k948);norEx47[dat-1::GFP-TRP-4;rol-6];
and MDH225: norEx82[Posm-6::trp-4(d);rol-6;ttx-3];0yIs59[Posm-
6::gfp].

Mapping and cloning of trp-4(d) mutants. The 0t337 allele was
mapped on the right arm of CHRI (+14 to +26 ¢cM) using high-
throughput SNP mapping (Davis et al., 2005). Both 0t337 and ot477
alleles were whole-genome sequenced using an Illumina platform
followed by data analysis as previously described (Bigelow et al.,
2009). Only one locus, trp-4, was affected in common in the two
alleles. The mutation was confirmed by Sanger sequencing. We phe-
nocopied the effect of the 01337 mutation by introducing a trp-4(d)
transgene in a wild-type background. To this end, a plasmid contain-
ing the frp-4 ¢cDNA under the control of dar-1 promoter (kindly
provided by Shawn Xu) was used to introduce the 01337 mutation by
site-directed mutagenesis.

Ectopic expression of trp-4(d): trp-4(d) cDNA followed by unc-54
3'UTR was cloned under the osm-6 promoter (Collet et al., 1998) and
injected into oyIs59 worms expressing osm-6::GFP at 30 ng/ul, along
with 60 ng/ul rol-6 and 50 ng/ul ttx-3::mcherry. Worms containing the
ttx-3::mcherry coinjection marker were scored for degeneration of ADE,
PHA, PHB, and PQR neurons.

Suppressor screen on ot337 mutants. For the suppressor screen, trp-
4(0t337) mutant worms were mutagenized using ethyl methanesulfo-
nate (EMS) and standard protocols (Brenner, 1974; Doitsidou et al.,
2008). An automated screen was performed using the COPAS Bio-
sorter (Union Biometrica) as previously described (Doitsidou et al.,
2008) with the sorting region set to select worms that had gained GFP
signal.

Degeneration assays. Well-fed worms raised at 20°C for at least two
generations were scored as freshly hatched L1ls and/or mid L4 stage.
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Neurons were scored for cell body presence and morphology as well as
axodentritic integrity.

RNAi assays. RNAI assays were performed using a bacterial feeding
protocol (Kamath and Ahringer, 2003) and a C. elegans strain with a
sensitized genetic background: eri-1;lin15b (Wang et al., 2005).

Fluorescence intensity quantification. Fluorescence intensity measure-
ments were done as previously described (Gavet and Pines, 2010) using
Image] (Schneider et al., 2012). The fluorescence was represented as
Corrected Total Cell Fluorescence (CTCF) where, CTCF = Integrated
Density — (Area of the selected cell X Mean fluorescence of background
readings). Worms in lateral orientation were selected for analysis and
fluorescent intensity was separately determined for proximal and distal
CEPDs or CEPVs.

Chemical treatments. For the dantrolene and EGTA assays, dantrolene
(10 M) in DMSO or EGTA (10 mm) from Sigma was added to NGM
plates (prepared without CaCl,). For the BAPTA-AM assays, BAPTA-
AM (Life Technologies) in DMSO was added to NGM plates (minus
CaCl,) at a final concentration of 100 uMm. Progeny of worms grown on
these plates were scored.

Behavioral assay. The basal slowing response was measured according
to Sawin et al. (2000) with the following modifications: worms were
video recorded and their velocities were calculated using WormLab 2.0
software (MBF Biosciences).

Statistical analysis. Prism6 (GraphPad) was used for statistical analysis.
The sample size was =50 for all data points. For comparison of two
means, the unpaired two-tailed ¢ test was used. For more than two means,
one-way ANOVA, and for group comparisons, two-way ANOVA were
used. Multiple comparisons of the means were done by either Tukey’s or
Sidak’s post hoc test; p values <0.05 were considered to be statistically
significant.

Results

Isolation of C. elegans mutants with progressive degeneration
of dopaminergic neurons

Dopaminergic neurons are critically involved in various human
behaviors and pathologies and it has been a long-standing goal to
understand how these neurons develop and maintain their dif-
ferentiated properties. The 302-cell nervous system of a C. elegans
hermaphrodite contains exactly eight dopaminergic neurons (a
pair each of CEPVs, CEPDs, ADEs, and PDEs), making it easy to
monitor the presence and integrity of these neurons in living
animals with fluorescent protein labeling. Using a semi-
automated selection scheme implemented by the COPAS Bio-
sorter technology (Pulak, 2006; Doitsidou et al., 2008), we
screened for EMS-mutagenized animals in which dopaminergic
neurons were lost (Doitsidou et al., 2008). This phenotype could
be caused either by a failure to execute the appropriate develop-
mental program or by a failure to maintain the integrity of dopa-
minergic neurons after they are formed. This screen did indeed
result in the identification of gene regulatory factors involved in
dopaminergic neuron development (Doitsidou et al., 2008, 2013;
Flames and Hobert, 2009). However, two viable mutants that we
have not previously described, 0337 and 0t477, showed normal
development of these neurons, i.e., in late stage embryos, the
complete set of dopaminergic neurons is present (Fig. 1 A, B). Yet,
in adult animals, the majority of dopaminergic neurons are lost
(which is the phenotype the mutants were selected for; Fig.
1A, B). Analysis of animals from different stages showed that in
both alleles the loss of dopaminergic neurons is progressive (Fig.
1B; data not shown). Moreover, the progressive neurodegenera-
tion phenotype of the 01337 and 0t477 alleles is semidominant,
with heterozygous animals showing degeneration of their dopa-
minergic neurons, albeit to a lesser degree than the homozygous
animals (Fig. 1C). Furthermore, we observed that only the head
dopaminergic neurons were affected in these mutants whereas no
degeneration was observed in the postembryonically generated
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Figure 1.

Selective loss of dopaminergic neurons in ot337 mutants. 4, B, Progressive loss of dopaminergic (DA) neurons labeled with dat-1::gfp (vtls1) in 0t337 mutants. Arrowheads indicate

degenerating CEPD dendrite. C, 0t337 mutants are semidominant. D, Cell-type specificity of dopaminergic neuron loss. Error bars represent = SEM around the mean, ***p << 0.001.

mid-body PDE neurons and the male tail dopaminergic neurons
(Fig. 1D).

A gain-of-function mutation in the TRP channel trp-4
causes degeneration
We mapped both 0t337 and 0477 on the right arm of chromo-
some I and identified the molecular lesions through whole-
genome sequencing. Both alleles, which were independently
isolated, showed a small number of variants in protein-coding
genes on chromosome I, yet only one locus was affected in both
strains (Fig. 2A). This locus, termed #rp-4 (Li et al., 2006), en-
codes a TRPN-type channel of the TRP six-transmembrane
channel family. TRP-4 protein was previously described as a cell-
surface mechanoreceptor expressed in dopaminergic neurons (Li
et al., 2006; Kang et al., 2010; Li et al., 2011). Both of the muta-
tions that we isolated affect the same amino acid in the pore-
forming sixth transmembrane helix of TRP-4 (Fig. 2B,C).
Substitutions in adjacent amino acids in TRP channel orthologs
in yeast were previously shown to be gain-of-function mutations
resulting in gate destabilization and a higher probability of the
channel being in an open state (Su et al., 2007; Zhou et al., 2007).
To confirm that the identified dominant trp-4 mutations in
0t337 and 01477 are indeed responsible for the degeneration phe-
notype, we conducted reversion-of-phenotype screens, reason-
ing that the neurodegeneration phenotype should be suppressed
by loss-of-function mutations in trp-4. We mutagenized 0t337
animals that express GFP in their dopaminergic neurons and
screened using the semi-automated selection scheme. We
identified 16 mutants in which the GFP signal in adult animals

is restored, thus indicating that the normally susceptible dopa-
minergic neurons do not degenerate. All 16 suppressor mutants
contain presumptive loss-of-function mutations in trp-4, includ-
ing several premature stop codons, deletions, and splice site
mutations (Fig. 2C) indicating that 0£337 allele harbors a gain-of-
function mutation. Apart from confirming that the trp-4(0t337)
substitution is indeed the phenotype-causing mutation, the re-
trieved suppressor mutants may also provide some insights
about functionally important residues of the TRP-4 protein.
Specifically, trp-4(0t749) results in an alanine to valine substi-
tution (A1064V) of a highly conserved alanine of the 21st
ankyrin repeat, trp-4(ot756) in a substitution of a highly con-
served glycine (G1735R) in the pore-forming region, trp-
4(0t755) in a proline to leucine substitution (P1749L) between
the pore-forming region and the sixth transmembrane domain,
and trp-4(ot757) carries two mutations in the cytosolic
C-terminal tail of TRP-4 (R1845C+L1876H).

To further confirm the degeneration effects of the trp-
4(0t337) locus, a trp-4 cDNA that carries the 0337 mutation was
expressed under the control of a dopamine neuron-specific pro-
moter from the dat-1 (dopamine transporter) locus. Transgenic
animals expressing this construct recapitulated the dopaminergic
neuron degeneration phenotype (Fig. 2D). Moreover, in these
transgenic animals we observed robust degeneration of all dopa-
minergic neuronal classes, including PDEs and male tail dopami-
nergic neurons, which do not typically degenerate in the 0t337
mutants. Since transgenic arrays are usually multicopy in C. el-
egans, we interpret this finding as an indication of the importance
of gene dosage.
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function). Error bars represent == SEM around the mean, ***p << 0.001.

To assess the behavioral consequences of the 0337 mutation
in the TRP-4 channel, we measured the basal slowing response in
the trp-4(d) mutants. This is a previously characterized
dopamine-dependent behavioral response mediated redun-
dantly by the various classes of dopamine neurons as a result of
mechanosensory stimuli presented by food (Sawin et al., 2000).
Well-fed, wild-type worms showed a distinctive slowing behavior
in the presence of food as assessed by locomotion velocity (Fig.
2E), which was abolished in dopamine-deficient cat-2 mutants.
trp-4(d) mutants were equally defective in basal slowing re-
sponse, despite the fact that not all dopaminergic neurons degen-
erate in these mutants. Similar defects in basal slowing response

are observed in trp-4 loss-of-function mutants (Kang et al., 2010;
Figure 2E), indicating that the 0t337 gain-of-function allele is
defective for at least some aspects of the TRP-4 channel function.

trp-4(d) degeneration is dopamine independent

trp-4 is expressed in all dopaminergic neurons, as previously
reported (Li et al., 2006), and as assessed by us using a previ-
ously described reporter gene construct (Barrios et al., 2008;
data not shown). frp-4 is also expressed in 14 additional neu-
rons in the head (data not shown) and in the DVA and DVC
tail neurons (Li et al., 2006). In addition to dopaminergic
neurons, a degeneration phenotype was observed in other trp-
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dopaminergic degeneration. trp-4(d)-induced degeneration does not depend on intracellular dopamine levels. C, The trp-4(d) phenotype is not suppressed by apoptotic mutants, ced-4 and ced-3.

Error bars represent == SEM around the mean. ns: p > 0.05.

4-expressing neuronal cell types including the DVA and DVC
neurons (Fig. 3A). Consistent with the observation that de-
generation is not dopaminergic neuron specific, we find that
the degree of degeneration does not depend on dopamine
levels: neither removal of dopamine in cat-2 mutants (the C.
elegans ortholog of tyrosine hydroxylase, catalyzing the rate-
limiting step in dopamine synthesis) nor interfering with do-
pamine reuptake from the synapse in dat-1 mutants
(dopamine transporter) had any effect on the severity of do-
paminergic degeneration (Fig. 3B).

TRP-4(d) channel does not cause degeneration in all neuronal
types when ectopically expressed

Since degeneration in trp-4(d) mutants is not dependent on
dopamine or dopaminergic neuron specific, we tested whether
the mutated TRP-4(d) channel can induce degeneration in
other neuronal subtypes where it is normally not expressed.
We ectopically expressed the mutated channel under the con-
trol of osm-6 promoter and used an osm-6::gfp transgenic
background to visualize the relevant neurons. osm-6 is ex-
pressed in the majority of ciliated neurons (56 neurons, in-
cluding the dopaminergic neuronal classes; Collet et al., 1998).
To bypass quantification difficulties due to the high density of
osm-6-expressing neurons near the nerve ring, we focused our
analysis on the more posterior osm-6-expressing neuronal
classes: the dopaminergic ADEs that normally express TRP-4,
and the tail neurons PHA (L and R), PHB (L and R), and PQR
that do not normally express TRP-4. In Posm-6::trp-4(d)
transgenic worms, PHA, PHB, and PQR neuronal classes re-
mained unaffected, in contrast to the ADEs that degenerated
in >80% of the worms. Furthermore, we did not observe any
obvious degeneration phenotype in the osm-6-expressing neu-
rons around the nerve ring (data not shown). Thus, TRP-4(d)

was not able to induce degeneration ectopically in all neuronal
subtypes.

trp-4(d) degeneration of dopaminergic neurons is
independent of apoptosis and exhibits characteristics of
necrosis

Even though progressive dopaminergic neurodegeneration has
notyet been directly associated with TRP-type ion channels, a few
cases of TRP channelopathies affecting other neuronal subtypes
have been reported in humans (Kremeyer et al., 2010; Nilius and
Owsianik, 2010). In addition, at least three in vivo animal models
of gain-of-function mutations in TRP channels have been iden-
tified: one in flies, affecting photoreceptors (Yoon et al., 2000);
two in mice, affecting sensory hair cells (Waddler mouse) and
Purkinje cells (moonwalker mouse; Kim et al., 2007; Becker et al.,
2009). These TRP gain-of-function models result in degenerative
phenotypes, but the nature of cell death has not been character-
ized. We examined trp-4(0t337) mutant animals in more detail
and noted that dopaminergic neurons show features characteris-
tic of necrosis, which in addition to apoptosis and autophagy, is
one of the three best characterized cell death pathways (Edinger
and Thompson, 2004). In contrast to apoptotic cells that show
characteristic shrinking and blebbing morphology, necrotic cells
swell before they disintegrate, a phenotype that we observed in
trp-4(d) mutants (Fig. 3A). Furthermore, mutations that elimi-
nate two executioners of apoptosis, ced-3 and ced-4, have no ef-
fect on trp-4(ot337)-induced degeneration (Fig. 3C), ruling out
involvement of the apoptotic cell death pathway.

Involvement of intracellular Ca®* and exit of Ca** from the
ERin trp-4(d) neurodegeneration

Members of the TRP channel family are mostly nonspecific cat-
ion channels, able to conduct monovalent as well as bivalent
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Figure 4. Involvement of intracellular Ca®™ and exit of Ca2™ from the ER in trp-4(d) neurodegeneration. A, Chelating cytoplasmic calcium with EGTA suppresses trp-4(d)-induced neuronal

degeneration. B, Expression of human calbindin (CALBT) suppresses trp-4(d)-induced neuronal degeneration (injected concentrations: Line 1 = 25 ng. |, lines 2,3 = 7.5 ng/pl). Corresponding
negative control, expression of malate dehydrogenase (mdh-1b), had no effect. €, Left, Calreticulin (crt-7) mutation suppresses trp-4(d)-induced dopaminergic (DA) degeneration. Middle and right,
(alreticulin mutation does not affect Ptrp-4::gfp or Pdat-1::GFP-TRP-4 expression levels. Average fluorescent intensities of the indicated CEPs were calculated (see Materials and Methods). D,
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cations (Venkatachalam and Montell, 2007). With the exceptions
of TRPM4 and TRPMS5, which are only permeable to monovalent
cations, all functionally characterized TRP channels are perme-
able to Ca**. To explore the possibility that intracellular Ca*"
dyshomeostasis is a contributing factor in trp-4(d)-induced de-
generation, cytoplasmic Ca*" was pharmacologically and genet-
ically chelated in these mutants. Treatment of trp-4(d) mutants
with EGTA significantly suppressed dopaminergic degeneration
(Fig. 4A). Another way to chelate cytoplasmic Ca** is to overex-
press an intracellular “calcium sink,” such as calbindin, a Ca**
binding protein (Mattson etal., 1991). trp-4(d) worms expressing
human calbindin (CALB1) under the control of the dat-1 pro-
moter exhibited significantly lower levels of neuronal loss,
whereas no such effect was observed when a non-calcium binding
gene was expressed (Fig. 4B).

Other types of channelopathies involving DEG/ENaC-type
ion channels also result in necrotic cell death and involve specific
downstream components that regulate Ca®" storage in the ER
(Xuetal., 2001; Barbagallo et al., 2010). Exit of Ca** from the ER
as a response to hyperactivated DEG/ENaC channels was shown
to contribute to neuronal cell death (Xu et al., 2001; Bianchi et al.,
2004; Barbagallo et al., 2010). We tested the involvement of these
components in trp-4(d)-induced neurodegeneration. Loss-of-
function mutants of the Ca** binding ER chaperone calreticulin
(crt-1), the main ER Ca*™ store, significantly suppressed dopa-
minergic degeneration (Fig. 4C). trp-4 transcript and TRP-4 pro-
tein levels were unaffected in crt-1 mutants (Fig. 4C). Mutations
in another ER chaperone, calnexin (cnx-1), which has com-
paratively less Ca’*-binding capacity than CRT-1
(Groenendyk et al., 2006), neither suppressed degeneration nor
enhanced the effects of crt-1 mutants (Fig. 4D).

In agreement with a role for ER Ca** exit in trp-4(d)-induced
neurodegeneration, pharmacological inhibition of Ca®" exit
from the ER in trp-4(d) mutants using the ryanodine receptor
antagonist dantrolene (Zhao et al., 2001) partially suppressed
dopaminergic neurodegeneration (Fig. 4E). Similar results were
obtained using mutations in channels responsible for Ca** exit
from the ER, in particular inositol triphosphate receptor (itr-1)
and unc-68 (a ryanodine receptor; Fig. 4F), as well as with RNAi
treatment against itr-1 in trp-4(d) mutants (Fig. 4G).

Combining the genetic depletion of Ca** store in the ER with
the pharmacological inhibition of ryanodine receptors re-
sulted in a stronger suppression of trp-4(d) degeneration than
each treatment alone (Fig. 4H). Furthermore, when double
mutants for crt-1 and trp-4(d) were treated with BAPTA-AM,
a membrane-permeable calcium chelator, the result was an addi-
tive effect in the suppression levels of dopaminergic degeneration
(Fig. 4I).

Discussion

Here we introduce a novel model for a neurodegenerative chan-
nelopathy, showing that gain-of-function mutations in a TRP ion
channel cause progressive loss of dopaminergic neurons as well as
other neuronal types. We have shown that dopaminergic neurons
die through mechanisms independent from classical apoptosis

<«

(Figure legend continued.) trp-4(ot337)eri-1;lin15b,vtls 1 was used. H, Combining genetic dele-
tion of crt-7and pharmacologic inhibition of ryanodine receptors results in stronger suppression
of degeneration. /, Combining genetic deletion of crt-7 and intracellular Ca™ chelation with
BAPTA-AM results in stronger suppression of degeneration. In all parts, we refer to the trp-
4(0t337) allele as trp-4(d). Error bars represent = SEM around the mean. ns: p > 0.05, *p <
0.05,**p < 0.01, ***p < 0.001.
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pathways, and that the dying cells exhibit morphological charac-
teristics of necrotic cell death. Furthermore, we provide evidence
that intracellular calcium homeostasis as well as calcium exit
from the ER contribute to the process of trp-4(d)-induced neu-
ronal cell death.

The many ways in which Ca** influx can occur across the
plasma membrane include voltage-gated, ligand-gated, receptor-
operated, and store-operated Ca>* channels (Brini et al., 2014).
TRP channel family members are not only highly permeable to
Ca*™, butalso have been shown to participate in the above mech-
anisms of Ca** signaling and influx (Gees et al., 2010). In rele-
vance to degeneration, cases of gain-of-function mutations in
TRP channels have been reported that cause an increased calcium
influx (Reiser et al., 2005; Grimm et al., 2007; Kim et al., 2007;
Klein et al., 2011). Furthermore, members of TRPC channel fam-
ily were shown to contribute to the mechanism of Huntington’s
disease, through interaction with the store-operated Ca?" entry
pathway (Wu et al., 2011) and to mediate glutamate-induced
excitotoxic neuronal death by promoting cellular Ca*" overload
(Narayanan et al., 2008). Whether the mutated TRP-4(d) chan-
nel conducts toxic levels of Ca** directly, or causes Ca>" dys-
regulation through indirect mechanisms, remains to be
determined. Consistent with a role for membrane depolarization
and voltage-gated calcium channel (VGCC) activation in our
model, we observed partial suppression of trp-4(d) degeneration
in knockdown experiments of some (cca-1) but not other (egl-19
and unc-2) VGCC a-subunits (M. Doitsidou and A. Nagarajan,
unpublished data). In vivo experiments that systematically ad-
dress the involvement of different types of calcium influx path-
ways (mentioned above) as well as redundancy issues between
them will further illuminate the mechanisms of calcium toxicity
in TRP-4(d)-mediated dopaminergic degeneration.

According to our observations, the various classes of dopa-
mine neurons are not equally susceptible to trp-4(d) degenera-
tion: CEPVs and CEPDs show nearly complete degeneration by
adult stage, whereas ADEs are only partially affected and PDEs
are completely unaffected. Different levels of TRP-4 protein
could be partly responsible for their differential susceptibility to
degeneration. Indeed, overexpression of the trp-4(d) cDNA in
dopamine neurons caused partial degeneration of PDEs. Never-
theless, even through overexpression we were unable to cause
PDEs to degenerate as frequently as the head dopaminergic neu-
rons, indicating that there might be intrinsic differences between
neuronal classes that render them differentially susceptible to
degeneration, for example, availability of channel subunits or
downstream effectors of degeneration. In agreement with this
hypothesis, introducing TRP-4(d) channel in neurons that nor-
mally do not express it was not sufficient to induce degeneration.

Despite the fact that some dopaminergic neurons are spared
in trp-4(d) mutants, their function appears to be defective. Pre-
vious ablation studies (Sawin et al., 2000) have shown that vari-
ous classes of dopaminergic neurons act redundantly to mediate
basal slowing response and the presence of PDEs alone is suffi-
cient to elicit this behavior. frp-4(d) mutants were, in contrast,
completely defective for basal slowing response, similar to the
trp-4-null or dopamine-deficient mutants, indicating that the
presence of the mutated channel in the remaining dopamine neu-
rons has functional consequences.

Mutations in TRP family channels have not been previously
implicated in direct degeneration of dopaminergic neurons. In-
terestingly, an association has been reported between a variant in
TRPM7 channels and environmentally triggered Parkinsonism
dementia in a population of Guam (Hermosura et al., 2005).
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However, direct evidence that TRPM?7 variants are causal to this
condition is yet to be obtained. There are 27 members of the TRP
channel family in humans (Venkatachalam and Montell, 2007),
several of which are known to be expressed in the substantia nigra
dopaminergic neurons (Riccio et al., 2002; Tozzi et al., 2003;
Guatteo etal., 2005). Among those, TRPC channels have received
special attention for their protective role in MPP+ models of
dopaminergic neurotoxicity (Selvaraj et al., 2009). With the ad-
vent of next generation sequencing technologies it would be very
pertinent to examine whether TRP channel loci harbor risk-
modifying variants for Parkinson’s disease.
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