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Development/Plasticity/Repair

Astrocyte-Derived BDNF Supports Myelin Protein Synthesis
after Cuprizone-Induced Demyelination
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Itis well established that BDNF may enhance oligodendrocyte differentiation following a demyelinating lesion, however, the endogenous
sources of BDNF that may be harnessed to reverse deficits associated with such lesions are poorly defined. Here, we investigate roles of
astrocytes in synthesizing and releasing BDNF. These cells are known to express BDNF following injury in vivo. In culture, they increase
BDNF synthesis and release in response to glutamate metabotropic stimulation. Following cuprizone-elicited demyelination in mice,
astrocytes contain BDNF and increase levels of metabotropic receptors. The metabotropic agonist, trans-(1S,3R)-1-amino-1,3-
cyclopentanedicarboxylic acid (ACPD), was therefore injected into the demyelinating lesion. Increases in BDNF, as well as myelin
proteins, were observed. Effects of ACPD were eliminated by coinjection of trkB-Fc to locally deplete BDNF and by deletion of astrocyte-
derived BDNF. The data indicate that astrocyte-derived BDNF may be a source of trophic support that can be used to reverse deficits

elicited following demyelination.
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Introduction
Neurotrophin signaling impacts development and health of oli-
godendrocyte lineage cells. Brain-derived neurotrophic factor
(BDNF) has been of particular interest. BDNF increases DNA
synthesis in cultured basal forebrain oligodendrocyte progenitors
(Van’t Veer et al., 2009) and enhances oligodendrocyte differen-
tiation to myelin protein-expressing cells (Du et al., 2006). More-
over, BDNF deficient mice exhibit deficits in progenitors and
myelin protein expression (Vondran et al., 2010) and the condi-
tional knock-out of the BDNF receptor TrkB from mature,
MBP+ oligodendrocytes results in reduced myelin thickness in
both the spinal cord and the corpus callosum (Wongetal., 2013).
These effects may be relevant to in vivo demyelination. For
example, in the cuprizone demyelination model expression of
BDNF is decreased in the corpus callosum, and animals deficient
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in BDNF exhibit a more severe loss of myelin protein in the
lesioned corpus callosum than do their wild-type littermates
(VonDran et al., 2011). Likewise, the administration of mesen-
chymal stem cells that overproduce BDNF promotes recovery
from experimental autoimmune encephalomyelitis-induced de-
myelination (Makar et al., 2009), suggesting that restoring this
neurotrophin to optimal levels impacts recovery. These data
translate well to the pathophysiology of human demyelinating
disease. BDNF levels are decreased in patients with relapsing-
remitting multiple sclerosis (Azoulay et al., 2005), and the disease
modifying agents glatiramer acetate and fingolimod enhance lev-
els of this neurotrophin in vivo (Aharoni et al., 2005; Aktas et al.,
2010; Deogracias et al., 2012).

It would seem advantageous, then, to increase BDNF levels
after demyelination. However, because of the difficulties associ-
ated with the administration of exogenous proteins to the CNS
(Poduslo and Curran, 1996), it is important to consider the pos-
sibility that endogenous sources of trophic support exist and can
be used in the injured CNS. BDNF levels are very low (pg/g) in the
unlesioned adult brain (Matsumoto et al., 2008). However, it is
well known that glial cells increase expression of a variety of
growth factors, including BDNF (Dougherty et al., 2000) follow-
ing injury. Moreover, glial cells in cultures that are found to
mimic those in the ischemic brain (Zamanian et al., 2012) in-
crease BDNF in response to the neurotransmitter glutamate (Wu
etal., 2004; Jean et al., 2008), raising the possibility that neurotro-
phin availability might be regulated by neuronal signals. Further
studies indicate that these effects are mediated through the action
of metabotropic glutamate receptors (mGluR) and the mGluR-
specific agonist ACPD was found to enhance the production (Wu
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Cuprizone-lesioned mice exhibitan increase in BDNF and myelin protein levels 6 h after a single stereotaxicinjection of ACPD. a, Western blots demonstrate BDNF, MBP, and MAG protein

levels in the corpus callosum of wild-type mice subjected to a 4 week cuprizone lesion and injected with ACPD or 0.9% saline vehicle. GAPDH is shown as a loading control. b, Graphs represent a
densitometric analysis of Western blots normalized to GAPDH and are presented as percentage saline-injected control. Levels of mature BDNF are indicated in this analysis. ¢, Immunohistochemical
analysis of MBP, MAG and PLP reactivity in the corpus callosum reveals strong staining intensity in the intact corpus callosum that is decreased following exposure to cuprizone. This MBP, MAG, and
PLP deficitis reversed in cuprizone-lesioned animals 6 h after the administration of ACPD. Western blot data analyzed by ANOVA; ***significantly different from saline-injected control at p << 0.0005;
*significantly different at p << 0.02. Each Western blot lane is from the corpus callosum of a single mouse within one experiment. Each experiment was repeated eight times. Scale bar, 100 ..m. d,
Quantification of CC1+ oligodendrocytes in the lesioned corpus callosum revealed that ACPD injection does not affect CCT+ cell numbers; N = 3.

et al., 2004) and release (Jean et al., 2008) of BDNF by cultured
astrocytes.

In the present study, we explore the possibility that the
metabotropic glutamate receptor agonist ACPD increases BDNF
and myelin protein levels in vivo and that this manipulation may
prove advantageous to a demyelinating lesion. In particular, us-
ing the cuprizone model we find that ACPD enhances production
of astrocyte-derived BDNF, which supports the synthesis of my-
elin proteins in the demyelinated corpus callosum. These studies
indicate that reactive astrocytes in a CNS lesion can be a source of
trophic support and can be manipulated to support proximate
cells, injured after a demyelinating lesion.

Materials and Methods

Experimental animals
Mice were managed by the Rutgers Robert Wood Johnson Animal Facil-
ity. Animal maintenance, husbandry, transportation, and use were in
compliance with the Laboratory Animal Welfare Act (PL 89-544; PL-91-
579) and with NIH guidelines (NIH Manual Chapter 4206).

Wild-type mice on a 129/BALBC/C57 background (The Jackson Lab-
oratory) were used for the majority of these studies. In addition, we used
homozygous HA-BDNF mice generated by replacing the endogenous

Bdnf coding exon with a murine Bdnf sequence with a C-terminal hem-
agglutinin (HA) tag (Yang et al., 2009).

The hGFAP-CreER™-bdnf ""-ROSA26 mouse line was a result of
crosses of the htGFAP-CreER™ mouse (MMRC), the bdnfﬂ/ﬂ mouse (The
Jackson Laboratory), and the ROSA26 mouse (a gift from Michael Ma-
tise, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ).
Bdnf""-ROSA26 mice lacking cre expression were used as controls.
These ROSA26 cre reporter mice, however, although able to detect cre-
dependent recombination in nonastrocytic populations, are known to be
very inefficient in detecting recombination in astrocytes (Casper and
McCarthy, 2006). Therefore, we used another reporter mouse (astrocyte cre
reporter; ACR, MMRC). In this mouse GFAP+ cells express 3-gal before
and eGFP after tamoxifen-elicited recombination (Casper and McCarthy,
2006). The mouse was mated to the hGFAP-CreER™bdnf™" mouse.

Stereotaxic injections

Sterile surgical and postoperative procedures were followed as in the
Animal Welfare Act and the NIH Guide for the Care and Use of Laboratory
Animals. Stereotaxic injections were made into the corpus callosum of
adult male mice, at coordinates from bregma: 1.0 and 0.5 mm lateral to
the sagittal sinus. A Hamilton syringe was lowered to a depth of 1.875
mm to target the midcaudal corpus callosum over the fimbria/fornix.
Two microliters of 0.5 um ACPD (Tocris Bioscience) or 0.9% saline
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Figure 2.

The ACPD effect on the expression of myelin proteins in the demyelinated corpus callosum is inhibited by TrkB-Fc. Wild-type mice were fed control or cuprizone-laden food for 4 weeks,

then stereotaxically injected with either 0.9% saline or ACPD, along with 1 g TrkB-Fc or vehicle. a, Western blots demonstrate MBP and MAG protein levels in the corpus callosum of wild-type mice
subjected to a 4 week cuprizone lesion. GAPDH is shown as a loading control. b, Graphs represent a densitometric analysis of Western blots normalized to GAPDH and are presented as percentage
saline-injected control. Data analyzed by ANOVA; *significantly different from saline-injected control at p << 0.0002; ***significantly different at p << 0.0005. Each Western blot lane is from the
corpus callosum of a single mouse within one experiment. Each experiment was repeated four times.

vehicle was infused. In some cases TrkB receptor bodies (TrkB-Fc; 0.5
g/ ul; Sigma-Aldrich) were administered along with ACPD or saline.

Cuprizone treatment

Demyelination was initiated by feeding 8-week-old wild-type male
mice or HA male mice 0.2% cuprizone (Sigma-Aldrich) milled into
mouse feed (Harlan Teklad) or identically processed control feed for
4 weeks. ACPD or saline vehicle was injected after 4 weeks of contin-
uous treatment, then killed and processed for Western blot or
immunohistochemistry.

Tamoxifen administration and conditional knock-outs
Eight-week-old hGFAP-CreER™-bdnf "/?-ROSA26 or Bdnf""-ROSA26
mice were injected with tamoxifen (1 mg2X/d for 5 d) to initiate recom-
bination. Demyelination was then elicited by feeding the animals 0.3%
cuprizone (Sigma-Aldrich) for 4 weeks. ACPD or saline was injected into
the corpus callosum, and animals were killed after 6 h.

Recombination efficiency was determined using ACR mice that were
injected with tamoxifen 2 X/d for 5 d and then killed 2 weeks after the first
injection. The loss of X-gal staining after recombination allowed for
determination of recombination efficiency.

Western blot
A mouse brain matrix, which permits coronal cuts to be made in 1 mm
segments along the rostral-caudal axis, was used to dissect the midline
corpus callosum overlying the fimbria-fornix and rostral hippocampus.
Tissue was lysed and protein concentrations were determined using a
BCA protein assay kit (Pierce).

Antibodies for Western blot. Antibodies for Western blots included a
mouse monoclonal antibody to MBP (Serotec), as well as rabbit poly-

clonal antibodies to BDNF (Santa Cruz Biotechnology), MAG (Santa
Cruz Biotechnology), mGluR1 (Millipore), mGluR5 (Millipore), and
mGluR2/3 (Millipore). Mouse monoclonal antibodies to GAPDH (Biode-
sign) and beta-tubulin (Sigma-Aldrich) were used as loading controls.

Western blot technique. For the analysis of BDNF and MBP, protein
was run on 12% Bis-Tris gels (Invitrogen). For the analysis of MAG,
protein was run on a 4-12% Tris-Glycine gels (Invitrogen). For the
analysis of mGluR1, mGluR5, and mGluR2/3, protein was run on 3—8%
Tris-acetate gels (Invitrogen). Protein was then transferred to a PVDF
membrane (Millipore) and membranes were exposed to anti-mouse,
anti-rabbit, or anti-goat primary antibodies, as appropriate. All Western
blots were visualized with a chemiluminescence system (GE Healthcare)
and data were analyzed using Quantity One V 4.2.1 software (Bio-Rad).
Membranes were reprobed with anti-GAPDH or anti-beta-tubulin as
loading controls.

Immunohistochemistry

Tissue preparation. Brains from adult mice perfused with 4% paraformal-
dehyde (PFA) were postfixed in PFA, dehydrated, and embedded in OCT
(Tissue Tek). Fourteen micrometer serial sections were taken in the cor-
onal plane from the basal forebrain to the caudal hippocampus. For
mGluR2/3 (Aronica et al., 2001), mice were perfused with 2% PFA and
20% saturated picric acid (Sigma-Aldrich).

Antibodies used for immunohistochemistry. Antibodies for immunohis-
tochemistry included mouse monoclonal antibodies to CC1 (Calbio-
chem) MBP (Serotec), Neurofilament light-chain (NF-L; Millipore), and
GFAP (Millipore); a goat polyclonal antibody to proteolipid protein
(PLP; Santa Cruz Biotechnology); rabbit polyclonal antibodies to BDNF
(Alomone Labs), HA (Sigma-Aldrich), MAG (Santa Cruz Biotechnol-
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Figure 3.

Group I and Group Il metabotropic glutamate receptor expression is increased in the cuprizone-lesioned corpus callosum. Wild-type mice were fed control or cuprizone-laden

food for 4 weeks, then stereotaxically injected with either saline vehicle or ACPD. a, Western blots demonstrate mGluR1, mGluR5, and mGluR2/3 protein levels in the control and
cuprizone-lesioned corpus callsoum. Beta-tubulin is shown as a loading control. b, Graphs represent a densitometric analysis of Western blots normalized to GAPDH and are presented
as percentage saline-injected control. ¢, Immunohistochemical visualization of mGluRs and CC1+ oligodendrocytes. Western blot data analyzed by ANOVA; *significantly different from
saline-injected control at p << 0.05. Each Western blot lane is from the corpus callosum of a single mouse within one experiment. Each experiment was repeated four times. Scale bar, 20 pm.
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ogy), mGluR1 (Millipore), mGluR5 (Milli-
pore), and mGluR2/3 (Millipore); a chicken
polyclonal antibody to GFAP (Millipore); and
arat monoclonal antibody to CD11b (Abcam).

Visualization of proteins. MBP, PLP, MAG,
and CC1 were visualized using the avidin-
biotin complex (Vector Laboratories) and
DAB (Sigma-Aldrich). For CCl visualization
sections were microwaved in 0.01 M citrate
buffer for antigen retrieval before primary
antibody incubation. For immunofluores-
cence, anti-rabbit AlexaFluor 594, anti-
mouse AlexaFluor 488, anti-rat AlexaFluor
488, or anti-chicken AlexaFluor 657 (Invit-
rogen) were used.

Quantification of CC1+ oligodendrocytes
For counts of CC1+ oligodendrocytes, images
of 14 pum serial sections separated by 56 um
were obtained from the midline corpus callo-
sum overlying the fimbria-fornix and rostral
hippocampus. Images were analyzed at 100X
using a Leica microscope. CCl+ cells were
counted in a total of 16 sections for each
animal.

Imaging

Colocalization was initially characterized using
a Leica fluorescent microscope equipped with
an Olympus MagnaFire digital camera and
ImagePro image analysis software. Colocaliza-
tion of the different cellular markers was con-
firmed by taking 1 wm confocal images on a
Zeiss 510LSM confocal microscope running
Zeiss image browser software.

Data analysis

For each experiment a control and cuprizone
fed mouse, injected with saline or ACPD were
compared. In some cases, a control and cupri-
zone fed mouse, injected with saline or ACPD
were also injected with TrkB-FC or vehicle and
compared with one another. In other cases, ta-
moxifen injected mice were fed control or cu-
prizone food and then injected with saline or
ACPD. For the CC1+ cell counts cuprizone
treated ACPD mice were compared with vehi-
cle injected mice. Each experiment was re-
peated =3 times. Statistical differences were
determined using ANOVA followed by Fisher’s
protected least significant post hoc test or Stu-
dent’s ¢ test as appropriate. Conditions were
considered significant at p < 0.05.

Results

ACPD increases the expression of
BDNF and myelin proteins in the
demyelinated corpus callosum

In culture, the metabotropic agonist
ACPD increases the production and re-
lease of BDNF from astrocytes (Wu et al.,
2004; Jean et al., 2008). In vivo, injection
of metabotropic agonists are reported to
reverse deficits associated with a model of
Parkinson’s disease (Agari et al., 2008)
and in another report to increase expres-
sion of BDNF in the intact mouse brain
(Di Liberto et al., 2010), suggesting that
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after cuprizone (c). These are representative images seen in four independent experiments. Scale bar, 20 um.
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metabotropic agonists may enhance trophic
effects in the brain.

To evaluate the effects of ACPD in the
cuprizone model, wild-type mice treated
with cuprizone received a single stereo-
taxic injection of either ACPD (0.5 uM) or
saline vehicle into the midcaudal corpus
callosum. After 6 h, mice were killed and
processed for Western blot. Cuprizone
treatment results in a significant decrease
in BDNF, MBP, and MAG protein levels
in the vehicle-injected group. However,
ACPD elevated BDNF protein (both the
pro- and mature forms) to unlesioned
control levels in the cuprizone-treated
group. Moreover, the expression of MBP
and MAG protein was also significantly
elevated (Fig. 1a,b).

Western blot studies were comple-
mented with immunohistochemical exami-
nation of MBP, MAG, and PLP protein in
the cuprizone-lesioned corpus callosum of
animals that had been injected with either
ACPD or saline. As expected, MBP, MAG,
and PLP staining is prevalent in the myelin-
rich corpus callosum of unlesioned animals.
However, cuprizone-treated mice that re-
ceived saline vehicle exhibit markedly re-
duced myelin protein staining intensity, and
this reduction appears to be at least partially
reversed in animals that were injected with
ACPD (Fig. 1¢). When numbers of CC1+
oligodendrocytes in the cuprizone group
were counted following ACPD, no differ-
ences were noted (Fig. 1d). Thus, although
both BDNF and myelin protein expression
are decreased in the corpus callosum in re-
sponse to cuprizone, a single injection of
ACPD can promote the recovery of these
proteins/ cell to control levels within 6 h.

We have reported that cuprizone treat-
ment results in an ~50% decrease in CC1+
oligodendrocytes extending over a 6 week
period (VonDran et al., 2011). Importantly
these results indicate that the remaining
CC1+ oligodendrocytes can respond to a
trophic influence and increase their myelin
proteins in response to ACPD, suggesting
the potential therapeutic utility of this gluta-
mate metabotropic agonist.

The ACPD effect on expression of
myelin proteins is dependent on

BDNF signaling

The ACPD-mediated increase in myelin
protein expression is associated with an
increase in BDNF, suggesting that the ef-
fect may be dependent upon the enhanced
availability of neurotrophic support in the
lesion site. This hypothesis is consistent
with the known effects of neurotrophin
signaling on the health of oligodendrocyte
lineage cells, both in culture (Du et al,,
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2006) and in vivo (Makar et al., 2009). To
more directly explore the role of BDNF in
mediating the effects of ACPD in this
model of demyelination, TrkB-Fc were
administered along with the agonist or sa-
line. TrkB-Fc are fusion proteins encod-
ing the extracellular domain of the TrkB
receptor fused to a histidine-tagged tail re-
gion of human IgG1, and have been used
by others to inhibit BDNF signaling
through endogenously expressed TrkB re-
ceptors (Huang et al., 2010). As seen previ-
ously, decreases in MBP and MAG protein
in the corpus callosum of cuprizone-treated
animals are partially reversed by ACPD.
However, the ACPD effect is blocked when
the interaction of BDNF with endogenous
receptors is inhibited by the coadministra-
tion of TrkB-Fc (Fig. 2).

Metabotropic glutamate receptors are Saline
present on astrocytes following
cuprizone

To identify the cells responsible for in-
creases in BDNF, our next experiments
examined metabotropic receptors that
bind ACPD. ACPD binds to both Group I
and II metabotropic receptors. Therefore,
protein expression of these receptors was
monitored in the lesioned and unlesioned
brain. Although Group I (mGluR1, mGluR5)
and Group II, (mGluR2/3) receptors are
expressed to some degree in the intact cor-
pus callosum, the expression of each of
these receptors is significantly upregu-
lated after 4 weeks of treatment with cu-
prizone. However, treatment with ACPD
does not itself impact the expression of
any of these receptors (Fig. 3a,b).

To determine whether effects of metabo-
tropic stimulation are directly on the oligo-
dendrocytes, immunohistochemistry was
used to colocalize Group I or Group II re-
ceptors to CC1+ oligodendrocytes. Neither
Group I (mGluR1 and mGlIuR5), nor the
Group II (mGluR2/3) receptors were de-
tected on CC1 + oligodendrocytes of the in-
tact or cuprizone-lesioned corpus callosum,
suggesting that this population is not recep-
tive to metabotropic stimulation with
ACPD following cuprizone (Fig. 3¢). More-
over, neither the mGluR1, mGIuR5 nor the
mGluR2/3 receptors are observed on mi-
croglia, which are dramatically increased in
the lesion site (data not shown).

In contrast, NF-L+ axons running in
the corpus callosum do colocalize exten-
sively with mGluR2/3, although not
mGluR]1 or mGluR5 (Fig. 4). Moreover, astrocytes, which express
increased levels of GFAP following cuprizone, colocalize extensively
with receptors mGluR1 and mGluR5, but not with mGluR2/3 (Fig.
5). These observations raise the possibility that axons and astrocytes
may respond to ACPD and support the recovery of oligodendrocyte
lineage cells from demyelinating injury.

Figure 6.
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NF-L Merge

GFAP+ astrocytes express BDNF in the cuprizone-lesioned corpus callosum. Numbers of GFAP+ cells increase after
ACPD. a, GFAP+ astrocytes in the cuprizone-lesioned corpus callosum colocalize with BDNF immunoreactivity. NF-L+ axonal
tracts are not reactive for BDNF. b, HA-BDNF mice fed control or cuprizone feed for 4 weeks exhibit GFAP and HA immunoreactivity
in only a small subset of the GFAP+ cells (arrows) in control mice or those fed cuprizone, whereas HA is predominantly found in
non-GFAP+ cells (arrowhead) in controls. After cuprizone, the HA+ non-GFAP+ cells are greatly reduced. When cuprizone-
treated mice are injected with ACPD, there is an increase in HA immunoreactivity associated with GFAP+ cells. These are repre-
sentative images seen in three independent experiments. Scale bar, 20 wm.

Astrocytes express BDNF in the cuprizone-lesioned

corpus callosum

Although both axons and astrocytes are potentially receptive to
ACPD stimulation, it is currently not known whether either of
these populations is a source of neurotrophins following a demy-
elinating injury. Cortical neurons, including those that project
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After cuprizone, the GFAP population re-
mains colocalized, at least in small part,
with HA immunoreactivity while HA im-
munoreactivity in the non-GFAP+ pop-
ulation is reduced. After treatment with
ACPD, however, GFAP+ astrocytes in-
crease levels of immunoreactivity for HA.
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through the corpus callosum, are known to express BDNF (Ca-
nals etal., 2001). The GFAP+ astrocytic population has also been
demonstrated to produce BDNF following injury to the CNS
(Dougherty et al., 2000), and as mentioned previously, the pro-
duction and release of this neurotrophin in culture is enhanced
by metabotropic stimulation (Jean et al,, 2008). Cuprizone
treated mice were therefore evaluated for BDNF in the astrocyte and
axonal populations. GFAP+ astrocytes colocalize with BDNF im-
munoreactivity, while NF-L+ axons are not reactive for this neu-
rotrophin (Fig. 6a). Therefore, in addition to expressing the relevant
metabotropic receptors, GFAP+ astrocytes are the only population
in the demyelinated corpus callosum to also express BDNF, suggest-
ing their importance as a source of trophic support after injury.

To confirm the astrocytes as sources of BDNF, subsequent
studies used an bdnf*™/bdnf** targeted mouse in which the en-
dogenous Bdnf coding exon was replaced with a murine sequence
with a C-terminal HA tag (Yang et al., 2009). This permitted the
cellular localization of BDNF in the corpus callosum using a
highly specific antibody to HA. As was the case with wild-type
mice, a subpopulation of GFAP+ astrocytes expresses HA under
control conditions. Interestingly, however, the predominant
population is composed of non-GFAP+ cells that exhibit BDNF.

ACPD-elicited increases in BDNF protein are reduced in cuprizone-treated animals after cre recombination. Cre re-
combinase + GFAPcreER™-floxBDNF-ROSA26 mice and Cre recombinase — floxBDNF-ROSA26 controls were injected with tamox-
ifen and fed cuprizone-laden food for 4 weeks before they received a single stereotaxicinjection of either ACPD or saline vehicle. a,
Western blots demonstrate BDNF protein in the corpus callosum of these animals. GAPDH is shown as a loading control. b, Graph
represents a densitometric analysis of a Western blot of mature BDNF normalized to GAPDH and presented as percentage Cre—
saline-injected control. ¢, Cre recombination results in a decrease in elevations of ACPD-elicited BDNF. Immunohistochemical
analysis demonstrates that BDNF is eliminated from ACPD-treated GFAP+ astrocytes in the corpus callosum of cuprizone-treated
(re+ GFAPcreERT2-floxBDNF-ROSA26 mice. Western blot data were analyzed by ANOVA; *significantly different from saline-
injected, cre— controls at p << 0.01; ***significantly different at p << 0.01. Each Western blot lane is from the corpus callosum of
a single mouse within one experiment. Each experiment was repeated four times. Scale bar, 20 pm.

ever, following ACPD treatment, this sub-
group expands.

Astrocyte-derived BDNF promotes
recovery from

cuprizone-induced demyelination

To determine whether astrocyte-derived
BDNF is the mediator of the ACPD effect,
we took advantage of a tamoxifen-
inducible mouse model that eliminates
BDNF (Rios et al., 2001) from GFAP+ cells
(Casper et al, 2007). These hGFAP-
CreER"™-bdnf ""-ROSA26 mice express
tamoxifen-inducible cre recombinase
under the control of the human GFAP
promoter. Following tamoxifen adminis-
tration, cre recombinase enters the nu-
cleus, where it recognizes loxP sites and
excises the BDNF coding exon. The mice
have been shown by others to exhibit no
evidence of nonastrocytic recombination
in tamoxifen-induced adult mice (Casper
etal., 2007). Moreover, an independently
generated Cre-ERT2 mouse line that used
an hGFAP promoter sequence, also ex-
hibited recombination primarily in
GFAP+ astrocytes and only <1% of oli-
godendrocytes exhibited recombination
in the adult corpus callosum (Chow et al.,
2008). In our hands, analysis of an astro-
cyte cre reporter mouse revealed a level of
49% recombination (percentage GFAP cells exhibiting recombi-
nation/total GFAP+ cells) in astrocytes following tamoxifen
treatment.

Both hGFAP-CreER"-bdnf"""-ROSA26 mice and control cre
recombinase negative bdnf’-ROSA26 mice were injected with ta-
moxifen and then fed cuprizone-laden food. After 4 weeks of
treatment, the expression of BDNF in both cre— and cre+ ani-
mals subjected to a demyelinating cuprizone lesion and injected
with ACPD was monitored using Western blot. As expected, cu-
prizone treatment induces a significant decrease in BDNF that is
reversed within 6 h of ACPD injection in control cre-mice. How-
ever, ACPD is unable to enhance the expression of BDNF protein
in mice deficient in bdnf in astrocytes (1GFAP-CreERT2-bdnf ™~
ROSA26; Fig. 7a,b). Consistent with this observation, ACPD- treated
mice exhibited a reduction in BDNF+ GFAP+ astrocyte profiles in
the cre+ mice injected with tamoxifen (Fig. 7c). These data suggest
that the ACPD effect is dependent upon the ability of GFAP+ astro-
cytes to synthesize BDNF in the lesion site.

We hypothesized that the ACPD-stimulated production of
astrocyte-derived BDNF increases myelin proteins that were de-
creased after cuprizone. While treatment with ACPD increases
both MBP and MAG expression in cuprizone-lesioned, cre—
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control mice, the effect is completely g

eliminated when BDNF is reduced in MW

GFAP+ cells of cre+ animals (Fig. 8a,b). (kDa)

These data demonstrate that ACPD re- 28 e
quires the production of BDNF by 19 -

GFAP+ astrocytes to mediate its effects
on expression of myelin proteins in the
demyelinated corpus callosum.

Discussion &

Previous work defined BDNF as a trophic

factor that enhances expression of differ- o= Saine
entiated traits MBP and MAG following a (kDa)
demyelination lesion. To explore the pos-

sibility that small molecules can elevate 100- @D v

endogenous sources of BDNF to reverse
deficits following a lesion, this work eval-
uated effects of the metabotropic agonist,
ACPD. In the cuprizone model, expres-
sion of both the Group I and Group II
metabotropic glutamate receptors was
found to be elevated, a finding reminis-
cent of other lesion models (Fazio et al.,
2008) and what occurs in multiple sclero-
sis (Fazio et al., 2008; Geurts et al., 2003).
Moreover, subsets of GFAP+ astrocytes
colocalize with mGluR1 and mGIuR5 as
well as BDNF, making them candidate
cellular sources for trophin support. To
determine effects of metabotropic stimu-
lation a general metabotropic agonist
ACPD was injected into the lesion site.
ACPD increased both BDNF and myelin protein levels in the
demyelinated corpus callosum. This effect was found to be depen-
dent upon the production of BDNF by GFAP + astrocytes, suggest-
ing that the astrocyte population can be targeted to elaborate
neurotrophic support that promotes recovery from demyelination.

c
Saline

Figure8.

Roles of metabotropic receptors on astrocytes

The concept that glial cells may be responsive to metabotropic
stimulation is not new. The presence of mGluR5 mRNA tran-
scripts has previously been detected in cultured astrocytes, and
these cells respond to stimulation with Group I selective agonists
with PKC-dependent oscillations in intracellular calcium con-
centrations (Baldzs et al., 1997; Nakahara et al., 1997). Many
groups are investigating the role of these receptors on astrocytes
as regulators of extracellular glutamate levels, as well as regulators
of other gliotransmitters (Halassa and Haydon, 2010).

Previous work from our lab has demonstrated that glutamate,
through the metabotropic glutamate receptors, also supports the
production and release of BDNF from cultured basal forebrain
astrocytes (Jean et al., 2008), and others have demonstrated that
cultured mouse cortical astrocytes respond to metabotropic
stimulation by increasing the synthesis and release of TGF-f3
(Bruno et al., 1998) and NGF (Ciccarelli et al., 1999), as well as
IL-1B stimulated release of IL-6 (Aronica et al., 2005). Our work
adds to this literature by establishing that metabotropic glutamate
agonist stimulated astrocytes may serve as sources of BDNF in vivo.
Although previous studies have indicated that group I mGluRs can
reverse deficits associated with degenerative disease models (Agari et
al., 2008), to the best of our knowledge, this is the first evidence that
metabotropic receptors enhance BDNF in astrocytes in vivo in a
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The ACPD effect on myelin protein expression is blocked when astrocyte-derived BDNF is reduced. Cre recombinase +
GFAPcreERT2-floxBDNF-ROSA26 mice and Cre recombinase — floxBDNF-ROSA26 controls were injected with tamoxifen and fed
cuprizone-laden food for 4 weeks before they received a single stereotaxic injection of either ACPD or saline vehicle. a, Western
blots demonstrate MBP and MAG protein in the corpus callosum of these mice. GAPDH is shown as a loading control. b, Graph
represents a densitometric analysis of Western blots normalized to GAPDH and are presented as percentage cre- saline-injected
control. Western blot data analyzed by ANOVA; *significantly different from saline-injected, cre- controls at p << 0.01; ***signif-
icantly different at p << 0.01. Each Western blot lane is from the corpus callosum of a single mouse within one experiment. Each
experiment was repeated four times.

manner that has functional consequences and may explain the re-
versal of deficits noted previously.

The effect of ACPD occurs rapidly

We note an increase in BDNF, as well as myelin proteins 6 h
following the ACPD injection. This effect of ACPD is consistent
with previous work in our laboratory (Wu et al., 2004) indicating
that ACPD is able to increase BDNF mRNA within 4 h, suggesting
that elevation in BDNF is a rapidly regulated event. Similarly,
increases in MBP mRNA in response to signaling, can occur
within a relatively short time frame (Hashimoto et al., 2011), as
can increases in MBP protein including in response to glutamate
stimulation (Wake et al., 2011). The mechanisms underlying in-
creases in BDNF, as well as in the myelin proteins, will be the
subject of further investigation.

Effects of other astrocyte-derived molecules following a
demyelinating lesion

Astrocytes are a well characterized source for other biologically
active molecules, both in a culture dish and in vivo. For example,
IGF-1 (Komoly et al., 1992), IL1B (Guo et al., 2001), and TNF«
(Chung and Benveniste, 1990) have all been detected in astro-
cytes and appear to be regulators of the myelin repair process.
Thus, transgenic mice overexpressing IGF-1 are protected from
the cuprizone-induced loss of mature oligodendrocytes (Mason
etal., 2000), whereas mice lacking the Type 1 IGF receptor do not
remyelinate efficiently when cuprizone is removed from the diet
(Mason et al., 2003). Similarly, transgenic mice lacking IL-183
exhibit impaired remyelination compared with wild-type litter-
mates (Mason et al., 2001), and in TNF-a knock-out animals
remyelination is inefficient and incomplete (Arnett et al., 2001).
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It remains to be determined whether enhanced expression by
metabotropic agonists may elicit recovery. Interestingly, overex-
pression of PDGF-A in astrocytes does result in the increase of
PDGFRa+ cells following cuprizone-elicited demyelination
(Woodruffetal., 2004), providing additional evidence that astro-
cytes are sources of multiple trophic factors that may be har-
nessed to reverse deficits.

The cuprizone-elicited lesion site is complex

It is well known that the lesion site in the corpus callosum con-
tains numerous cells and is a complex environment, including
with respect to BDNF. Thus oligodendrocytes in the corpus cal-
losum (Dai et al., 2003) express the neurotrophin and cultured as
well in vivo astrocytes are known to express the neurotrophin
(Dougherty et al., 2000; Wu et al., 2004; Jean et al., 2008). Inter-
estingly, the nonastrocyte derived BDNF appears to dominate
overall protein levels of BDNF seen in the unlesioned control
since this population is reduced following cuprizone, coincident
with a decrease in BDNF as defined by Western blot.

The response of astrocytes with respect to BDNF is also of
interest. Following cuprizone astrocytes increase expression of
GFAP. However, their expression of BDNF is minimal, with only
a subpopulation of astrocytes exhibiting the trophin. Neverthe-
less, the astrocytes play an important role when stimulated spe-
cifically by ACPD. Only astrocytes express BDNF and the
metabotropic glutamate receptors that are affected by ACPD.
The role of this astrocytic source of BDNF is critical after ACPD
treatment, as both the increases in BDNF and the ACPD effects
on myelin proteins are largely eliminated after cre-mediated re-
combination in GFAP+ cells. It appears that astrocytes are im-
portant factories of molecules that may be harnessed to enhance
repair. Future studies will continue to explore and identify other
critical factors.

In sum, we have demonstrated that ACPD is able to reverse
deficits in myelin proteins following a cuprizone lesion. We show
further that it does so by eliciting increases in BDNF in reactive
astrocytes. We suggest that metabotropic agonists may be useful
agents to modulate the lesion environment to enhance recovery
from a demyelinating injury and possibly other degenerative con-
ditions in the CNS.
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