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Action Recognition by Motion Detection in Posture Space
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The visual recognition of action can be obtained from the change of body posture over time. Even for point-light stimuli in which the body
posture is conveyed by only a few light points, biological motion can be perceived from posture sequence analysis. We present and analyze
a formal model of how action recognition may be computed and represented in the brain. This model assumes that motion energy
detectors similar to those well-established for the luminance-based motion of objects in space are applied to a cortical representation of
body posture. Similar to the spatio-temporal receptive fields of regular motion detectors, these body motion detectors attain receptive
fields in a posture–time space. We describe the properties of these receptive fields and compare them with properties of body-sensitive
neurons found in the superior temporal sulcus of macaque monkeys. We consider tuning properties for 3D views of static and moving
bodies. Our simulations show that key properties of action representation in the STS can directly be explained from the properties of
natural action stimuli. Our model also suggests an explanation for the phenomenon of implied motion, the perceptual appearance, and
neural activation of motion from static images.
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Introduction
In biological motion stimuli, such as point-light displays (Jo-
hansson, 1973), information about the body posture is en-
coded in the location of the point-lights, which convey the
positions of the limbs. The movements of the limbs with re-
spect to each other signal body motion. The movement of each
single point-light presents the local motion of a single joint.
Many psychophysical experiments over the last years have
shown that local motion information is not necessary to per-
ceive the movement of the walker (Beintema and Lappe, 2002;
Beintema et al., 2006; Lange and Lappe, 2007; Kuhlmann et al.,
2009; McKay et al., 2009; Reid et al., 2009; Lu, 2010; Thirkettle
et al., 2010; Theusner et al., 2011). Instead, biological motion
perception can be performed by analyzing first body posture
and then body motion (Beintema and Lappe, 2002; Giese and
Poggio, 2003; Lee and Wong, 2004; Lange and Lappe, 2006).
This approach, which is also quite popular in computer graph-
ics and image analysis (recent surveys in Poppe, 2010; Wein-
land et al., 2011), uses templates of the human figure to obtain
articulated movement, rather than motion signals from the
joints as suggested by older literature (Johansson, 1973; Cut-
ting, 1981; Webb and Aggarwal, 1982; Giese and Poggio,
2003). The present paper focuses on the neural processes that
may support this approach.

In the human brain, visual information about body posture is
represented in the fusiform body area (Michels et al., 2005; Peelen
and Downing, 2005b; Schwarzlose et al., 2005), the occipital face
area (Vaina et al., 2001; Grossman and Blake, 2002; Michels et al.,
2005; Peelen and Downing, 2005a), and the extrastriate body area
(Downing et al., 2001). Recent electrophysiological studies in
macaque monkeys found single neurons in the lower bank of the
superior temporal sulcus (STS) and the inferior temporal cortex
that respond to static images of body postures (Vangeneugden et
al., 2009, 2011; Singer and Sheinberg, 2010). In the upper bank of
the STS, neurons were found that respond to body motion (Van-
geneugden et al., 2011), consistent with the selectivity of the STS
to biological motion (Oram and Perrett, 1994; Vaina et al., 2001;
Grossman and Blake, 2002; Saygin, 2007).

In the present paper, we describe a model of body motion
perception that uses (static) posture selectivity to derive body
motion via generalized motion mechanisms operating on the
posture representation. The model considers body postures in
three dimensions by implemented 2D postures seen from differ-
ent view points (profile, half-profile, or frontal view). This allows
us to compare model and data and determine which aspects of
the neural representation of action result from which static or
dynamic features.

Materials and Methods
Following earlier proposals (Lange and Lappe, 2006; Lange et al., 2006)
and consistent with recent experimental findings (Lu, 2010; Theusner et
al., 2011), our model consists of two consecutive processing stages: a
template matching stage for body posture analysis followed by a motion
detection stage for body motion analysis. The model, however, deviates
from previous models in two important aspects. First, it uses posture
templates from different view points to allow recognition of actions in
different 3D directions. Second, the motion stage is modeled as motion
energy detection (a standard model in luminance-based motion percep-
tion) (Reichardt, 1957; van Santen and Sperling, 1984; Adelson and Ber-
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gen, 1985; Watson and Ahumada, 1985; Burr
et al., 1986) applied to the posture representa-
tion. In analogy to the spatio-temporal recep-
tive fields of object motion detectors, our
model generates what we will call posturo-
temporal receptive fields, the properties of
which we will compare with known properties
of action-selective neurons in the temporal
cortex. In the following, we will describe both
processing stages in detail. The model is de-
picted in Fig. 3 and described in detail below.

The representation of body posture
The body posture representation is formed by
neurons that are selective to specific body pos-
tures. The distribution of activity in the body
posture representation over time contains in-
formation about the change of the posture dur-
ing the movement (i.e., the body motion). This
will be the basis for the subsequent motion
analysis.

The body posture selectivity of single neu-
rons is modeled as a template matching pro-
cess. We therefore describe how the templates
were generated, how the template matching
was implemented, and how the response of the template representation
to a stimulus was simulated.

Generation of templates and test stimuli. We collected motion-
tracking data from nine individuals that walked along a short hallway
(Beintema et al., 2006). We recorded the 3D coordinates of the 12
major joints (feet, knees, hips, hands, elbows, and shoulders) and
interpolated between them to obtain coordinates for the whole limbs.
From the 3D coordinates, five different 2D orthographic projections
were created: leftward, rightward, frontal, and the two 45° interme-
diate facing directions. The orthographic projections for the facing
directions 225°, 270°, or 315° are identical to those for 135°, 90°, and
45°, respectively, and were therefore not separately created. The da-
tasets were normalized such that the midpoint between the hips was
always in the same position and the height of the body (feet to shoul-
ders) was the same for each walker. The walking cycle (two steps) was
normalized to 1.39 s and was divided into 100 frames. These frames
were used to construct the template representation.

The same dataset was used to construct the stimuli for the simula-
tion of model responses. Using a jackknife procedure, one of the
walkers was selected as stimulus, whereas the other eight served as
templates. The simulations were run 9 times, once for each of the
walkers as stimulus. The stimuli were constructed as point-light walk-
ers with points either located on the joints (Johansson, 1973), or on a
few randomly selected locations on the limbs (Beintema and Lappe,
2002), or densely covering the limbs (248 points) to simulate a stick
figure walker. The locations of the joint positions at time points that
fell between the 100 frames of the recording, were approximated by
linear interpolation.

Posture-selective neurons through template matching. The posture-
selective neurons were simulated as template detectors as described
by Lange and Lappe (2006). Each neuron had a preferred static body
posture that matched one of the frames of the walker data. Thus, there
were 4000 posture-selective neurons (8 walkers � 100 frames � 5
facing directions). The limb configuration of the respective frame of
the walker data was used as the template for the neuron’s selectivity.
Figure 1A shows four example templates for different walking pos-
tures. Illustrated are representations of a walker with the facing direc-
tion 0° and 45°. The body (arms and legs) is illustrated by white lines.
These templates are considered as receptive fields for which the
sensitivity falls off as a Gaussian function of the Euclidean distance
between a stimulus point (xi, yi) presented at the time t and the cor-
responding nearest location on a limb (ci, ri) of the preferred posture
� of the template. The neuron’s response R to a stimulus consisting of

N points is given by the sum of the responses to all the individual
points of the stimulus as follows:

R��t� � �
i�1

N

exp� �
� �xi�t�, yi�t�� � ��i, �, �i, �� �2

2 · � �, (1)

where � denotes the width of the limbs. This parameter was chosen to
correspond to 10 cm for an average person of �180 cm height. Figure 1B
illustrates the template matching procedure.

Temporal evolution of the population activity in the posture representa-
tion during walking stimulation. As the posture of the stimulus changes
during the walking movement, the similarity between the stimulus and
the preferred body posture of any posture-sensitive neuron also varies. In
the course of the stimulus movement, different posture-sensitive neu-
rons will be activated most strongly. Figure 1C illustrates this. Posture
selectivities are arranged in the temporal order of the walking cycle along
the horizontal axis of the graph. Time runs along the vertical axis. Over
time, a sequence of best-matching postures is activated in order, leading
to a diagonal trace of activation (black line) in this figure. For a stimulus
that walks backward (i.e., in which the sequence of stimulus frames is
presented in reversed order), the activation trace is oriented in the oppo-
site direction (Fig. 1D).

The representation of body motion
In our model, body motion selectivity is generated by applying standard
concepts of motion detection to the posture representation. We will
describe the analogy between this computational step and standard mo-
tion detection, introduce the posturo-temporal filters, and describe
model neurons selective to body motion.

Motion detection in posture space. The estimation of motion in posture
space is based on the temporal evolution of activity in the posture repre-
sentation as shown in the graphs of Figure 1C, D. We will call these graphs
“posture–time plots” in analogy to the space–time plots used to depict
motion of objects over the retina (Adelson and Bergen, 1985). Space–
time plots have been essential tools to illustrate the concept of spatio-
temporal filters for motion detection (Fig. 2). The movement of a light
point across the retina is plotted in a graph comprising a spatial dimen-
sion x and a temporal dimension t. For constant motion, the velocity of
the stimulus is then given by the slope of the line in this plot. It can be
analyzed by oriented spatio-temporal filters that extract motion energy
(Reichardt, 1957; van Santen and Sperling, 1984; Adelson and Bergen,
1985; Watson and Ahumada, 1985; Burr et al., 1986). In a similar way, the
motion of higher-order properties (e.g., texture, second-order motion;
or salience, third-order motion), can be analyzed by first applying re-

A
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Figure 1. A, Examples of posture representations in the model. Each posture-selective neuron represents a single posture (the
stick figures) from a 2D view of an action, in this case walking. Top row, Examples of postures during the walking cycle seen in
profile view (0° facing direction). Bottom row, Similar examples in half-profile view (45° facing direction). B, In the template-
matching step, a stimulus posture is spatially compared with all templates, and the degree of overlap determines the activity of the
respective template neuron. C, When a continuous walking stimulus is presented, it will excite each of the neurons from that
particular facing direction in order. At each point in time, the walking stimulus has a slightly different posture for which one of the
posture-selective neurons is most responsive. As the posture of the stimulus changes because of the movement, the highest
posture-selective neuron response shifts from one posture-selective neuron to the next. This results in an oriented activation
profile in the posture–time plot. D, When the stimulus is shown in reversed order (backwards walking), the posturo-temporal
activation is oriented in the orthogonal direction.
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spective filters (e.g., texture grabbers or salience detectors) to the retinal
image and then applying spatio-temporal filters to the resulting texture
or salience representation (Lu and Sperling, 1995). In this model, the
mechanisms of motion detection are always the same, namely, spatio-
temporal filters, and the sensitivity results from applying these filters to
different spatial representations, which are created by first applying lu-
minance, texture, or salience filters to the retinal input (Fig. 2).

Our model for biological motion detection is similar in spirit but
replaces the spatial dimension of retinal position with the dimension of
posture along the represented movement. The retinal input is first trans-
formed into a representation of body postures through the template-
matching process in the posture-sensitive neurons. In this posture–time
plot, body motion is analyzed through posturo-temporal filters. These
filters are oriented in the posture dimension and the time dimension. The
process by which these filters estimate motion is analogous to that for
first-order luminance motion and consists of (1) divisive normalization
of the input representation, (2) posturo-temporal filtering, (3) half-
squaring, and (4) calculation of motion energy as the difference between
forward and backward walking.

Posturo-temporal filters. First, the responses of the posture-selective
neurons are normalized following Simoncelli and Heeger (1998):

���t� �
R��t� � R�

R�
, (2)

where Ry(t) is the response of the neuron with preferred posture � at time
t, R� is the mean response over all neurons at time t, and ny(t) is the
resulting normalized response. Next, posturo-temporal filters are de-
fined for forward ( gf) and backward ( gb) walking. These posturo-
temporal filters are implemented as Gabor functions in the postural ( p)
and the temporal (t) dimension as follows:

g�	, ��
f �t, p� � cos�
p · �p � �� � 
t · �t � 	�� · exp

� �
�p � ��2

2 · �p
2 �

�t � 	�2

2 · �t
2 �, (3)

g�	, ��
b �t, p� � cos�
p · �p � �� � 
t · �t � 	�� · exp

� �
�p � ��2

2 · �p
2 �

�t � 	�2

2 · �t
2 �. (4)

where � is the posture on which the filter is centered and 	 is the point in
time at which the filter is calculated. The parameters of the cosine func-
tion determine the filter frequencies along the postural and temporal
dimensions. The temporal and postural frequencies (
t and 
p) should

be matched to the walking movement. For one
step, which corresponds to 50 templates and
0.69 s, the frequencies were chosen to be wt �
2�/0.69 Hz and wp � 2�/50. The parameters
�p and �t of the Gaussian function determine
the integration widths of the filter along the
postural and temporal dimensions. The width
along the postural dimension �p was set to 42
frames, corresponding to a weighting of 0.5 for
the second local maxima along the postural
dimension. We checked that a different value
(�p � 250) did not lead to substantially dif-
ferent results. The temporal width �t was set
to 250 ms such that the filter was biphasic in
time, in analogy to motion energy models for
luminance-based motion (e.g., Adelson and
Bergen, 1985).

The response r of the posturo-temporal filter
is determined by convolution with the normal-
ized posture representation as follows:

r��	� � �
t�0ms

	 �
p�1

100

g	,� �t, p� · �� �t�.

(5)

To estimate the response r of the posturo-temporal filter at the time 	,
only normalized responses of the posture-selective neurons are taken
into account with t  t.

Third, the response r of the posturo-temporal filter is rectified and
normalized

N��	� � max�� r� �	�

�t �p g	,� �t, p�2�, 0�. (6)

The result describes the response of a neuron selective to body motion N.
The neuron computes body motion for a particular range of postures and
for a particular motion direction (forward or backward).

Finally, from these neurons, body motion energy (�) can be calculated
by taking the difference between the squared filter responses for forward
and backward motion

���	� � N�
F �	�2 � N�

B �	�2. (7)

Facing selectivity of body motion-selective neurons. Our model consists
of a set of neurons selective for body motion that are modeled as
posturo-temporal filters tuned to one of two motion directions (for-
ward or backward) and a particular range of preferred postures. These
neurons process input from the representation of body posture in the
posture-selective neurons.

We implemented the posturo-temporal filters separately for each fac-
ing direction, consistent with the observation that most body motion-
selective cells in macaques are selective for a combination between
motion and facing direction (Oram and Perrett, 1994, 1996; Singer and
Sheinberg, 2010; Vangeneugden et al., 2011). Thus, posture-selective
neurons provide information to the body motion-sensitive neurons spe-
cific to the facing direction of the body, and only posture-selective neu-
rons from the same facing category contribute to a posturo-temporal
filter.

The estimation of facing and walking direction
The main focus of our model is on the properties of the body motion-
selective neurons and the posture-selective neurons, and comparing
these to the properties of respective neurons in the brain. However, the
model should also describe the perception of biological motion at the
system level. Therefore, we have to test whether the model can explain
and replicate the perception of biological motion in humans. Experi-
mental studies of biological motion perception have often used discrim-
ination tasks in which participants reported the facing direction or the
walking direction of a point-light walker. To simulate such experiments,

Figure 2. The spatio-temporal filter model of first-, second-, and third-order motion extended to posturo-temporal filters for
body motion perception. In first-, second-, and third-order motion, spatio-temporal filters are applied to spatial maps of different
features: luminance, texture, and salience. The posturo-temporal filter model uses a similar principle on a representation of body
postures arranged in a map-like structure according to the temporal evolution of body posture during an action.

Theusner et al. • Action Recognition by Motion Detection in Posture Space J. Neurosci., January 15, 2014 • 34(3):909 –921 • 911



we need to implement mechanisms to read out the activity in the body
posture representation and the body motion representation. We simply
use maximum pooling of the responses in the respective stages of the
model.

Estimation of facing direction. For each facing direction, the maximum
response is determined for each time step and the values are summed
over the entire stimulus duration as follows:

Dfacing �t, facing� � �
t

max� facing
�R� facing

�t��. (8)

The maximum operation was performed on all posture sensitive neurons
of one facing direction (i.e., 100 postures � 8 walkers), excluding those of
the currently presented walker.

Estimation of walking direction. In the same way, for the estimation of
walking direction the maximum values of body motion energy � are
summed over the stimulus duration as follows:

Dwalking�t� � �
t

max� ��� �t��. (9)

Here the sign of the sum determines the perception of the walking direc-
tion. Positive values indicate forward walking, and negative values indi-
cate backward walking. An alternative would be to compare the
responses to the two motion directions with each other rather than using
the body motion energy. We chose to use body motion energy mainly for
consistency with the motion energy literature.

Results
Two types of neurons were implemented in our model: posture-
selective neurons and body motion-selective neurons. The selec-
tivity of the former was modeled as template matching for
preferred postures. The selectivity of the latter was modeled as
posturo-temporal filtering applied to the activities of the posture-
selective neurons. We will now study the properties of those neu-
rons and investigate how the model can replicate and explain the
properties of corresponding neurons in the brain and the results
of psychophysical experiments. Because the parameters of both
sets of model neurons are derived from the temporal and spatial
properties of the action stimuli, our investigations will demon-
strate how much the action sensitivity of neurons in the brain is
directly related to stimulus properties.

Properties of posture and facing selectivity
The posture selectivity in our model is similar to the template
matching process in the model of Lange and Lappe (2006); hence,
many properties of the posture-selective neurons are the same as
those described in that paper. However, unlike previous models,
our current model uses templates from different 3D view points.
Therefore, our description of the properties of the posture-
selective neurons will concentrate on their sensitivity to facing
direction in 3D.

Sensitivity to facing direction in single neurons
We have assumed that the 3D body is represented by 2D, ortho-
graphic projections. Those 2D, orthographic projections are
stored in posture-selective neurons representing different facing
directions. The properties of those posture-selective neurons are
determined by geometric features of the stimulus. We will com-
pare the tuning of the view representation of the posture-selective
neurons with corresponding facing direction-selective neurons
in the macaques STS.

Our model contains representations of 0°, 45°, 90°, 135°, and
180° facing direction, with 0° facing rightward (Fig. 3). The 225°,
270°, and 315° facing directions are identical to the 135°, 90°, and
45° facing directions, respectively, because of the orthographic

projection. For each of the five facing representations, we created
average tuning curves of the neurons from the posture represen-
tation to stimuli of eight different facing directions. This was
done in the following way. First, we calculated for each neuron
the average activity over a full walking cycle to a stick-figure
stimulus with the respective facing direction. Then, we averaged
the activity over all neurons of a single facing population. This
was repeated for all facing populations. Thus, we had a mean
response for each facing population to a stimulus facing in one
particular direction. This set of mean responses was determined
for each stimulus facing direction separately.

Figure 4A shows the resulting tuning curves. These tuning
curves show some characteristic features that have also been ob-
served for action-selective neurons in macaque temporal cortex
(Vangeneugden et al., 2011). First, the tuning is axial: high re-
sponses are observed for stimuli facing 180° away from the pre-
ferred facing indicated above each plot (see leftmost plot for the
orientation of the coordinate system). This is uncommon for
simple visual features, such as orientation or direction, which
typically show Gaussian tuning, but is observed in temporal cor-
tex neurons selective for body posture. The axial tuning is trivially
expected for the 90° facing because it is geometrically identical to
the opposite 270° in orthographic projection, but it occurs also
for the other facing directions (e.g., 0° and 180°), which are not
geometric ambiguous. Instead, the axial tuning points toward a
similarity in shape between the opposing facing directions. Sec-
ond, the tuning curves for the half-profile views (45° and 135°)
show strong responses to stimuli facing in orthogonal directions
(i.e., 90° rotated from the preferred facing). This is not the case
for the left, right, or frontal facing directions, for which the or-
thogonal facing stimuli give lower responses than the preferred or
opposite facing stimuli. This has also been found in monkey tem-
poral neurons. To illustrate this, we have plotted the tuning
curves of the model neurons along the data of Vangeneugden et
al. (2011) (Figure 4B). Vangeneugden et al. (2011) measured the
response of neurons preferring facing directions of 0°, 45°, 90°,
135°, 180°, 225°, 270°, or 315° to stimulus facing in different
directions. They then combined the neurons with opposite facing
preferences (e.g., 0° and 180°) into one plot by rotating the data
such that the preferred direction always pointed to the left in the
plot. We did the same for our simulation data. In addition, we
combined their data for the 45°, 135°, 225°, and 315° facing pref-
erences because in the model 45° and 225° are geometrically iden-
tical, as are 135° and 315°. The resulting plots are shown in Figure
4B. The axial tuning is clearly visible for the 0°/180° and the
90°/270° preferences. For the 45°/135° plots model, data show
only a slight preference for a particular direction and strong re-
sponses along all four cardinal directions. This is more pro-
nounced in the model than in the data (which is true also for the
other comparisons). However, the model captures the essential
differences between the 45°/135° facing representations on the
one side and the 0°/180° and the 90°/270° facing representations
on the other.

Population activity in the posture representation
The properties of the responses to the different facing directions
can be illustrated for the entire population of posture-selective
neurons in posture–time plots. Figure 5 shows posture–time
plots of the responses to the five stimulus facings for each of the
five facing selectivities. These posture–time plots show the simi-
larities between different facing directions seen in the average
tuning curves in more detail in the unfolding of activity over time
in the posture representation. For example, the posture represen-
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tation for 0° facing responds in a very similar pattern for stimuli
facing toward 0° and for stimuli facing toward 180°. Other facing
directions result in activation patterns with less similarity. Like-
wise, the responses of the representation for 45° facing to its
preferred 45° stimulus are similar to those of a stimulus facing
toward 135°.

Specificities of the activation patterns can also be seen when
comparing responses to the preferred facing stimuli in different
facing representations (i.e., the plots along the diagonal). Be-
tween the 45° and the 0° representations, a frequency doubling
can be observed that is related to the ambiguity between the left
and right body halves in the profile view. In the half-profile or

profile view, the ambiguity of the right
and left half of the body is resolved and the
spurious activation vanishes.

The temporal distribution of activity
over the posture representation is the ba-
sis for body motion analysis in our model.
The orientation and width of the streaks
of activation in the posture–time plots de-
termine the direction and precision of the
motion estimate. The spread of activation
for the preferred facing in the 90° repre-
sentation is much broader and much
weaker oriented than in the 0°, 45°, 135°,
or 180° cases. This suggests that the frontal
view provides less body motion energy
than the other views. In the profile and
half-profile facings, on the other hand, the
posture–time plots show not only a strong
oriented activation in the correct (for-
ward) direction but feature prominent
streaks of spurious activation in the oppo-
site (backward) direction (i.e., tilted left-
ward in the plots along the diagonal). This
suggests that there is considerable motion
energy in the opposite direction in the
stimulus sequences. We therefore tested
the dependence of the motion discrimina-
tion performance of the model on the fac-
ing direction of the stimulus.

Facing dependence of motion
discrimination: problems with
frontal facing
The illustrations in Figure 5 show that
the activities in the posture representa-
tion are very different for the different
facing directions. Because the subsequent
body motion estimation is based on the
posturo-temporal variation of these activ-
ities, one should expect differences in
body motion estimation for different fac-
ing directions. An experimental quantifi-
cation of the discrimination performance
for a forward/backward decision was pro-
vided by Kuhlmann et al. (2009). We sim-
ulated their first experiment with the
model and compared the model results
with the psychophysical data. The stimu-
lus was a limited-lifetime walker with a
small number of dots placed on random
location on the limbs. In different condi-
tions, the stimulus was shown in profile

view (0°), in half-profile view (45°), or in frontal view (90°) for
one walking cycle, either walking forward or walking backward
(reversed temporal order of the frames). Either 2 or 4 points were
shown per frame. By varying the frame duration, the total num-
ber of points that were presented during the whole trial was either
128 or 512 (for both numbers of points per frame, 2 and 4).
Kuhlmann et al. (2009) also tested different lifetimes of the dots;
but because dot lifetime had no effect on performance, we simu-
lated only a lifetime of one frame.

Figure 6 shows that the results of the model simulations
closely match the experimental data. The performance of the

Figure 3. Schematic depiction of the posturo-temporal filter model. The model consists of a body posture level followed by a
body motion level. At the body posture level, the posture of a stimulus is analyzed by posture-selective neurons. Each posture-
selective neuron represents a particular posture. The population represents all postures of the action. At the body motion level,
activity within the posture-selective representation over the course of time is analyzed by posturo-temporal filters. By combining
these filters and calculating the difference between the half-squared response of the forward-oriented posturo-temporal filter and
the backward-oriented posturo-temporal filter, the model computes body motion energy. An estimate of body motion energy is
determined at every point in time. Maximum pooling and summation over the stimulus duration provide an estimate of the motion
direction. Similarly, an estimate of the facing direction is obtained by maximum pooling and summing the activities in the body
posture representation.
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model and the human subjects was higher for 512 in comparison
with 128 points per trial. The profile view gave slightly better
discrimination than the half-profile view. In contrast, discrimi-
nation was very poor in the frontal view. The poor discrimination
ability in the frontal view relates to the smeared-out activation in
the posture representation in Figure 5 (middle), which does not
allow a distinction between the two walking directions.

Facing dependence of motion discrimination: coupling between
facing and walking direction
The walking direction estimate in the model is based on the pos-
ture representation that shows the highest activation. Usually,
this is the facing representation that matches the true facing of the
stimulus. However, the tuning properties and the activities in the
posture–time plots showed that the 0° and the 180° activities are
quite similar to each other, and so are the 45° and 135° activa-
tions. The similarity pertains not only to the activation in the
correct motion direction (rightward orientation in Fig. 5) but
also extends to the spurious backward motion signals (leftward
orientation in Fig. 5). Indeed, a closer inspection of the activities
showed that the similarity was even stronger along the backward
orientation than along the forward orientation. To illustrate this,
we presented stimuli facing toward 0°, 45°, 135°, or 180° and
collected in each case a separate motion estimate from each pos-
ture representation (Fig. 7). For example, Figure 7A shows four
motion direction estimates for a stimulus facing toward 0° ob-
tained from each of the four posture representations (0°, 45°,

135°, or 180°). The posture representation that corresponds to
the correct 0° facing provides a correct identification of the mo-
tion direction. However, the estimates taken from the other, non-
matching, facing representations are incorrect, falsely predicting
the opposite direction of motion. Similar effects are seen for the
other facing directions (Fig. 7B–D), showing that the model cal-
culates the correct motion direction when the activities of the
correct facing representation are used; but when the responses of
other facing directions are used, the opposite motion direction
would be indicated.

In particular, Figure 7 shows an inversion of the estimated
motion direction when the 180° facing representation is used
with a 0° facing stimulus and vice versa, and an inversion of
walking direction when the 45° representation is used with a 135°
stimulus. Because these representations are each rather similar to
each other, they might easily be confused. Our model would
predict that such a confusion of the facing direction should also
lead to a confusion of the walking direction such that 45° stimuli
that are erroneously perceived as facing toward 135° should be
perceived as walking backward when they truly walk forward and
vice versa. This may be tested in experiments in which subjects
have to simultaneously judge facing and walking directions.

Properties of body motion selectivity
In our model, the estimation of body motion is performed by
posturo-temporal oriented filters applied to the activities in the

A

B

Figure 4. A, Polar plots of average tuning curves for facing direction for each of the five facing representations (0°, 45°, 90°, 135°, and 180°). The thick lines indicate the mean; the thin lines
indicate the SEM. The outer circles represent maximal response; the inner circles represent 50% of that. B, Comparison of the tuning curves of the posture-selective neurons of the model to the tuning
curves of the facing direction-selective neurons found in STS (Vangeneugden et al., 2011) for the stimuli grouping used in that study.
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posture representation. Although the above simulations already
showed that this procedure allows discrimination of walking di-
rection similar to human observers, we next wanted to illustrate
the temporal and postural properties of single-body motion-
selective neurons in the model. We were interested in which way
the model can replicate and explain the behavior and the features
of body motion-selective neurons described in electrophysiolog-
ical studies.

Temporal integration in body motion-selective neurons
The posturo-temporal filters, like their spatio-temporal counter-
parts in luminance motion detection, have a certain period of
temporal integration that is determined by the Gaussian width �t.
The temporal integration along with the temporal frequency 
t

determines the time course of activity in the body motion-
selective neurons. The two parameters were chosen to match the

frequency of the gait cycle (wt � 2�/0.69)
and to ensure a biphasic response profile
of the filters (�t � 250 ms), which is a
prerequisite for motion detection. The
combination of these parameters gener-
ates a filter that is optimally matched to
the walking action. We can then ask how
the properties of the filter responses relate
to the temporal properties of the action-
selective neurons in monkey temporal
cortex, to estimate whether these are
adapted to the properties of the walking
cycle. Figure 8A shows the mean filter re-
sponses for motion in the preferred and
nonpreferred directions for a stick-figure
stimulus in profile view averaged over all
starting phases. Consistent with typical
motion detector properties for simple
luminance motion, the responses are ini-
tially the same for both direction. The re-
sponse to the preferred motion separates
from the response to nonpreferred mo-
tion after �200 ms. However, some re-
sponse to nonpreferred motion remains
throughout the stimulus presentation.
This is different from motion detector re-
sponses to simple motion. It is a conse-
quence of the distribution of activity in
the posture representation, which features
a considerable amount of spurious mo-
tion in the wrong direction (Fig. 5, left-

ward tilted streaks of activity). This response behavior is
consistent with rather weak selectivity for forward versus back-
ward stimuli in macaque temporal neurons that was noted in
Vangeneugden et al. (2011). To directly compare the temporal
properties of our model neurons to the data of Vangeneugden et
al., 2011 (their supplemental Fig. 5), we plotted the difference
between preferred and nonpreferred responses over time (Fig. 8).
The comparison indicates similar temporal properties. The re-
sponse difference between the two motion directions is small for
the first 100 ms and then increases to the saturation level, which is
reached after �400 – 600 ms.

Postural integration
Besides the temporal integration, there is also postural integra-
tion because the postural temporal filters combine signals from a
range of postures around the posture � on which the filter is
centered. These postures have to appear in the correct temporal
arrangement of the preferred motion direction (forward or back-
ward). Thus, the filter’s selectivity combined motion direction
and posture. The neuron responds only if both fit the filter’s
preference. The posturo-temporal filters therefore combine body
motion with body form selectivity. Such combined selectivities
have often been described in action-selective neurons in monkey
temporal cortex (Oram and Perrett, 1994, 1996; Jellema et al.,
2004; Vangeneugden et al., 2009, 2011; Singer and Sheinberg,
2010). However, the responses to moving stimuli (i.e., a sequence
of postures) are much stronger than the responses to static pos-
tures. On average, the response to the preferred posture � alone
reaches only 24% of the maximum response to that posture em-
bedded in the walking cycle. Vangeneugden et al. (2011) used an
action index (response to moving stimulus 	 response to static
presentation)/(response to moving stimulus 
 response to static

Figure 5. Posture–time plots of population activity in the different facing representations. Neural activity is encoded in gray-
scale. In every row, the response of the posture-selective neurons representing a particular facing direction (e.g., 0° in the upper
row) to a stimulus facing in one of the five possible facing directions is shown.

Figure 6. Simulation results of performance in the walking direction discrimination study of
Kuhlmann et al. (2009). The stimulus was facing in profile (P), half-profile (HP), or frontal (F)
view. Black and dark gray represent model simulations; light gray and white represent human
data.
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presentation), to categorize temporal neurons into action (“A,”
action index �0.2) and static 
 action (“SA,” action index �0.2)
neurons. The average action index for the posturo-temporal fil-
ters in our model is 0.68. Thus, the body motion-selective neu-
rons of the model on average fit well to the action category
introduced by Vangeneugden et al. (2011). However, the match
between body motion-selective neurons and “A” neurons and
between posture-selective neurons and “SA” neurons is some-

what difficult because the distinction between “SA” and “A” neu-
rons in Vangeneugden et al. (2011) is based purely on the action
index. If applied to our model, this criterion would classify a
small number of body motion-selective neurons that have rela-
tively weak direction selectivity, and hence an action index
smaller than 0.2, as “SA” neurons. Vangeneugden et al. (2011)
also reported that some of the neurons classified as “SA” had a
significant forward– backward selectivity.

Ratio of posture-selective neurons and body motion-
selective neurons
In monkeys, the ratio of posture to action-selective neurons was
found to be �10:4 (Vangeneugden et al., 2011). Assuming that in
essence these cells are analogous in function to the posture-
selective neurons and the body motion-selective neurons of the
model, one can ask whether there is an optimal ratio for these
model neurons.

The model currently has 100 equally spaced posture-selective
neurons for each represented walking cycle. Theoretically, the
maximal total motion signals can be obtained with two body
motion-selective neurons on each posture-selective neuron (one
neuron representing forwards motion and one representing
backwards motion for each represented posture). However, be-
cause the body motion-selective neurons integrate over a range of
postures (represented by 
p, Eqs. 3 and 4), it can be expected that
the average responses of the body motion-selective neurons will
hardly decrease for a smaller number of body motion-selective
neurons.

Figure 9 shows the average maximal response computed for
different numbers of body motion-selective neurons while all
other model parameters are kept constant. Indeed, the average
response remains almost constant even with 50 neurons and only
begins to drop steeply with fewer than �30 neurons. Thus, the
model agrees with the data in predicting that the number of body
motion-selective neurons can be considerably lower than the
number of posture-selective neurons while maintaining an al-
most maximal motion signal.

Number of posture-selective neurons and body motion-
selective neurons
A related question is how many posture and body motion-
selective neurons are needed. For the simulations above, we have
divided the gait cycle into 100 posture stimuli and used each one
to construct a single posture-selective neuron. However, the
broadness of tuning of these neurons suggests that a much
smaller number may suffice. The posture-selective neurons in the
model respond not only to their preferred posture but also to

A B

C D

Figure 7. Interactions between facing and walking direction can lead to erroneous motion
energy in the opposite direction when the stimulus facing differs from the preferred facing of
the posture representation. A, Facing 0°. B, Facing 45°. C, Facing 135°. D, Facing 180°.

A

B

Figure 8. A, Time course of the posturo-temporal filter response to a stimulus walking in the
preferred direction (solid line) and in the nonpreferred direction (dashed line). B, Time course of
the difference between the posturo-temporal filter responses to the preferred and the nonpre-
ferred walking direction. Black represents model results; gray represents comparison data from
the monkey. Monkey data adapted from Vangeneugden et al. (2011, their supplemental Fig. 5).

Figure 9. Average maximal response of the body motion-selective neurons, as a function of
the number of body motion-selective neurons in the model. The maximum (100%) of the
average maximal response is reached when two body motion-selective neurons (one forward
and backward) sample each represented posture (i.e., at N � 200). The vertical line indicates 40
body motion-selective neurons.
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many other postures around their preferred posture. Indeed,
similar to what has been reported in monkey neurons (Vange-
neugden et al., 2011), most posture-selective neurons respond to
some degree to all postures of the walking cycle. To show the
average tuning width compared with the monkey data, we ad-
opted the procedure that Vangeneugden et al. (2011) used for
their supplemental Figure 4. For each neuron, we took the re-
sponses to each of the postures in the walking cycle and ranked
them in the order of their strength. Then we averaged the ranked
responses over all neurons. The result is shown in Figure 10A.
Figure 10B shows the monkey data for comparison. In both cases,
the posture-selective neurons clearly respond to a broad range of
postures. The correspondence is an important point because the
broadness of this tuning is not a parameter of the model but
rather emerges from the template structure. It is thus a further
aspect of the close fit of the physiological properties to the stim-
ulus properties that the model is intended to show.

The broad tuning in posture space implies that the model does
not require a high resolution of postures along the walking cycle.
Instead, it works well with a much smaller number of templates.
We tested this in simulations in which we varied the number of
posture-selective neurons and computed the performance in the
walking direction task. These simulations showed that full accu-
racy (close to 100% correct discriminations) was achieved al-
ready with just 25 posture-selective neurons. Further simulations
showed that performance was not limited by the number of pos-
ture selective-neurons but rather by the number of body motion-
selective neurons. When we used a ratio of 1:1 for the posture and
body motion-selective neurons rather than a ratio of 5:1, full

accuracy was already observed with a mere 5 posture-selective
neurons.

Responses to full- and half-body configurations
It is known from psychophysical (Mather et al., 1992; Troje and
Westhoff, 2006; Chang and Troje, 2009; Hirai et al., 2011) and
computational (Lange and Lappe, 2006) research that the motion
of the lower body, especially the feet, is more important for some
aspects of biological motion perception than the movements of
the upper body. Likewise, Vangeneugden et al. (2011) described
that neurons responded stronger to stimuli that showed only the
lower body than to stimuli that showed only the upper body.
However, this selectivity difference was more pronounced in the
“A” than in the “SA” neurons. We were interested to determine
whether such a sensitivity difference between the neuron types
emerges in our model, even though the body motion-selective
(“A”) neurons in our model derive their selectivity directly from
the posture (“SA”) neurons.

Therefore, we calculated responses to only the legs, only the
arms, or both arms and legs, using stick-figures stimuli in each
case. Figure 11 shows the results. Figure 11A shows average activ-
ities of the body motion-selective neurons (top) and the posture-
selective neurons (bottom) for the three conditions. Like the “A”
neurons of Vangeneugden et al. (2011), the body motion-
selective neurons in our model respond strongly to stimuli show-
ing only the legs and weakly to stimuli showing only the arms.
Indeed, the response to the legs-only stimulus is even stronger
than the response to the full body stimulus. This is different for
the posture-selective neurons. They respond strongest to the full
body stimulus and approximately half as strong to each of the
half-body stimuli. This is similar to the response properties of the
“SA” neurons in the monkey.

Figure 11B shows posture–time plots of the activities in the
posture and the body motion representation, and illustrates the
reasons for the different average responses. The posture represen-
tation for the whole-body stimuli shows the diagonal pattern of
activity that represents the veridical body motion as well as the
spurious activity that corresponds to the opposite walking mo-
tion (Fig. 11B). In the legs-only condition, the same pattern is
present, but the difference between the activity of the veridical
body motion and the spurious activity of the wrong body motion
becomes larger. In the arms-only condition, in contrast, the dif-
ference between the veridical and the wrong body motion be-
comes weak and the posture specificity becomes blurred.
Consequently, the body motion representation shows crisp re-
sponses in the legs-only and whole-body conditions, but weak
and unfocussed activity in the arms-only condition. Thus, al-
though in our model body motion is derived from body form
information over time, the responses to body motion do not
depend on the total amount of form information but rather on
the motion specificity of the form information, which is higher in
the lower than in the upper body.

Implied motion
Pictures of certain static postures of humans and animals some-
times give the impression of motion. Such an impression may
originate from spurious activation of body motion detectors
from these postures (Jellema and Perrett, 2003; Barraclough et al.,
2006; Lorteije et al., 2006).

The body motion-selective neurons in our model do respond
to static postures, albeit only weakly. We wanted to characterize
the properties of these responses and compare them with re-
sponses of neurons from the STS. To do this, we calculated for

A

B

Figure 10. Selectivity of the posture-selective neurons. A, The average response of the pos-
ture cells to all posture of the walking cycle in the order of their strength. B, Same analysis for the
monkey neurons from Vangeneugden et al. (2011, their supplemental Fig. 4).
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each body motion-selective neuron the
responses over a full gait cycle of preferred
motion and determined the single posture
in that data that gave the strongest re-
sponse. We then calculated the response
of the neuron when this posture was pre-
sented as a static stimulus and normalized
it to the maximum response during the
walking stimulus. We did this for all neu-
rons and averaged the resulting response
time courses. Figure 12A (solid line) shows
the result. The curve reaches a peak of
�15% of the maximum motion response
at 200 ms after stimulus onset. The re-
sponse stays above zero throughout the
stimulus presentation. Thus, the body
motion energy is non-zero and may sup-
port an impression of motion.

Figure 12B shows comparison data
from Jellema and Perrett (2003). They re-
corded neurons sensitive to articulated
action with moving and static views of the
head and body. Although this is not di-
rectly comparable with walking motion, we do think that the
main features of implied motion responses can nevertheless be
illustrated. As in our simulations, the plot for the static responses
shows averaged normalized responses to the preferred static pos-
tures from the moving sequence. The time course of the implied
motion signal is similar between the model and the data from the
STS. In both cases, the signal reaches a maximum at �200 to 300
ms and declines afterward. After �700 ms, the signals asymptote
to a level of approximately half of the maximum response. In the
model, this time course results from the biphasic nature of the
posturo-temporal filters, in which an excitatory response to an
input is followed by an inhibition to that same input to generate
motion selectivity. To investigate whether the time course of the
implied motion signal is dependent on the biphasic nature of the
posturo-temporal filters, we have repeated the simulations with
different values of �t. We have used values of �t for which the
posturo-temporal filters show a monophasic and a polyphasic
behavior. Both values of �t led to a different time course of the
implied motion signal. Thus, the biphasic shape of the temporal
response profile forms the basis for the occurrence of an implied
motion signal similar to the findings of Jellema and Perrett
(2003).

Figure 12A (dashed line) shows the average response to a
moving stimulus. This response was calculated similarly to the
experimental paradigm of Jellema and Perrett (2003) by averag-
ing the responses of all neurons to a walking stimulus starting
from a single posture in which the limbs were wide extended. The
comparison data from Jellema and Perrett (2003) are shown in
Figure 12B. In both cases, the moving stimulus induces a stronger
response than the static stimulus in later phases of the trial. Thus,
the response to the static stimulus is weaker than to a moving
stimulus, consistent with these neurons being sensitive for action
sequences.

However, the response to the static stimulus could induce an
overall (weak) percept of motion if the responses of filters for one
motion direction (e.g., forward) are on average higher than the
responses to the opposite motion (backward). This difference in
activity (i.e., the difference in population activation) could be
interpreted as an overall motion signal that is induced by a single
static image (i.e., as implied motion). To show this, we calculated

forward and backward filter responses to static stimuli from dif-
ferent phases of the walking cycle and determined which popu-
lation gave the stronger response. We did this for all 9 template
walkers and determined the ratio of forward/backward decisions
in the model. Figure 13A shows that the implied motion direction
varies over the postures of the walking cycle such that some pos-
tures imply forward motion in the model whereas other postures
imply backward motion.

These simulations show that the responses of body motion-
selective neurons to static stimuli can induce an overall bias for
one motion direction over the other in the population. Such a
bias does not occur in regular luminance-based motion, where
opposite motion responses are balanced for static stimuli. We
thus asked what determines the bias in motion defined from body
posture. Analysis of the filter responses to the posture represen-
tation shows that the bias is related to asymmetric activation in
posture space. Figure 13B compares the responses in the posture
representation for static stimuli that implied forward (solid line)
and backward (dashed line) motion, centered on the posture-
selective neuron that gave the best response. The distribution of
activity shows a clear asymmetry. For stimuli that imply forward
motion, responses of posture-selective cells that precede this pos-
ture in the forward walking cycle are stronger than those of
posture-selective cells that follow this posture in the forward
walking cycle. For stimuli that imply backward motion, this
asymmetry becomes very small but oppositely directed such that
backward-oriented filter fits the responses of the posture repre-
sentation better than the forward filter.

The asymmetry in the posture representation occurs because
the postures that precede the central posture are more similar
to this posture than the posture that follows. Thus, the similarity
of the static posture to those postures that precede or follow it in
the walking cycle determines whether the implied motion is for-
ward or backward. This offers an explanation why implied bio-
logical motion occurs and why there is no implied motion for
first-order luminance motion, even though our approach to analyze
biological motion uses the same mechanism as the analysis of first-
order motion. The luminance filters for first-order motion trans-
form the stimulus (light point) to retinal coordinates. There is no
asymmetry for the positions of the light point in the retinal coordi-

A B

Figure 11. Responses to full-body and half-body configurations. A, Sum of the posture-selective neuron responses and the
forward-oriented filter neurons to a stick figure (whole body, legs-only, arms-only). B, Posture–time plots in the postural (lower
row) and the body motion representation (response of the forward-oriented filter, upper row) for a stick figure stimulus (whole
body, legs-only, arms-only).
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nates. However, the posture-selective neurons (postural filter) trans-
form the stimulus into postural configurations, which show a clear
asymmetry along the walking cycle. This suggests that implied mo-
tion for static action stimuli occurs because of the typical develop-
ment of body configuration around that static posture.

Discussion
We have introduced a model of visual action recognition through
analysis of body posture. In this model, filters similar to standard
motion energy detectors are applied in a representational space of
body postures. We have termed these filters posturo-temporal
filters in analogy to the term spatio-temporal filters in motion
energy detection of spatio-temporal motion. Two types of neu-
rons were implemented in our model: posture-selective neurons,
which encode specific postures; and body motion-selective neu-
rons, which encode bodily action through the sequence of body
postures. The spatial and temporal parameters of those neurons
are set to match the performed action. We determined those
parameters and compared them with existing electrophysiologi-
cal and psychophysical data. Our analysis was aimed to study how
far the tuning properties of action-selective neurons in primate
temporal cortex can be related directly to the spatial properties of
the static postures and temporal properties of the action.

We found that, as in primate cortex Vangeneugden et al.
(2011), the neurons in our model can be grouped into static-
action neurons, which respond both to a static view of a body

posture and to that same posture embedded in an action se-
quence, and action neurons that respond much stronger to an
action than to any individual posture. The former correspond to
the posture-selective neurons in our model and the latter to the
body motion-selective neurons. The analysis of the tuning prop-
erties of the posture-selective neurons to 3D facing directions
showed strong similarities to those of the primate cortical neu-
rons, suggesting that their tuning properties can be explained
from the spatial features of the static body view. These properties
included the peculiar axial orientation tuning, which was found
in primate cortical neurons, spurious responses for facing direc-
tions rotated by 90° in neurons that prefer half-profile views, and
weak discriminability in the frontal view. These properties can be
directly linked to the similarities in the respective posture stimuli
because the model uses only simple template matching to generate
the neural selectivities.

Based on the concept of posturo-temporal analysis, we have in-
troduced posture–time plots of the temporal development of pop-
ulation activity in a posture representation. These posture–time
plots provide a helpful tool to illustrate several features of the
geometric basis for action recognition from posture analysis. For
example, they visualize spatial similarity and geometric features
of different facing direction. Through those posture–time plots,
we were able to explain performance differences in a walking
direction task for different stimulus views found in psychophys-
ical data (Kuhlmann et al., 2009) and to predict that a confusion
of the facing direction should lead to the percept of the wrong
walking direction.

The posture–time plots, as well as the posturo-temporal filters
that act upon them, rely on a sequential arrangement of body

A

B

Figure 12. A, Normalized response of the forward-oriented filters of the model to a walking
stimulus (dashed line) and to a static stimulus (solid line). B, Temporal development of the
normalized population response in monkey STS to a moving stimulus (squares) and to a static
stimulus (circles) replotted from the study of Jellema and Perrett (2003) (their Fig. 3).
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Figure 13. A, Ratio of forward implied motion for every posturo-temporal oriented filter
position. B, Mean over the template walker and the filter positions of the normalized posture-
selective neuron response for forward implied motion (solid line) or for backward implied mo-
tion (dashed line). The vertical line indicates the preferred filter position.
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posture selectivities along the walking cycle (i.e., a 1D mapping
of postures in temporal order). For other types of action, other
body postures would be needed to be arranged in a similar tem-
poral order specific for that action. To allow the analysis of many
different actions, many such arrangements have to be assumed
that trace the body posture representation in temporal cortex
along different directions. It is conceivable that individual pos-
tures could be part of several such traces in a multidimensional
postural action space.

Action analysis is performed in the model by posturo-
temporal filters applied to the posture representation in analogy
to spatio-temporal filters applied to spatial representations for
object motion in space. The parameters of the posturo-temporal
oriented filters are determined by postural and temporal features
of the action and thus predict the temporal properties of the
posturo-temporal oriented filter. As same temporal behavior was
found in walking direction specific neurons in the macaques STS
(Vangeneugden et al., 2011), we can conclude that the temporal
behavior of the body motion-selective neurons is due to postural
and temporal features of the action. Moreover, because each sin-
gle posturo-temporal filter acts only upon a limited posture
range, the posturo-temporal filters are not only sensitive to body
motion but also to a certain range of body postures. Thus, they
combine posture and motion analysis, like body motion-selective
neurons in the primate brain (Oram and Perrett, 1994, 1996;
Vangeneugden et al., 2009, 2011; Singer and Sheinberg, 2010).
Yet, this combination creates novel dependencies on the spatial
and temporal parameters of the stimulus. For example, a decrease
in body posture information must not lead to a decrease in body
motion response. Because body motion information is highest in
the lower part of the body (legs), the response of the posturo-
temporal oriented filters is stronger for a legs-only stimulus than
for a or an arms-only stimulus. We therefore conclude that mo-
tion specificity is more important in these neurons than posture
specificity, even though motion is directly derived from posture
analysis.

A further feature that emerges from the spatio-temporal filter
construction is the response to static postures in the body
motion-selective neurons. These responses correspond to the
sensitivity of some motion-selective neurons in primate STS (Jel-
lema and Perrett, 2003; Lorteije et al., 2006, 2011) to static views
of action and may be the basis for implied motion (i.e., the per-
cept of motion from static images). We found that some body
motion-selective neurons in the model have a preferred static
image that activates them and that the time course of activation
was comparable with that observed in body motion-selective
neurons in macaques STS, even though different actions were
used (Jellema and Perrett, 2003). In the model, the activation by
specific static images can be explained by asymmetries in the
spatial and temporal properties of the postures leading to and
following the preferred posture. It is thus a consequence of the
tuning of these neurons to an action, the combination of posture
and motion in the posturo-temporal filtering, and the temporal
characteristics of the action. Depending on the specific combina-
tion of these parameters, a static stimulus may imply forward
(asymmetric response) or backward motion (symmetric re-
sponse) at the population and perception level.

Our simple model uses standard mechanisms developed for
other fields of visual perception but applies them in a novel way to
obtain a high-level analysis of motion of the human body. This
shows, on the one hand, how specific computational strategies
can be reused by the brain for different tasks and, on the other
hand, how different types of motion perception (e.g., object mo-

tion and body motion) can be based on very different cues (lu-
minance vs body configuration) and pathways (dorsal vs ventral)
but eventually use similar algorithms. Our model proposes a
route to action recognition that relies on form extraction about
the body supplied by shape-selective neurons. Although this is a
useful path toward action recognition, similar computational
procedures may be possible for more general types of nonrigid
motion perception of deformable objects, provided their shapes
are represented in sufficient detail in the inferotemporal cortex.

Limitations of our model relate to typical problems in motion
and object perception. For example, as the parameters of the
posture-temporal filters have to match the gait cycle to obtain the
necessary biphasic response profile of the filters one would need
different filters for each walking speed, much as luminance-based
motion detection needs a battery of speed selectivities. However,
the problem for body-motion selectivity is much less severe than
for luminance-based motion mechanisms because actions typi-
cally have a more restrained speed range. Walking, for example,
can be maintained only over a small speed range. If speed exceeds
this range, the locomotor pattern changes to running, which is a
different action and uses different postures (Giese and Lappe,
2002). The speed range for walking could easily be covered by a
small set of detectors tuned for only a few speeds. On the other
hand, as the parameters of the posture-selective neurons have to
match the retinal size of the stimulus, one needs templates of
different sizes or ways to establish size invariance, as for other
types of object recognition. Indeed, body-shape-selective neu-
rons have only limited size invariance (Ashbridge et al., 2000),
suggesting that indeed posture-selective neurons for different
sizes might be needed.

Action selectivity in our model depends on different posture-
selective neurons being activated in sequence. Luminance-based
retinal motion signals, such as the motion of individual points on
the limbs, are ignored. These motion signals may be used in two
ways. First, they can provide information about the kinematics of
the movement, which in turn can also be used to estimate walking
direction (Troje and Westhoff, 2006; Chang and Troje, 2008,
2009). However, many aspects of the kinematics of the move-
ment are included in the model because the body-motion mech-
anisms in the model analyze the changes in posture of the body.
Second, luminance-based retinal motion signals provide infor-
mation about walking direction in the overall translation of the
body in space. The simulations of the present paper and many
studies on which they are based have used stimuli that displayed
walking-in-place, as if on a treadmill. Real walking, in contrast,
translates the body in space, and unless one tracks the walker with
pursuit eye movements, also on the retina. This global transla-
tional motion of the stimulus in the walking direction is likely to
be picked up by motion detectors sensitive for correlated motion
(e.g., in area MT). Their signal could be combined with the mo-
tion obtained through articulation (Perrett et al., 1990a). Indeed,
results from single-cell studies indicate that many cells will re-
spond to one posture translated (without articulation) in the
requisite direction or simply with the right relative motion
against a background (Perrett et al., 1990a,b). Such a combina-
tion may also explain why response latencies to walking and
translating human figures can be shorter than response latencies
to static postures (Oram and Perrett, 1996). It could be interest-
ing to extend our model in this direction.
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