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Interactive HIV-1 Tat and Morphine-Induced
Synaptodendritic Injury Is Triggered through Focal
Disruptions in Na� Influx, Mitochondrial Instability, and
Ca2� Overload
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Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation
and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription
(Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These
studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused
significant focal increases in intracellular sodium ([Na �]i ) and calcium ([Ca 2�]i ) in dendrites that were accompanied by the emergence
of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801
and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by local-
ized increases in [Ca 2�]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine’s effects were
prevented by the �-opioid receptor antagonist CTAP and were not observed in neurons cultured from �-opioid receptor knock-out mice.
Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca 2�]i were attenuated by the ryanodine
receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na �]i , mitochondrial instability, excessive
Ca 2� influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via �-opioid receptors, exacerbates these
excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca 2�]i and by further disrupting [Ca 2�]i homeostasis.
We hypothesize that the spatiotemporal relationship of �-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in
defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuroAIDS.
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Introduction
Dendritic injury and the resultant loss of neuronal intercon-
nections are thought to be a substrate for the neurobehavioral
deficits (Masliah et al., 1997) underlying human immunode-
ficiency virus type-1 (HIV-1)-associated neurocognitive dis-
orders (HAND; Heaton et al., 2011). HIV-1 proteins, such as the
transactivator of transcription (Tat), likely contribute to synap-
todendritic injury (Kruman et al., 1998; Haughey et al., 1999,

2001; Bertrand et al., 2013, 2014), as seen in Tat transgenic mice
(Fitting et al., 2010, 2013), which also display neurobehavioral
impairments corresponding with a HAND-associated pheno-
type (Carey et al., 2012; Fitting et al., 2013; Paris et al., 2014;
Hahn et al, 2014).

Tat has been shown to activate glutamatergic NMDA recep-
tors (NMDARs) through a variety of direct and indirect mecha-
nisms (Magnuson et al., 1995; Haughey et al., 2001; Pérez et al.,
2001; Li et al., 2008; Aksenov et al., 2012). Tat mediates neuro-
toxic glutamate release, which activates AMPA receptors
(AMPARs) that can upregulate NMDA-mediated toxicity (Lon-
gordo et al., 2006), leading to dendritic structural and functional
defects observed in HIV-1 infected individuals (Mattson et al.,
2005). In addition to NMDAR-mediated increases in Ca 2� in-
flux, NMDAR channels also rapidly influx Na� (Yu and Salter,
1998). In fact, Na� likely transits the channel more rapidly than
Ca 2� (McBain and Mayer, 1994; Dingledine et al., 1999) and
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intracellular Na� ([Na�]i) can direct Ca 2� entry through
NMDAR channels (Yu and Salter, 1998; Yu, 2006; Vander Jagt et
al., 2008) by modulating NMDAR gating and expression levels
(Xin et al., 2005).

Extended NMDA exposure has been shown to elevate [Na�]i

leading to ionic imbalances and ATP depletion with an accom-
panying loss in cellular energetics and resultant dysregulation of
[Ca 2�]i (Vander Jagt et al., 2008). Previous studies suggest that
the onset of synaptodendritic injury manifests as focal swellings
or varicosities caused by excitotoxic influxes of Na� and/or
Ca 2�, compensatory increases in Na�/K�-dependent ATPase
activity, and a rapid loss in ATP mobilization (Perry et al., 2005;
Greenwood and Connolly, 2007).

Clinical evidence suggests that opioid abuse can exacerbate
neuro-acquired immunodeficiency syndrome (neuroAIDS; Bell
et al., 1998; Nath et al., 1999; Anthony et al., 2008; Byrd et al.,
2011), and experimental models support these findings by dem-
onstrating heightened synaptodendritic degeneration with opi-
oid and Tat coexposure (Fitting et al., 2010). The mechanisms by
which opiates per se act to enhance HIV-1-induced synaptoden-
dritic injury remain largely undefined.

The present study examined the effects of opioids on the
initial events by which Tat triggers excitotoxic neuronal in-
jury. Results indicate Tat-induced rapid Na � influx, [Ca 2�]i

destabilization, and mitochondrial hyperpolarization in den-
drites through excitotoxic glutamatergic mechanisms largely
mediated by NMDARs. Morphine, acting via �-opioid recep-
tors (MORs), exacerbated this process by destabilizing mito-
chondrial inner membrane potential and by exacerbating [Ca2�]i

mobilization from internal stores through a ryanodine receptor-
dependent mechanism. The results herein provide evidence that
opiates exacerbate Tat-induced dendritic injury through MOR-
dependent focal disruption of Ca2� mobilization and mitochon-
drial destabilization that converge with Tat-induced excitotoxic
signaling via NMDARs.

Materials and Methods
Experiments were conducted in accordance with the NIH Guide for the
Care and Use of Laboratory Animals. All procedures were approved by the
Virginia Commonwealth University Institutional Animal Care and Use
Committee.

Primary neuron culture. Dissociated striatal neuronal cultures (96%
neurons, 4% glia) were prepared from embryonic day 15–16 ICR
(CD-1) outbred or MOR knock-out mouse embryos as previously
described (Gurwell et al., 2001). The MOR knock-out mouse has been
well characterized (Matthes et al., 1996; Martin et al., 2003; Chefer et
al., 2009; Burbassi et al., 2010; Laurent et al., 2012). The ability of
morphine to increase the neurotoxic effects of Tat are absent in stri-
atal cells from this MOR-null strain (Zou et al., 2011). The striatum
was dissected, minced, and incubated (30 min, 37°C) with trypsin (2.5
mg/ml) and DNase (0.015 mg/ml) in neurobasal medium (Invitro-
gen) supplemented with B27 (Invitrogen), L-glutamine (0.5 mM; In-
vitrogen), glutamate (25 mM; Sigma-Aldrich), and an antibiotic
mixture (Invitrogen). Tissues were triturated, filtered through 70-
�m-pore nylon mesh and then plated on 35 mm Petri dishes (25 �
10 5 neurons/dish) with 10 mm glass-bottom inserts (MatTek). The
glass-bottom Petri dishes were coated with poly-L-lysine (Sigma-
Aldrich) and cells were maintained in neurobasal medium supple-
mented with B27 (Invitrogen), 0.5 mM L-glutamine, 0.025 mM

glutamate at 37°C in a humidified atmosphere containing 5% CO2.
Experiments were performed on cultures at 11–12 d in vitro.

Immunohistochemistry. Striatal neuron cultures were fixed in 4% para-
formaldehyde for 10 min, and then permeabilized with Triton X-100 for
15 min. Mature medium spiny neurons were double- stained for GluR1
(goat, MyBioSource, aa264 –277; 1:100) and GluN2B (mouse, Neuro-

Mab, Q00960; 1:100). Primary antibodies were detected using appropri-
ate secondary antibodies conjugated to either AlexaFluor 488 or
AlexaFluor 594, respectively. Cell nuclei were visualized with Hoechst
33342. Confocal immunofluorescent images were acquired using a Zeiss
LSM 700 laser scanning confocal microscope configured to an Axio Ob-
server Z.1 microscope, and processed using Zen 2010 software (Carl
Zeiss). Multiple z-stacks were acquired and compressed into single pro-
jected images to better show the cells in their entirety.

Assessing dendritic morphology. Striatal neuron dendritic morphology
was assessed using a Zeiss Axio Observer Z.1 inverted microscope (Carl
Zeiss) with an automated, computer-controlled stage encoder with en-
vironmental control (37°C, 95% humidity, 5% CO2). For each Petri dish,
six, nonoverlapping fields were randomly selected using a 63� objective.
For purposes of quantification, medium spiny neurons that displayed
normal morphology (Kreitzer, 2009) at the beginning of the experiment
were selected from each field. Medium spiny neurons were identified in
digital images of each field based on their distinctive morphology. Den-
dritic alterations were quantified from reconstructed confocal images
that were acquired at 2 min intervals for 10 min and projected onto a
single plane. Both qualitative and quantitative assessments of dendrite
morphology were made. Three secondary dendrites of one neuron were
randomly chosen and monitored for dendritic swelling over the 10 min
assay period. Dendritic data for each neuron were averaged. Dendritic
swelling was defined when the dendrite displayed aberrant features, such
as beading and/or varicosity occurring along proximal and/or distal seg-
ments. An abrupt, twofold increase in the diameter of the main axis of the
dendrite (typically �3 �m diameter) that did not coincide with a branch-
point was used as criterion for beading or varicosity formation. Dendritic
swellings were counted per 40 – 60 �m dendritic lengths before and every
2 min after treatment exposure on the same neuron using time-lapse
imaging. Repeated-measure analyses were performed on six to eight
neurons per treatment per experiment; at least three independent
experiments for each treatment were conducted and presented as the
mean � SEM.

Calcium, sodium, and mitochondrial imaging. Fluorescence measure-
ments were conducted on striatal neuron cultures using a Zeiss Axio
Observer Z.1 inverted microscope (Carl Zeiss, 20� objective) with an
automated, computer-controlled stage encoder with environmental
control (37°C, 95% humidity, 5% CO2). Indicators SBFI-AM (10 �M,
Invitrogen) for measuring [Na �]i, rhodamine 123 (rhod123, 10 �M;
Sigma-Aldrich) for measuring changes in mitochondrial inner mem-
brane potential, and fura2-AM (2.5 �M, Invitrogen) for measuring
[Ca 2�]i, were used in Hank’s balanced salt solution (HBSS; with Ca 2�,
Invitrogen) with HEPES (10 mM, Invitrogen) and according to the man-
ufacturer’s instructions. Using Axio Vision 4.8 software, images were
acquired with a MRm digital camera (Carl Zeiss) at a frame rate of 1 Hz
during the first 90 s, 0.2 Hz during the next 60 s, 0.033 Hz from 2.5 min
to 10 min, and 0.0166 Hz from 10 to 60 min.

For measuring [Na �]i and [Ca 2�]i, neurons were incubated with
SBFI-AM or fura2-AM, respectively, and relative fluorescence ratio im-
ages were acquired at 340/380 nm excitation and 510 nm emission wave-
lengths. Conversion to [Ca 2�]i was calculated according to an equation
described previously (Grynkiewicz et al., 1985).

For measuring changes in mitochondrial inner membrane potential,
rhod123 was excited at 488 nm and the emitted fluorescence was filtered
through a 515–575 nm filter. Previous studies demonstrated a Tat-
induced loss in rhod123 fluorescence intensity, indicating mitochondrial
hyperpolarization (Norman et al., 2007, 2008). Carbonyl cyanide 4 (tri-
fluoromethoxy) phenylhydrazone (5 �M) was used as a positive control
at the end of each experiment, which caused an expected, characteristic
unquenching (depolarization of ��m) response (data not shown; Nor-
man et al., 2008; Perry et al., 2011). The rhod123 results are presented as
mean fluorescence intensity.

The cytoplasm of neuronal perikarya was manually outlined as the
region-of-interest (ROI) excluding the area over the nuclei. When
imaging the dendrites, the ROI was a circle (3 �m 2) that was held to
a constant size across dendrites in all experiments. The ROI for each
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dendrite was selected from regions approxi-
mately one-fourth (proximal) or three-
fourths (distal) along the total length of the
dendrite from the soma. Data from nine den-
drites from three neurons were collected in at
least three experiments using neurons from
separate mice. Due to the heterogeneity
among neurons, the mean � SEM values for
changes in [Na �]i, [Ca 2�]i, and rhod123
levels were computed comparing individual
neurons before and at specific intervals dur-
ing treatment using a repeated-measure
ANOVA. Quantitative analyses of [Na �]i,
[Ca 2�]i, and rhod123 levels in neuronal per-
ikarya or dendrites were performed on
10 –20 neurons per treatment per experi-
ment; at least three independent experiments
were conducted for each treatment group.

Treatments. Treatments included HIV-1
Tat1–86 (10 –100 nM, ImmunoDiagnostics;
clade B), HIV-1 Tat�31–61 (100 nM mutant
Tat), a deletion mutation lacking the excito-
toxic core and basic domains (Nath et al.,
1996), glutamate (5–500 �M, Tocris Biosci-
ence), AMPA (25–100 �M, Tocris Bioscience),
and morphine sulfate (500 nM, Sigma-
Aldrich). Tat concentrations were chosen from
the range that elicited functional deficits in glia
and neurons similar to those occurring in
HIV-1, and that are considered to reflect levels
seen under pathological conditions (Kruman
et al., 1998; Nath et al., 1999; Singh et al., 2004;
El-Hage et al., 2005, 2008; Perry et al., 2010).
Glutamate and AMPA concentrations were se-
lected so that they spanned the minimal and
maximal effects observed in previous studies
(Marin et al., 1993; Pepponi et al., 2009; Ruiz et
al., 2012) and in our preliminary experiments
(data not shown). The morphine concentra-
tion used was based on our previous studies
(Podhaizer et al., 2012; Suzuki et al., 2011; Zou
et al., 2011) and was chosen to maximally stim-
ulate MOR. Tat and/or drug combinations
were added concurrently to the cultures, while
readings were taken from the soma or den-
drites for all imaging studies and from the
dendrites for the morphological studies. Inhib-
itors/antagonists were added to the culture 30
min before, and for the duration of the exper-
iment, except for the NMDA receptor blocker
dizocilpine (MK-801, 20 �M, Tocris Biosci-
ence) that was added right after the treatments.
Pretreatment concentrations were chosen to
maximally block treatments based on prelimi-
nary explorative assessments conducted before
the main experiments (data not shown). Pre-
treatments included the: AMPA receptor an-
tagonist CNQX (5 �M, Tocris Bioscience), opioid receptor antagonist
naloxone (1.5 �M, Sigma-Aldrich), �-opioid receptor antagonist D-Phe-
Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 500 nM, Tocris Biosci-
ence), �-opioid receptor (DOR) antagonist naltrindole (1 �M, Tocris
Bioscience), �-opioid receptor (KOR) antagonist nor-binaltorphimine
(nor-BNI; 1 �M, Tocris Bioscience), L-type calcium channel blocker ni-
modipine (50 �M, Tocris Bioscience), endoplasmic reticulum calcium
release inhibitors dantrolene (5 �M, Tocris Bioscience) or ryanodine (1
�M, Tocris Bioscience), and pyruvate (10 mM, Sigma-Aldrich), which
is rapidly metabolized to ATP (Krisher and Prather, 2012). Reagent
stocks were stored at �80°C for �1 month. For the experimental
manipulation of Ca 2�-free medium, HBSS with calcium was

switched to Ca 2�-free HBSS medium (Invitrogen). For the experi-
mental manipulation of low sodium in the external solution, HBSS
with calcium was used but 50% of sodium bicarbonate was substi-
tuted with lithium (Li �, Sigma-Aldrich).

Statistical analyses. Data were analyzed using ANOVA (SYSTAT 11.0 for
Windows) followed by post hoc tests, using Bonferroni’s correction as
needed. In repeated-measures ANOVAs for the within-subjects factors (i.e.,
comparing multiple time points), violations of compound symmetry were
addressed by using the Greenhouse–Geisser degrees-of-freedom correction
factor (Greenhouse and Geisser, 1959). An � level of p�0.05 was considered
significant for all statistical tests used. Data are expressed as the mean � SEM
from at least three independent experiments.

Figure 1. GluR1 (green) and GluN2B (red) receptor subunits are distributed to varying degrees throughout the cell body and
dendrites of primary murine striatal medium spiny neurons. Cells were exposed to treatments for 1 h via bath application.
Immunohistochemistry indicates no differences in receptor distribution for (A) controls, (B) Tat 50 nM, and (C) Tat (50 nM) �
morphine (500 nM). Multiple z-stacks were projected into a single image plane to show the distribution of receptors throughout the
neuron; Hoechst 33342 counterstained nuclei (blue). DIC, Differential interference contrast. Scale bars, 20 �m.
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Results
GluR1 and GluN2B receptor subunit localization in striatal
medium spiny neurons
AMPA and NMDA receptors are ligand gated glutamatergic ion
channels that mediate the majority of fast excitatory
neurotransmission at CNS synapses. The AMPAR is formed of
four subunits that are thought to assemble as a dimer of dimers
(Tichelaar et al., 2004). The GluR1 subunit is one of the most
abundant AMPAR subunits in the striatum (Stefani et al., 1998),
and GluN2B has been shown to be specifically involved in
NMDA-induced excitotoxicity in striatal neurons (Lui et al.,
2003). Cells were stained for endogenous GluR1 (green) and
GluN2B subunits (red) and counterstained with Hoechst 33342
(blue). As depicted in Figure 1, GluR1 and GluN2B are localized
in the soma and dendrites. There was no significant effect on
receptor distribution after 1 h Tat or combined Tat and mor-
phine treatment. The uniform distribution of these receptors on
dendrites indicates that the glutamatergic machinery necessary
for a local dendritic response was present in our cultured
neurons.

Tat � morphine-induced dendritic
swelling was partially prevented by
MK-801 and CNQX
Excitotoxicity is characterized by den-
dritic changes, including swelling, and
formation of dendritic varicosities. These
have been previously demonstrated in
vivo in Tat transgenic mice (Fitting et al.,
2010, 2013). Morphological analyses were
performed to quantify dendritic varicos-
ity and swelling that occurred in neurons
exposed to Tat and/or morphine by a 10
min bath application (Fig. 2). Tat alone
significantly altered neuronal morphol-
ogy starting after 6 min exposure (p �
0.05 vs control; Fig. 2B) by triggering the
appearance of dendritic varicosities and
swellings. Combined Tat and morphine
accelerated the formation of dendritic
varicosities as significance was noted after
4 min (p � 0.05 vs control, Fig. 2C). No
significant alterations were noted on
neurons exposed to morphine alone. Im-
portantly, Tat- or combined Tat- and
morphine-dependent increases in dendritic
swellings were antagonized by MK-801
(p � 0.05), and partially antagonized by
CNQX (Fig. 2B,C). Although the baseline
for CNQX treated cells was slightly ele-
vated, it was not significant (Fig. 2B);
however, this was not significantly differ-
ent from controls. The elevated response
may become significant with more pro-
longed exposure. These findings suggest
that Tat-induced dendritic swellings act
via NMDA or AMPA receptor-related
events.

Tat � morphine-induced dendritic
swellings are accompanied by losses in
ion homeostasis
NMDA receptor activation has been
shown to result in substantial [Na�]i

loading, and Na� accumulation has been suggested to be a sig-
nificant contributor to neuronal injury (Rothman, 1985; Olney et
al., 1986). As Tat and combined Tat and morphine treatment
increased dendritic swellings, we were interested in testing if Na�

accumulation and mitochondrial dysfunction play a role in Tat �
morphine-induced synaptodendritic injury (Fig. 3). It has been
demonstrated that demands for mitochondrial ATP synthesis,
which occurs due to Na� extrusion, is a major contributor to
subsequent dysregulation of Ca 2� homeostasis in cultured neu-
rons (Nicholls et al., 2007; Vander Jagt et al., 2008). Intracellular
Na� concentrations were investigated using the ratiometric in-
dicator SBFI-AM (Fig. 3A,B). These studies demonstrated that
Tat-induced increases (p � 0.05 vs control) reached a peak re-
sponse at 	6 min, which remained stable until the end of the 10
min period. Combined Tat and morphine treatment showed
similar effects as Tat alone (p � 0.05 vs control). No significant
alterations were noted on neurons exposed to morphine alone.
Importantly, Tat- and combined Tat- and morphine-dependent
increases in [Na�]i were antagonized by MK-801 (p � 0.05) or

Figure 2. Time-dependent effects of Tat � morphine on dendritic morphology in striatal medium spiny neurons. A, Neurons
display focal dendritic swellings/varicosities at 10 min following bath application of Tat (50 nM) � morphine (500 nM; arrows),
whereas controls show normal morphology. B, C, Tat significantly increases dendritic swelling after 6 min of treatment, whereas
combined Tat and morphine-induced increases in dendritic swellings occur earlier at 	4 min. Tat- and combined Tat- and
morphine-dependent increases in dendritic swellings were antagonized by coadministering MK-801 (20 �M) and CNQX (5 �M).
Significance was assessed by ANOVA followed by Bonferroni’s post hoc test; *p � 0.05 versus control, #p � 0.05 versus Tat 50 nM,
§p � 0.05 versus Tat � morphine; arrows indicate the onset of Tat � morphine treatment (3 independent experiments, 6 – 8
neurons per experiment). Images represent the projection of z-stack images acquired by microscopy at indicated times. Images are
the same magnification. Scale bar, 20 �m.
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Figure 3. Tat � morphine increases [Na �]i and destabilizes mitochondrial inner membrane potential in striatal medium spiny neurons. A, Pseudocolor images of Tat � morphine-induced increases in
[Na �]i as assessed by ratiometric imaging of SBFI-AM. B, Tat treatment alone significantly increases [Na �]i immediately after and throughout the 10 min period (Figure legend continues.)
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CNQX (p � 0.05). These data support the findings of dendritic
swellings with Tat acting via AMPA and NMDA receptors.

Tat treatment alone significantly destabilized the mitochon-
drial inner membrane potential (p � 0.05 vs control), as mea-
sured by a rapid loss in rhod123 relative fluorescence (Fig. 3C,D),
indicating mitochondrial hyperpolarization, and as reported pre-
viously (Norman et al., 2007, 2008). Significant synergy was seen
when combined Tat and morphine treatment were compared
with Tat-exposure alone (p � 0.05), suggesting a pronounced
loss in mitochondrial inner membrane potential with coadmin-
istration of Tat and morphine. The Tat and combined Tat and
morphine effects were significantly antagonized by MK-801 (p �
0.05) but not by CNQX (Fig. 3D). Pyruvate significantly reversed
the effects of Tat- and combined Tat- and morphine-induced
mitochondrial hyperpolarization (p � 0.05), indicated by an
increase in rhod123 relative fluorescence (mitochondrial depo-
larization; Fig. 3D).

AMPA and NMDA receptors mediate Tat-induced increases
in [Ca 2�]i

To understand how AMPA and NMDA-related events contribute
to Tat-induced dendritic swellings, the role of each receptor
type in [Ca 2�]i changes in neurons were assessed (Fig. 4).
Concentration-response curves revealed that bath exposure to
Tat, AMPA, or glutamate for 10 min significantly increased
[Ca 2�]i compared with baseline or morphine exposure (p �
0.05; Fig. 4A–C). A near exponential increase in [Ca 2�]i was
noted immediately following Tat exposure, while a more linear
increase in [Ca 2�]i occurred with AMPAR activation, with a
more constant [Ca 2�]i induction across a range of glutamate
concentrations. A comparison across concentrations for each
treatment demonstrated significantly higher [Ca 2�]i following
Tat treatment compared with AMPA or glutamate exposure (Fig.
4D–F). No difference was noted between AMPA and glutamate-
induced [Ca 2�]i levels. In combination with morphine (500 nM),
there were significant interactions depending on the particular
treatment and concentration used (Fig. 4D–F). Interestingly,
AMPA activation appears to be responsible for the initial increase
in [Ca 2�]i (Fig. 4E). For example, (1) AMPA exposure rapidly
triggered an initial spike in [Ca 2�]i, and (2) the initial, but not
sustained (
3 min), raise in [Ca 2�]i caused by Tat was signifi-
cantly attenuated by CNQX coadministration (p � 0.05; Fig.
4G). Glutamate, in turn, demonstrated (1) a more sustained
[Ca 2�]i mobilization over the 10 min time window (Fig. 4F), and
(2) the sustained increases in [Ca 2�]i mediated by Tat � mor-

phine [Ca 2�]i were antagonized by MK-801 (p � 0.05; Fig.
4G,H), suggesting that Tat increased Ca 2� conductance through
NMDAR channels. Partial involvement of AMPAR activation has
been shown to contribute to Tat excitotoxicity downstream of
NMDAR activation (Nath et al., 1996). Tat-induced neuronal
excitability may be secondarily mediated by non-NMDARs, as
responses mediated by NMDA receptors are rapidly desensitiz-
ing. This is in contrast to those mediated by kainate-activated
non-NMDARs that are non-desensitizing (Cheng et al., 1998).
Interestingly, the present study indicates that AMPA, by itself,
appeared to have some effect on the initial increase in [Ca 2�]i,
whereas glutamate produced a more sustained, but more modest
increases in [Ca 2�]i mobilization. Whether Tat-mediated AM-
PAR activation proceeded or initiated NMDAR activation has
not been fully elucidated and requires further and more detailed
studies.

Tat � morphine-induced increases in [Ca 2�]i are mediated
via MOR
To understand the effects of combined Tat and morphine on
cytosolic Ca 2� concentration in striatal neurons, we investigated
Tat plus morphine-induced [Ca 2�]i responses in the presence of
different opioid receptor antagonists (Fig. 5). Importantly, Tat-
induced increases in [Ca 2�]i were significantly exacerbated for
combined Tat and morphine treatment throughout an entire 30
min assessment period (p � 0.05; Fig. 5A,B). Naloxone was able
to partially antagonize combined Tat and morphine-exacerbated
responses for the first 20 min (p � 0.05), but failed to signifi-
cantly reduce [Ca 2�]i for the last 10 min during assessment (Fig.
5D). As naloxone has high affinity for MOR, but also some affin-
ity for DOR and KOR, we were interested in determining whether
a non-MOR might contribute to the combined effects of mor-
phine and Tat-induced exacerbation of [Ca 2�]i. Accordingly,
pharmacological strategies were used to manipulate opioid
receptor-mediated pathways. Interestingly, neither nor-BNI, a
KOR antagonist, nor naltrindole, a DOR antagonist affected the
combined Tat and morphine-induced increases in [Ca 2�]i (Fig.
5B,D). In contrast, the specific MOR antagonist CTAP signifi-
cantly decreased combined Tat and morphine-induced [Ca 2�]i

(p � 0.05; Fig. 5B). Further, striatal neuron cultures from MOR
knock-out mice failed to show interactive increases in [Ca 2�]i

following combined Tat and morphine treatment compared with
Tat-exposure alone (Fig. 5C,D).

Tat � morphine-induced increases in [Ca 2�]i were blocked
by ryanodine and pyruvate, whereas increases in [Na �]i were
attenuated by pyruvate only
We used pharmacological strategies to determine the sources of
combined Tat and morphine-driven increases in [Ca 2�]i and
[Na�]i (Fig. 6). L-type calcium channels were blocked with ni-
modipine to test whether the increase of [Ca 2�]i resulted from
increased L-type voltage-gated Ca 2� channel activation. The ry-
anodine receptor (RyR) antagonists, dantrolene, and ryanodine,
were individually used to test for the involvement of intracellular
calcium stores. Pyruvate was used to assess the involvement of
ATP depletion due to increases in Na�/K�-dependent ATPase
activity. Importantly, Tat- and morphine-induced increases in
[Ca 2�]i transients were attenuated by blockade of RyR (p �
0.05), and partially blocked by pyruvate, indicating the impor-
tance of intracellular calcium stores and ATP levels (Fig. 6A,B).
Even though nimodipine did not significantly attenuate in-
creased [Ca 2�]i mobilization (Fig. 6A,B), Ca 2�-free medium or
low [Na�]o significantly decreased [Ca 2�]i despite combined

4

(Figure legend continued.) following exposure. Tat- and combined Tat and morphine-induced
[Na �]i increases were markedly reduced by coadministering MK-801 and CNQX. [Na �]i was
unaffected by exposure to morphine, whereas combined Tat and morphine treatment did not
differ from Tat alone. C, Confocal images of rhod123 fluorescence (an index of inner mitochon-
drial membrane potential) were taken for control, Tat 50 nM, and Tat � morphine treated cells
(10 min treatment exposure). D, Tat and combined Tat- and morphine-induced decreases in
rhod123 fluorescence intensity were markedly attenuated by MK-801, but not CNQX. Rhod123
fluorescence intensity was unaffected by morphine, whereas a synergistic decline in fluores-
cence was seen with combined Tat and morphine treatment, indicating mitochondrial hyper-
polarization. Incubation with pyruvate for 30 min before Tat, and combined Tat and morphine
treatments resulted in the inhibition of rhod123 signal with mitochondrial depolarization. Sig-
nificance was assessed by ANOVA followed by Bonferroni’s post hoc test; *p � 0.05 versus
control, #p � 0.05 versus Tat 50 nM, §p � 0.05 versus Tat � morphine; arrows indicate the
onset of Tat � morphine treatment (3 independent experiments, 10 –20 neurons per experi-
ment). Images are the same magnification. Scale bars: white, 20 �m; yellow, 5 �m. Morph,
Morphine.
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Figure 4. AMPA and NMDA receptors are involved in Tat-induced increases in [Ca 2�]i. A–C, Concentration-dependent effects of bath applied Tat, AMPA, or glutamate on [Ca 2�]i. A, Tat
concentrations 
50 nM increase [Ca 2�]i, whereas the inactive, Tat�31–61 mutant Tat (mTat; 100 nM) and morphine had no effect. Combined Tat (10 or 50 nM) and morphine (500 nM) exacerbate
increases in [Ca 2�]i compared with equimolar concentrations of Tat alone, which is markedly reduced by coadministering naloxone, indicating the response is mediated by opioid receptors. B,
AMPA significantly increases [Ca 2�]i in a concentration-dependent manner; concurrent morphine administration selectively significantly enhanced increases in [Ca 2�]i at 5 �M concentrations of
AMPA. C, Glutamate significantly increases [Ca 2�]i at intermediate concentrations, but the [Ca 2�]i increases are unaffected by concurrent morphine exposure. D–F, Tat, AMPA, and glutamate each
interact uniquely with morphine. D, Tat increases [Ca 2�]i. Tat-induced [Ca 2�]i increases are exacerbated by morphine and the response is sustained throughout the 10 min period following
exposure. E, AMPA increases [Ca 2�]i only initially, whereas combined AMPA and morphine administration displays prolonged increases in [Ca 2�]i. F, Glutamate alone sustains [Ca 2�]i, which is
partially exacerbated in combination with morphine. G, H, Importantly, Tat and combined Tat- and morphine-induced [Ca 2�]i increases were partially or completely antagonized by CNQX or
MK-801, respectively. Statistical significance was assessed by ANOVA followed by Bonferroni’s post hoc test; *p � 0.05 versus control, #p � 0.05 versus Tat, §p � 0.05 versus Tat � morphine; ap �
0.05 versus naloxone � Tat � morphine, †p � 0.05 versus morphine, ‡p � 0.05 mTat versus Tat, Tat � morphine, and naloxone � Tat � morphine. The brackets indicate data with overlapping
significance; arrows indicate the onset of treatment (3 independent experiments, 10 –20 neurons per experiment). Nal, Naloxone; morph, morphine.
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Tat and morphine treatment (p � 0.05), but not for Tat treat-
ment alone (Fig. 6C,D). Ca 2� influx was mostly, but not com-
pletely, blocked with Ca 2�-free medium ([Ca 2�]o) for several
likely reasons. Despite the use of Ca 2�-free medium, in the ab-

sence of chelators (e.g., EGTA, EDTA), there is always some Ca 2�

present. The reason for this is that small amounts of Ca 2� ions
are released extracellularly via (1) transporter efflux (e.g., plasma
membrane Ca 2�-ATPase) from normal cells, (2) injured/dying

Figure 5. Morphine-dependent increases in [Ca 2�]i (alone or in combination with Tat) are mediated by MOR as shown with pharmacological (CTAP) and genetic (MOR knock-out mice)
strategies. A, Pseudocolor images of Tat- and/or morphine-induced increases in [Ca 2�]i as assessed by ratiometric imaging of fura 2. A, B, Minimal changes in [Ca 2�]i were seen with morphine
alone (white arrowheads, top row). Alternatively, Tat by itself significantly increased [Ca 2�]i and morphine exacerbated the effects of Tat (white arrowheads, middle and bottom rows). In the
presence of morphine, Tat-induced [Ca 2�]i increases were markedly reduced by coadministering naloxone or CTAP. Naltrindole or nor-BNI did not attenuate the effects of Tat and morphine
coexposure, suggesting that DOR and KOR, respectively, are not involved. C, Likewise, despite significant increases in [Ca 2�]i with Tat alone, combined Tat and morphine treatment does not further
increase [Ca 2�]i in striatal neurons from MOR-null mice. D, Average [Ca 2�]i during the final 10 min (from 20 to 30 min) indicate significant increases in [Ca 2�]i by Tat alone compared with controls,
with an exacerbated response for combined Tat and morphine treatment, which is antagonized by CTAP and not seen in neurons of MOR knock-out mice. Statistical significance was assessed by
ANOVA followed by Bonferroni’s post hoc test; *p � 0.05 versus control, #p � 0.05 versus Tat, §p � 0.05 versus Tat� morphine, †p � 0.05 versus morphine; arrows indicate the onset of treatment
(3 independent experiments, 10 –20 neurons per experiment). TM, Tat 50 nM � morphine 500 nM. Images are the same magnification. Scale bar, 20 �m.
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Figure 6. Effects of morphine and/or Tat on [Ca 2�]i and [Na �]i in neuronal dendrites following 0 –30 min exposure. A, Acute Tat � morphine-induced increases in [Ca 2�]i are attenuated by
ryanodine or pyruvate, while nimodipine (L-type Ca 2� channel blocker) and dantrolene do not show any effects on Tat�morphine-induced changes in [Ca 2�]i. B, Average [Ca 2�]i during the final
10 min (from 20 to 30 min) indicate ryanodine significantly blocks combined Tat and morphine-induced increases in [Ca 2�]i, whereas no effects are noted for nimodipine, dantrolene, or pyruvate.
C, Ca 2�-free medium or low [Na �]o significantly decreases Tat plus morphine increases in [Ca 2�]i. However, Ca 2�-free or low Na � medium significantly decreases [Ca 2�]i following Tat
treatment alone, but Tat increases are exacerbated after 20 min. D, Tat � morphine-induced increases in [Ca 2�]i during the interval from 20 to 30 min are significantly reduced by Ca 2�-free
medium. E, Tat � morphine similarly increases [Na �]i, which is completely blocked by low [Na �]o. Although Ca 2�-free medium attenuates the Tat � morphine-associated elevations in [Na �]i,
[Na �]i levels remained markedly above baseline levels perhaps suggesting some Ca 2� efflux from internal stores. Exogenous pyruvate also significantly attenuate Tat � morphine-induced
increases in [Na �]i, whereas ryanodine has no effect. F, Average [Na �]i during the final 10 min indicate a significant blockage of Tat � morphine increases in [Na �]i by low [Na �]o, with partial
reductions in [Na �]i following exposure to Ca 2�-free medium or exogenous pyruvate, but not ryanodine. Statistical significance was assessed by ANOVA followed by Bonferroni’s post hoc test;
*p � 0.05 versus control, #p � 0.05 versus Tat, §p � 0.05 versus Tat � morphine; arrows indicate the onset of treatment (3 independent experiments, 10 –20 neurons per experiment). TM, Tat
50 nM � morphine 500 nM; low [Na �]o: 50% of the extracellular Na � was substituted with Li �.

12858 • J. Neurosci., September 17, 2014 • 34(38):12850 –12864 Fitting et al. • Tat and Morphine-Induced Synaptodendritic Injury



cells (e.g., from mitochondria), or (3) binding sites within the
extracellular matrix. Although the use of chelators would further
limit Ca 2� entry, chelators are incompatible with the current
assay because they can promote cellular detachment from the
culture dish. Thus, in the present studies, it is likely that despite
the use of Ca 2�-free medium some Ca 2� was still able to enter
from the extracellular space, albeit at greatly reduced levels. For
Tat � morphine-induced increases in [Na�]i, pyruvate or Ca 2�-
free medium significantly attenuated the increases in [Na�]i

(p � 0.05), whereas [Na�]i increases were unaffected by ryano-
dine. There was a complete blockade of [Na�]i with low [Na�]o

(p � 0.05), suggesting that Na� transients were due to an influx
of extracellular sodium (Fig. 6E,F).

Tat � morphine-induced increases in [Ca 2�]i in dendrites
and soma
To investigate the distribution of increases in cytosolic Ca 2� con-
centration in striatal neurons, we investigated the [Ca 2�]i re-
sponse in the soma, as well as the dendrites following different
treatments (Fig. 7). Although control and morphine treatments
did not significantly elevate [Ca 2�]i in the soma or dendrites,
exposure to Tat � morphine increased [Ca 2�]i (p � 0.05 vs
corresponding control; Fig. 7A–C). For both treatments, elevated
[Ca 2�]i in the distal and proximal dendrites preceded and was
more exaggerated than increases in the soma, and was sustained
throughout the 30 min assessment period (Fig. 7B). Ca 2� over-
load consistently originated in the distal dendrites and propa-
gated toward the soma, ultimately involving the entire neuron.

Discussion
The rapid and highly localized response to Tat � morphine sug-
gests that both interact directly with neurons. Tat can interact
directly with GluN1 receptors (Cheng et al., 1998; Li et al., 2008),
nonselective cation channels (Magnuson et al., 1995; Nath et al.,
1996; Menegon et al., 1997; Cheng et al., 1998), and the dopamine
transporter (Zhu et al., 2009; Midde et al., 2013), whereas mor-
phine can interact directly with the dendritic spines of MOR-
expressing cerebral cortical and hippocampal neurons (Liao et
al., 2005, 2007). Many of these molecular targets (especially
NMDARs) alter membrane properties and can rapidly depolarize
neurons. Tat can act via non-NMDARs (Haughey et al., 1999,
2001). However, the nature of the non-NMDAR molecular tar-
get(s), and whether the enhanced neuronal excitability is second-
ary to a glial response, remains to be established. Further, it has
been reported that when Tat was pressure-applied to neurons,
the time to maximal [Ca 2�]i production in some neurons was
2–3 s, which resulted from Tat-induced Ca 2� mobilization from
inositol 1,4,5-trisphosphate (IP3)-regulated stores (Haughey et
al., 1999). How morphine interacts with Tat to increase neuronal
excitability is less certain. Morphine-dependent exacerbation of
Tat neurotoxicity has been attributed to direct actions on glia
(Zou et al., 2011). Although morphine typically acts in an inhib-
itory manner, an excitatory MOR-1K splice variant (Gris et al.,
2010) has been described in human astroglia (Dever et al., 2014).
In that study, MOR-1K was not found to be expressed by neu-
rons, although the human neurons sampled were from undefined
brain regions and did not appear to include striatal neurons.

In the present study, GluR1 and GluN2B antigenicity was lo-
calized to the dendrites of striatal neurons, indicating that a focal
dendritic response to Tat was possible. As treatments were bath
applied, we were unable to isolate dendritic or somal responses.
Nevertheless, because dendritic increases in [Ca 2�]i were more
dramatic and typically preceded changes in the soma, it infers a

greater susceptibility of the dendrites to Tat � morphine excito-
toxicity. The positive trophic effects of glutamatergic receptor
activation (Liu et al., 2007; Hardingham, 2009) may be overshad-
owed by GluN2B mediated excitotoxicity (Li et al., 2008; Eugenin
et al., 2011). Tat or combined Tat and morphine exposure did not
appear to redistribute glutamatergic receptors along dendrites,
suggesting the focal vulnerability is not caused by local differ-
ences in NMDAR/AMPAR density.

Ca 2� and Na� influx was blocked by MK-801, a NMDAR
open-channel blocker. The reason that glutamate was less potent
than Tat is uncertain, but likely has to do with their distinct
pharmacological and biochemical properties. Although Tat and
glutamate both activate NMDARs, Tat does not appear to act at
the glutamate binding site, but instead acts allosterically and
seemingly noncompetitively at a site unrelated to glutamate
binding (Li et al., 2008). If Tat-induced Na� entry is sufficiently
great, Na� may reverse the Na�/Ca 2� exchanger (NCX) pro-
moting excitotoxic Ca 2� to reenter the cell (Bindokas and Miller,
1995; Yu and Choi, 1997; Wolf et al., 2001). Increased [Na�]i can
mediate the release of Ca 2� from mitochondria (Al-Shaikhaly et
al., 1979). The effect of Tat on [Na�]i is a relatively novel prop-
osition. Na� influx has been reported to provide essential posi-
tive feedback to overcome Ca 2�-induced inhibition of NMDA
channel gating and to exacerbate Ca 2� influx, potentiating Ca 2�

conductance through NMDA channels (Xin et al., 2005; Yu,
2006). [Na�]i can act as a signaling factor common to processes
that upregulate NMDARs by non-NMDA glutamate channels,
voltage-gated Na� channels, and remote NMDARs (Yu and
Salter, 1998; Yu, 2006). The effects of Tat � morphine appeared
to be biphasic (Fig. 6C,D). During the first phase, Tat-induced
increases in [Ca 2�]i appeared to be dependent on [Na�]o. This
suggests that Na� influx, mediated by Tat, results in Ca 2� influx.
The resultant Ca 2� influx may stimulate phospholipase C (PLC).
PLC generates IP3 and activates the protein kinase C activator
diacylglycerol (Berridge, 1987; Nishizuka, 1988), which can re-
sult in an IP3-mediated Ca 2� release from internal stores. In
Ca 2�-free medium, [Ca 2�]i levels were unaltered, suggesting
that most [Ca 2�]i originates from internal sources. Regarding
[Na�]i, Na� influx occurred with Ca 2�-free medium, although
[Na�]i was significantly reduced, which may arise from reduced
efficiency of the NCX. Moreover, when extracellular Na�

([Na�]o) was decreased (by substituting 50% Li�), the initial
phase of the [Ca 2�]i increase was reduced, suggesting that low
[Na�]o affects [Ca 2�]i levels. This may result from decreased
Na�-dependent Ca 2� release. Additionally, in the presence of
Li�, [Ca 2�]i is reduced and mitochondrial Ca 2� overload does
not occur (Kiedrowski, 1999). Further, Li� is a noncompetitive
inhibitor of inositol monophosphatase that can inactivate PLC.
As expected, Na� influx was blocked by low [Na�]o. During the
second phase, Tat mediated a sustained increase in [Ca 2�]i and
[Na�]i levels. When [Ca 2�]o was significantly reduced via Ca 2�-
free medium, [Ca 2�]i was unaffected, although [Na�]i was re-
duced similar to the initial phase, which likely reflected reduced
efficiency of the NCX. In turn with low [Na�]o, the NCX is likely
to be undergoing a reversal since [Ca 2�]i was enhanced during
the second phase. The ability of low [Na�]o to affect the reversal
of the NCX is well recognized (Yu and Choi, 1997). Low [Na�]o

resulted in the absence of [Na�]i increases.
With combined Tat and morphine, the events of the first

phase were significantly enhanced. Moreover, the effects of com-
bined Tat and morphine, but not Tat alone, appeared to be
ryanodine-sensitive suggesting that Tat likely stimulated an IP3-
dependent pathway, as shown previously (Haughey et al., 1999).
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Morphine coexposure accelerated the formation of Tat-induced
focal dendritic varicosities, which were accompanied by en-
hanced localized increases in [Ca 2�]i and alterations in mito-
chondrial inner membrane potential. [Na�]i increases cannot be
attributed to these effects since no differences were seen with Tat
versus combined Tat and morphine treatment. Because NMDAR

activation allows Na� and Ca 2� to enter the cell (Yu and Salter,
1998; Yu, 2006; Vander Jagt et al., 2008), our findings indicate
that morphine is converging downstream of NMDARs, as com-
bined Tat and morphine showed significantly higher [Ca 2�]i,
mobilization, whereas [Na�]i did not increase when compared
with Tat alone. This hypothesis is supported by the finding that

Figure 7. Tat � morphine-induced increases in [Ca 2�]i are higher in dendrites compared with the soma in the same neurons. A, Pseudocolor images of Tat � morphine-induced increases in
[Ca 2�]i show rapid elevations in [Ca 2�]i in the dendrites compared with soma in response to Tat�morphine (white arrowheads). B, Exposure to medium alone (control) or morphine did not affect
[Ca 2�]i levels in the soma or dendrites. Tat�morphine significantly increases [Ca 2�]i, with an initial increase in [Ca 2�]i in the soma and dendrites that is followed by a significant elevated [Ca 2�]i

response in dendrites (distal and proximal dendrites) compared with the soma. C, Average [Ca 2�]i during the final 10 min indicate overall significant differences between the different treatments.
Statistical significance was assessed by ANOVA followed by Bonferroni’s post hoc test; *p � 0.05 versus corresponding control, #p � 0.05 versus corresponding Tat, §p � 0.05 versus corresponding
Tat � morphine, ap � 0.05 versus Tat soma, bp � 0.05 versus Tat � morphine soma; arrows indicate onset of treatment (3 independent experiments, 3 neurons per experiment, 9 dendrites per
experiment). Images are the same magnification. Scale bar, 20 �m.
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combined Tat and morphine-induced initial losses in ion ho-
meostasis and increases in [Ca 2�]i mobilization were attenuated
by the RyR inhibitor ryanodine, indicating the importance of
[Ca2�]i mobilization in Tat and morphine-induced synaptoden-
dritic instability. Tat and opiates can evoke Ca 2� influx through
NMDAR or L-type Ca 2� channels and can increase Ca 2� mobi-
lization from IP3-dependent stores via Ca 2�-induced Ca 2� re-
lease through RyR (Hauser et al., 1996; Kruman et al., 1998;
Haughey et al., 1999; El-Hage et al., 2005, 2008). Morphine likely
exacerbates the effects of Tat through excessive [Ca 2�]i influx
and by depleting [Ca 2�]i from RyR-sensitive sites. Normally,
there is a critical period of excitotoxic vulnerability (Mattson et
al., 2008; Vander Jagt et al., 2008). If the flooding of [Ca 2�]i from
NMDAR- and RyR-dependent sites coincides, this would exag-
gerate the loss in Ca 2� homeostasis and exacerbate neuronal in-
jury; suggesting a mechanism by which morphine converges with
Tat to further disrupt Ca 2� homeostasis. The particular RyR2
isoform might be important, as Tat plus morphine-induced [Ca2�]i

mobilization was not inhibited by dantrolene. Dantrolene inhibits

Ca 2� release through RyR channels by
specifically targeting the RyR1 and RyR3,
but not the RyR2, isoform (Zhao et al.,
2001). Ryanodine is highly selective for all
RyR isoforms with limited effects on IP3-
mediated Ca 2� signaling (MacMillan et
al., 2005).

The additive effects of morphine plus
Tat were prevented by a MOR antagonist
and were absent in MOR knock-out me-
dium spiny neurons, suggesting the selec-
tive involvement of MORs. Moreover,
neither the DOR nor the KOR antagonists
prevented the neurotoxic effects of mor-
phine, which further supports the notion
that MORs primarily mediate the interac-
tive neuropathogenesis of Tat and mor-
phine. Last, the absence of interactive
morphine toxicity in neurons from MOR-
null mice suggests that opiate-dependent
activation of Toll-like receptor 4 is not op-
erative, which differs from another study
(Wang et al., 2012).

The importance of MOR-AMPAR/
NMDAR spatiotemporal relationships in
opiate drug-HIV-1 Tat interactive neuro-
pathogenesis has wide support from other
model systems. Morphine acting via MOR
converges with glutamatergic signals from
AMPARs to cause dynamin-dependent
MOR internalization, which triggers spine
reductions (Liao et al., 2007). MOR clus-
ters colocalize with synaptophysin and
NMDARs (73 � 8%) in hippocampal
neurons in culture (Liao et al., 2007). The
frequent overlap of MOR in glutamatergic
synapses suggests that opioids might
modulate the morphology and/or func-
tion of these synapses (Liao et al., 2005).
MOR immunoreactivity is associated
with approximately one-third of striatal
medium spiny neurons suggesting mor-
phine could directly affect a subset
of these neurons (Gurwell et al., 2001;

Bruce-Keller et al., 2008). Thus, we postulate that Tat plus mor-
phine can directly affect synaptodendritic injury, in addition to
the concept that MOR-expressing glia principally drive bystander
neuronal injury (Gurwell et al., 2001; El-Hage et al., 2005; Zou et
al., 2011). Morphine may potentially increase excitation through
MOR-dependent [Ca 2�]i increases via G��-subunit-dependent
phospholipase C activation (Mathews et al., 2008). The resultant
IP3-dependent increases in [Ca 2�]i potentiate Ca 2�-induced
Ca 2� release via ryanodine receptors (Fig. 8). Without additional
study, however, it is difficult to know the extent to which the
excitotoxic effects are secondary to direct actions in astrocytes
and/or microglia, or network effects. Prior studies implicating
marked glial involvement have been largely limited to assessing
neuronal death (Zou et al., 2011). Cell death aside, our data sug-
gest that Tat � morphine can directly compromise the structural
and functional integrity of striatal neurons.

The primary rewarding effects of opioids are largely mediated
by MOR in the ventral tegmental area (VTA; Wise, 1989), the
activation of which leads to increased firing of dopaminergic neu-

Figure 8. Theoretical model of combined Tat- and morphine-induced synaptodendritic injury. A, Micrograph of a dendrite of a
striatal medium spiny neuron with formation of neuronal dendritic swellings after 10 min exposure to Tat (50 nM) and morphine
(500 nM; arrows). Scale bar, 20 �m. B, Combined Tat and morphine promotes structural and functional defects in dendrites via
AMPAR, NMDAR, and MOR, causing influxes of Na � and/or Ca 2�, compensatory increases in Na �/K �-dependent ATPase
activity, and a rapid loss in ATP mobilization with an inability to extrude excess Na � via Na �/K �-ATPase caused by mitochondrial
hyperpolarization. C, Excessive [Na �]i can be antagonized by NMDA and partially by AMPA receptor antagonists MK-801 and
CNQX, respectively. Pyruvate attenuated Tat � morphine-induced increases in [Na �]i transients, suggesting the involvement of
ATP depletion due to increases in Na �/K �-dependent ATPase activity. D, Dysregulation of [Ca 2�]i homeostasis by Tat �
morphine appears to be mediated downstream of [Na �]i at the level of Ca 2� mobilization, which in turn is likely regulated via RyR
and/or IP3, and enhanced by morphine exposure via MOR. ��m2, Mitochondrial depolarization.
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rons (Johnson and North, 1992). This opioid-mediated effect was
later shown to additionally require activation of VTA NMDA and
AMPA receptors (Harris et al., 2004; Jalabert et al., 2011). In-
creased firing of dopaminergic neurons leads to increased dopa-
mine release in limbic forebrain structures including the ventral
striatum, where the NR2B subunit of the NMDAR has been
shown to regulate the development of a morphine conditioned
place preference (Kao et al., 2011). The conditioned place prefer-
ence assay is used to model the primary rewarding, motivational,
and/or conditioning effects of commonly abused substances
(Bardo and Bevins, 2000). Intriguingly, intracerebral ventricular
infusion of subunit-specific blocking antibodies revealed that
NR2B, but not NR1 or NR2A subunits mediated acquisition of a
morphine place preference (Narita et al., 2000). In contrast, mi-
croinjection of AMPA/kainate receptor antagonists into the ven-
tral striatum blocked the expression, but not acquisition of a
morphine conditioned place preference (Layer et al., 1993). Sim-
ilarly, ventral striatal AMPA/kainate receptor antagonists
blocked the cue- and drug-provoked reinstatement of previously
extinguished heroin-seeking behavior (LaLumiere and Kalivas,
2008), and NMDAR blockers modestly reduced subjective re-
sponses to heroin in humans. When considering these studies
together with the present findings, the possibility emerges that
opiate-abusing individuals with HAND/neuroAIDS may be
more prone to rate opioid experiences positively and potentially
to crave more drug.
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