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Ganglioside Regulation of AMPA Receptor Trafficking
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Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis
invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside
functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic
mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10 ~*), three
regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-
sensitive factor (NSF) attachment protein (7y-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2
subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning
and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside,
GM1. Addition of noncleavable ATP (ATP+yS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with
Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed
higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a
significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs
are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-
containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may
result in reduced synaptic expression of GluR2-contianing AMPARSs resulting in intellectual deficits and seizure susceptibility in

mice and humans.
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Introduction

Glutamate is the major excitatory neurotransmitter in the
mammalian brain, and AMPA ionotropic glutamate receptors
(AMPARs) are the predominant mediator of excitatory neu-
rotransmission (Shepherd and Huganir, 2007; Hanley, 2014).
Quantitative and qualitative regulation of AMPAR expression
at postsynaptic membranes controls excitatory neurotransmis-
sion and is a key mechanism in synaptic plasticity, learning, and
memory (Kessels and Malinow, 2009; Henley et al., 2011; Opazo
and Choquet, 2011; Anggono and Huganir, 2012). The number
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and subunit composition of AMPARSs at synapses is tightly regu-
lated by activity-dependent control of the rates of receptor exo-
cytosis, capture at the postsynaptic membrane, and endocytosis.

Gangliosides—sialic acid-bearing glycosphingolipids— are
prominent cell-surface molecular determinants on all vertebrate
neurons, with their lipid moieties embedded in the extracellular
leaflet of the plasma membrane and their glycans extending out-
ward (DeMarco and Woods, 2009; Sonnino and Prinetti, 2013;
Schnaar et al., 2014). Gangliosides regulate cell signaling by asso-
ciating laterally with membrane proteins on their own plasma
membranes and mediate cell—cell recognition by interacting
with complementary binding proteins on apposing cells (Ha-
komori, 2002; Lopez and Schnaar, 2009). Four ganglioside struc-
tures (Fig. 1)—GM1, GD1la, GD1b, and GT1b— comprise the
vast majority of gangliosides in the brains of all mammals. Their
biosynthesis occurs stepwise by enzymatic addition of saccha-
rides to the growing glycan chain (Sturgill et al., 2012), and mu-
tations in ganglioside biosynthetic enzymes result in human
congenital disorders that are phenocopied in mouse genetic
models (Schnaar et al., 2014). Notably, human mutations in gan-
glioside biosynthetic enzymes invariably result in intellectual dis-
ability and are often accompanied by seizure susceptibility
(Simpson et al., 2004; Boukhris et al., 2013; Fragaki et al., 2013;
Harlalka et al., 2013; Boccuto et al., 2014). The mechanisms by
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Figure1.

Top, middle, Structures of gangliosides GM1 and GT1b. Biosynthetic genes discussed in the text are shown in red, and the double bonds that were cleaved by ozonolysis for ganglioside

covalentimmobilization onto magnetic beads by an arrowhead. Bottom, Stepwise biosynthesis of major brain gangliosides, with genes responsible boxed.

which changes in ganglioside biosynthesis result in learning dis-
abilities and dysregulation of excitatory neurotransmission have
not been established.

Using ganglioside affinity capture combined with mass spec-
trometric proteomics, we identified six proteins that bind selec-
tively to the major brain ganglioside GT1b, half of which are
implicated in neurotransmitter receptor trafficking. One of these,
Thorase (J. Zhanget al., 2011b), is notable for ATPase-dependent
regulation of the endocytosis of GluR2 AMPAR subunits, which
are key to AMPAR ion channel excitability (Isaac et al., 2007; Liu
and Savtchouk, 2012). Remarkably, although GluR2 did not bind
GT1b, it bound specifically to another major brain ganglioside,
GM1. Addition of noncleavable ATP disrupted ganglioside bind-
ing and enhanced association of GluR2 with receptor-trafficking
proteins. The data support a model in which gangliosides seques-
ter GluR2-containing AMPA receptors and GluR2 receptor-
trafficking complexes in a reversible ATPase-dependent manner
that may regulate GluR2-containing AMPAR endocytosis,
AMPAR ion channel permeability, synaptic plasticity, learning,
and memory.

Materials and Methods

Cerebellar granule cells. Primary neurons were isolated following papain
dissociation of cerebella dissected from 5-to 6-d-old Sprague Dawley rats

of either sex as described previously (Mehta et al., 2007) and resuspended
at 10 cells/ml in Neurobasal medium (Life Technologies) supplemented
with 25 mm KCI, 2 mm glutamine, NS21 neuron survival factors (Chen et
al., 2008), 100 U/ml penicillin, and 100 ug/ml streptomycin. Cells were
plated on poly-p-lysine-coated 35 mm or 60 mm cell culture dishes at a
density of ~250,000/cm? and cultured for 12 d at 37°C in a 5% CO,
atmosphere with half-medium changes every 2-3 d.

Ganglioside-derivatized beads. Gangliosides GM1 and GT1b purified
from bovine brain (Matreya) were oxidized at the unique sphingosine
double bond (Fig. 1) to introduce an aldehyde group that allowed stable
covalent attachment to amine-derivatized beads. GT1b and GM1 were
treated with freshly generated ozone in methanol essentially as described
previously (Schnaar et al., 2002). Oxidation to the corresponding gangli-
oside aldehyde was confirmed by thin-layer chromatography and
MALDI-TOF mass spectrometry (data not shown). Ganglioside alde-
hyde (25 nmol) was mixed with 15 mg of Dynabeads M-270 amine
magnetic beads (Life Technologies) and 11 wmol (0.7 mg) of NaBH;CN
in 270 ul of phosphate buffer (150 mm NaCl and 10 mum sodium phos-
phate, pH 7.2). After 24 h at 42°C an additional 11 wmol of freshly
prepared NaBH;CN in 70 ul of phosphate buffer was added. After 48 h
(total reaction time) the derivatized beads were collected magnetically,
washed with phosphate buffer, and stored at 0°C until use. To confirm
derivatization, aliquots of the washed beads were immunostained with
specific anti-GT1b and anti-GM1 antibodies (Schnaar et al., 2002; data
not shown).
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Surface-protein labeling, solubilization, and enrichment. After 12 d in
culture, cerebellar granule neurons had elaborated a dense network of
axons (data not shown). All protein-labeling, collection, and affinity-
capture steps were performed at 0—4°C. Cultures were washed with Dul-
becco’s PBS then treated with 1 mm EZ-Link Sulfo-NHS-SS-Biotin, a
cleavable cell-surface protein biotinylation reagent (Thermo Scientific),
in PBS (3 ml per 60 mm dish). After 30 min at 4°C with gentle shaking to
label cell-surface proteins, excess biotinylation reagent was quenched by
addition of 50 mm Tris-HCI, pH 7.2, and the cells were collected by
scraping from the culture dish into PBS. The suspension was centrifuged
(500 X g, 3 min), the pellet resuspended in HEPES-saline (150 mm NaCl,
and 20 mm HEPES, pH 7.2, containing a 1:1000 dilution of protease
inhibitor mixture; Sigma-Aldrich P8340) and cells disrupted using a Pot-
ter—Elvehjem homogenizer (10 strokes). The resulting homogenate was
centrifuged at 800 X g for 5 min to remove nuclei, and the supernatant
was collected and centrifuged at 100,000 X g for 1 h to collect mem-
branes. The membrane pellet was solubilized by the addition of solubili-
zation buffer (HEPES-saline containing 1% Triton X-100). After gentle
mixing for 1 h, the mixture was centrifuged (20,000 X g, 20 min) and the
supernatant was collected and added to NeutrAvidin agarose beads
(Thermo Scientific) to capture the solubilized surface-biotinylated pro-
teins. After 60 min with gentle shaking, the beads were washed with
solubilization buffer and then proteins eluted in solubilization buffer
containing 10 mm DTT. The beads were removed and the eluate was
diluted 1:4 with fresh solubilization buffer to reduce the DTT concentra-
tion to 2 mm.

In some experiments (as indicated) cell-surface labeling and all subse-
quent steps including ganglioside affinity capture were performed in
solutions containing 1 mm ATPyS (EMD Millipore) and 3 mm MgCl,.

Ganglioside affinity capture. Dynabeads covalently derivatized with
GT1b or GM1 were preblocked by incubation in solubilization buffer for
1 h, washed, and then added to equivalent aliquots of the diluted eluate
from NeutrAvidin beads containing surface-enriched proteins from cer-
ebellar granule neurons. Protein—ganglioside binding was allowed to
proceed for 16 h with gentle shaking. Beads with bound proteins were
magnetically captured, washed with solubilization buffer and then with
HEPES-saline (without detergent), and then bound proteins were eluted
by heating (70°C, 10 min) in a solution of NuPAGE LDS Sample Buffer
(Life Technologies) containing 50 mm DTT. To remove salts and deter-
gents from eluted proteins for relative quantitative mass spectrometry
(iTRAQ), an aliquot of the eluate was mixed with 8 volumes of 10%
trichloroacetic acid (TCA) in acetone at —20°C for 2—4 h. The pellet was
collected by centrifugation (14,000 X g, 10 min, 4°C), washed with
—20°C acetone, recentrifuged, and the pellet briefly dried and stored at
—80°C before analysis.

Relative quantitative proteomics (iTRAQ). Samples were subjected to
reduction using tris(2-carboxyethyl)phosphine and alkylation using
methyl methanethiosulfonate and subsequently proteolyzed with trypsin
(Promega) as described previously (Shevchenko et al., 1996). The result-
ing peptides eluted from GT1b and GM1 from four replicate experiments
(eight samples) were individually tagged using 8plex iTRAQ reagents
according to the manufacturer’s protocol (AB Sciex), then the tagged
peptides were combined and fractionated with strong cation exchange
chromatography using a polysulfoethyl A SCX column. Peptides in the
SCX column fractions were desalted using Oasis HLB reverse phase resin
(Waters), dried under vacuum, resuspended in 0.1% formic acid, and
loaded on a 75 wm X 2.5 cm nanobore column packed with Magic AQ
C18, 5 wm diameter 100 A pore-size beads (Microm Bioresources), then
fractionated using a 2-50% acetonitrile and 0.1% formic acid gradient
for 110 min at 300 nl/min. Eluting peptides were sprayed through a 10
wm emitter tip into an LTQ-Orbitrap Velos mass spectrometer (Thermo
Scientific) interfaced with a 2D nanoLC system (Eksigent). Peptide se-
quences were identified from the Rat Refseq 40 database using Mascot
v2.1 software (www.matrixscience.com) through Proteome Discoverer
v1.3 (Thermo Scientific).

iTRAQ relative quantitative proteomics was performed for quadrupli-
cate biological replicates of GT1b- and GM1-eluted proteins in a single
8plex mass spectrometry experiment. A total of 446 proteins was identi-
fied and quantified at a 1% false discovery rate threshold. For statistical
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consideration of relative abundance (Herbrich et al., 2013) these were
considered as 446 independent multiple comparisons. The significance
of the differences in relative quantitative protein binding (GT1b vs GM1)
for the four biological replicates was calculated for each of the 446 pro-
teins, and only those with differential binding that matched or exceeded
the Bonferroni correction for multiple comparisons (p < 0.05/446 =
0.00011) were considered further.

Protein immunoblots. Proteins eluted from GT1b- or GM1-derivatized
beads were diluted in NuPAGE LDS buffer containing 50 mm DTT,
electrophoretically resolved on 4-12% Bis-Tris NuPAGE gels, and then
transferred to PVDF membranes using an iBlot system (reagents and
equipment from Life Technologies). Membranes were blocked with PBS
containing 5% nonfat dry milk and 0.1% Tween 20 and then subjected to
immunoblot analysis using antibodies against Thorase (1:1000; Antibodies
Incorporated), GluR2 (1:1000; Antibodies Incorporated), N-ethylmaleimide-
sensitive fusion protein (1:2000; Abcam), glutamate receptor interacting
protein (GRIP; 1:1000; BD Biosciences), or Nicalin (1:1000; Millipore). The
blots were incubated overnight at 4°C, then washed and probed with horse-
radish peroxidase-conjugated secondary antibodies (Cell Signaling Technol-
ogy) and visualized using enhanced chemiluminescence (GE Healthcare).
Band intensities were quantified using ImageJ (NIH).

Comparative immunoblot analyses were performed using brain ho-
mogenates from wild-type mice, Thorase-deficient mice (Atadl-null; J.
Zhang et al., 2011b), and mice with disrupted ganglioside biosynthetic
genes (St3gal2-null, St3gal3-null, and St3gal2/3-double-null mice; Stur-
gill et al., 2012) and B4galntI-null mice (Pan et al., 2005). Mice of either
sex were anesthetized with isoflurane and their brains were rapidly re-
moved and homogenized in ice-cold CelLytic MT tissue lysis reagent
(Sigma-Aldrich) in the presence of protease inhibitors. Protein concen-
tration was determined (BCA Protein Assay; Thermo Scientific) and
equal amounts (15 ug) were resolved and transferred to PVDF as above.
Immunoblot analyses were performed using the above antibodies and
antibody to GAPDH (1:2000; Sigma) as loading control.

Coimmunoprecipitation and GST pull-down assays. Coimmunopre-
cipitations (co-IPs) of Thorase, NSF, GluR2, and Nicalin were performed
using lysates of whole mouse brain. Freshly isolated whole brain from
wild-type and Thorase-deficient mice of either sex (J. Zhangetal., 2011b)
were pulverized under dry ice and homogenized in Buffer A (50 mm
HEPES, pH 7.5, 150 mMm NaCl, 2.5 mm MgCl,, 1 mm DTT, and 5%
glycerol) containing protease inhibitors with or without 2 mm ADP, ATP,
or ATP9S. Triton X-100 was added to a final concentration of 1% fol-
lowed by rotation for 2 h at 4°C. Extracts were centrifuged at 15,000 X g
for 45 min and the supernatant was incubated for 3 h at 4°C with Protein
G beads (Pierce) prebound with Thorase, NSF, GluR2, or Nicalin anti-
bodies. The beads were washed three times with Buffer A with or without
1 mm ADP, ATP, or ATPYS (as appropriate) and bound proteins were
eluted from beads using SDS-PAGE Laemmli buffer (1X; Sigma) with
DTT. The eluted proteins were resolved using 10% SDS-PAGE and trans-
ferred to PVDF. Immunoblotting analyses were performed using anti-
bodies to Thorase, NSF, GluR2, Nicalin, and GRIP1 as described above.

To determine Thorase domains that are important for GluR2, GRIP1,
NSF, and Nicalin interactions, Thorase N-termini (first 100 residues)
and C-termini (last 20 residues) deletion mutants were cloned into
pGEX-6P-1 (Addgene) and transformed into BL21 Escherichia coli (In-
vitrogen). After induction with isopropyl thiogalactoside, bacterial pel-
lets were lysed using a microfluidizer (Microfluidics) in Buffer A with
protease inhibitors and centrifuged at 15,000 X g for 30 min. The super-
natant was incubated with glutathione beads (Pierce) for 2 h and then
washed four times with Buffer A. The glutathione beads conjugated to
GST fusion Thorase proteins were incubated with freshly prepared
whole-brain lysate for 2 h at 4°C in Buffer A with 2 mm ATP+S and then
washed four times with Buffer A containing 1 mm ATP+vS. Bound pro-
teins were eluted from beads using Laemmli buffer (1X; Sigma) with
DTT. The eluted proteins were resolved on 10% SDS-PAGE and trans-
ferred to PVDF. Immunoblotting analyses were performed using anti-
bodies to Thorase, NSF, GluR2, Nicalin, and GRIP1 as described above.

To compare levels of GluR2, GRIP1, NSF, and Nicalin in Thorase-
deficient brain, immunoblot analyses were performed using brain ho-
mogenates from wild-type mice and Thorase-deficient mice of either sex
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Gene Protein Reference sequence® GT1b/GM1 binding ratio pvalue

Napg Gamma-soluble NSF attachment protein (y-SNAP) NP_001100854.1 73 12X 1078
Hsd17b12 Estradiol 17-3-dehydrogenase 12 NP_114455.1 6.5 74x 1078
Ncln Nicalin precursor NP_001014104.1 5.4 14X 1076
Atad1 Thorase: ATPase family AAA domain-containing protein 1 NP_001030174.1 5.2 20X10°°
Gnai2 Guanine nucleotide-binding protein G(i) subunit a-2 NP_112297.1 42 33X10°°
(ct7 T-complex protein 1 subunit n NP_001100073.1 4.1 54%X107°

“Cell surface-enriched detergent-solubilized proteins isolated from neonatal rat cerebellar granule neurons that bound to GT1b > GM1 as determined by iTRAQ quantitative mass spectrometry on quadruplicate biological replicates with
statistical significance that exceeded the Bonferroni correction ( p << 10 ). °NCBI protein sequence identifier from the Rattus norvegicus protein database.

(J. Zhang et al., 2011b). Whole-brain lysates were prepared as described
above. Protein concentrations were determined by BCA protein assay
and 20 pg was resolved on 10% SDS-PAGE. Immunoblot analyses were
performed using antibodies to Thorase, NSF, GluR2, Nicalin, GRIP1,
and antibody to actin (Sigma) as control. Band intensities were quanti-
fied using ImageJ (NIH) and normalized to actin. The values obtained
from ImageJ were further analyzed to determine significant differences
using GraphPad Prism software.

Immunohistochemistry. Male mice were anesthetized using Isoflurane
inhalation, then perfused intracardially with PBS followed by neutralized
4% paraformaldehyde in PBS. Brains were embedded in paraffin and
sectioned at 5 wm. For Thorase immunohistochemistry, antigens were
retrieved by boiling the sections in 10 mm sodium citrate, pH 6.0; endog-
enous peroxidases were inactivated with 0.3% hydrogen peroxide; sec-
tions were blocked in 10% goat serum in PBS containing 0.1% Triton
X-100; and then probed with antibodies for Thorase (1:200; Antibodies
Incorporated). The sections were then incubated with biotin-conjugated
secondary antibody (1:250) and avidin—biotin complex using a Vector
ABC kit with diaminobenzidine substrate (Vector Laboratories). Slides
were dehydrated and mounted using Kyrstalon mounting medium and
analyzed using a Nikon Eclipse 90i microscope and NIS-Elements image
analysis software.

Cell-surface GIuR2 immunocytochemistry. Hippocampal neurons were
isolated from E18 Sprague Dawley rat pups of either sex and cultured on
glass coverslips as described previously (Makuch et al., 2011). After 18 d
in culture, cells were fixed in PBS containing 4% PFA and 4% sucrose for
4.5 min, which does not lead to cell permeabilization. As indicated, some
cultures were treated with 20 mU/ml Vibrio cholerae sialidase (Moustafa
etal., 2004) for 24 h or 48 h before fixation. For surface GluR2 detection,
coverslips were incubated with an N-terminal mouse anti-GluR2 at 1:500
(15F; a kind gift from Dr. Eric Gouaux, Oregon Health Sciences Univer-
sity) in detergent-free GDB buffer (0.1% gelatin, 0.45 M NaCl, and 17
mM phosphate buffer, pH 7.4) for 2 h at room temperature. Coverslips
were washed, then cells were permeabilized using 0.3% Triton X-100-
containing GDB buffer and incubated with 1:250 rabbit anti-GluR2/3
antibody (JH4854; Hayashi et al., 2009). Coverslips were washed and
incubated with fluorescent secondary antibodies (anti-mouse Alexa
Fluor 546 and anti-rabbit Alexa Fluor 488; Life Technologies) for surface
and total GluR2 receptors, respectively. Coverslips were washed,
mounted on glass slides with Fluoromount-G (Southern Biotech), and
imaged using a Zeiss LSM 510 Meta Confocal microscope.

Results

Ganglioside-binding proteins on cerebellar granule neurons
Using affinity capture, quantitative mass spectrometry (iTRAQ),
and stringent statistical criteria, six surface-enriched proteins sol-
ubilized from primary cerebellar granule neurons were identified
that bound selectively to the major brain ganglioside GT1b (Ta-
ble 1). Half of these have been directly implicated in the control of
neurotransmitter receptor trafficking. Thorase (ATPase family
AAA domain-containing protein 1) is notable for regulating
activity-dependent AMPAR trafficking and synaptic plasticity
(Zhang et al., 2011b). Soluble NSF and its attachment proteins
(SNAPs) ubiquitously function in vesicular trafficking (Sollner et
al., 1993; Zhao et al., 2007). NSF binds directly and specifically to

the AMPAR GluR2 subunit, regulating its insertion into mem-
branes and stabilization at synapses (Nishimune et al., 1998; Song
etal., 1998; Araki et al., 2010; Anggono and Huganir, 2012). Both
NSF and Thorase are members of the AAA+ superfamily of
ATPase molecular machines that regulate ATP-dependent mul-
tiprotein associations (Ogura and Wilkinson, 2001). Nicalin has
not been extensively studied, but its homolog NRA-2 is impli-
cated in regulation of neurotransmitter receptor trafficking in
Caenorhabditis elegans (Haffner et al., 2004; Almedom et al.,
2009). The screening data led to the preliminary hypothesis that
GT1b regulates AMPAR trafficking via specific interactions with
multiprotein complexes that include Thorase, NSF, and Nicalin.

To validate and extend these findings, ganglioside affinity cap-
ture of cell surface-enriched proteins from cerebellar granule
neurons was repeated in triplicate and the resulting captured
proteins were probed by immunoblotting. Since both Thorase
and NSF are AAA+ superfamily members susceptible to confor-
mational changes upon binding of ATP (Moeller et al., 2012),
ganglioside affinity capture was performed using lysates prepared
in the presence or absence of the noncleavable ATP analog
ATP+S, which was previously shown to stabilize Thorase-GluR2
binding (J. Zhang et al., 2011b). Both Thorase and NSF bound
preferentially to GT'1b via immunoblot (Fig. 2A—C), and binding
was diminished or eliminated in the presence of ATPyS. Immu-
noblot detection of Nicalin in ganglioside eluates was too low for
reliable quantification (data not shown). Unexpectedly, GluR2
was completely absent from GT1b-bead eluates but was readily
detected in GM1-bead eluates (Figs. 2A,D). GluR2 binding to
GM1-beads was also markedly diminished in the presence of
ATP~S. Since the stable association of Thorase with GluR2 is
enhanced by ATP+S (J. Zhang et al., 2011b) and association of
these same proteins with GT1b and GM1, respectively, is reversed
by ATP+S, we refined our hypothesis. Gangliosides and GluR2
receptors are both lipid raft components (Hou et al., 2008; Son-
nino and Prinetti, 2013), and different gangliosides can segregate
into different lipid rafts (Vyas et al ., 2001). We reasoned, there-
fore, that differential ganglioside association may physically
and/or functionally segregate GluR2 from its receptor trafficking
complexes, regulating GluR2 surface expression in an ATP-
dependent manner (see model; Fig. 10). This hypothesis pre-
dicted that GluR2 would associate with Thorase, NSF, and
Nicalin in a manner that would be enhanced by ATPS. This was
tested in brain extracts from wild-type and Thorase-deficient
(Atadl-null) mice.

GluR2, Thorase, NSF, and Nicalin co-associate in an ATP-
dependent manner

Wild-type (C57BL/6) mouse brains were lysed in detergent-
containing buffer and the solubilized proteins were subjected to
immuno-affinity capture using antibodies to Thorase, NSF,
GluR2, and Nicalin (Fig. 3). Anti-Thorase IP captured NSF,
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Ganglioside-selective binding of Thorase and NSF to GT1b and GIuR2 to GM1. A, Surface-enriched proteins extracted from cerebellar granule neurons were captured on GM1- or

GT1b-derivatized beads, eluted under denaturing conditions, and subjected to SDS-PAGE separation and immunoblot analysis using antibodies to Thorase, NSF, or GluR2 as indicated. Preload (before
ganglioside capture) control samples were analyzed using one seventh of the volume compared with GM1- and GT1b-bead eluates (indicated as GM1and GT1b). Immunoblots are representative of
triplicate determinations. B~D, Quantitative analyses ofimmunoblots of GM1- and GT1b-bead eluates (n = 3). For each protein, two-way ANOVA with Tukey post hoc analysis indicated that binding
was ganglioside-specific, and that incubation with ATP-yS significantly reduced binding to the dominant binding ganglioside (*p << 0.01; **p < 0.001).

GluR2, and Nicalin, as well as GRIP1. Co-IP of each protein was
enhanced by ATPvS (Fig. 34, B), whereas ATP reduced Thorase-
GluR2 binding, consistent with ATP hydrolysis leading to disas-
sembly of Thorase—~AMPAR complexes (J. Zhang et al., 2011b).
Likewise, Thorase, GluR2, Nicalin, and GRIP1 were coimmuno-
precipitated with NSF in an ATPyS-enhanced manner (Fig.
3A,B). To test the role of Thorase in the multiprotein complex,
GluR2 IP was performed using brain extracts from wild-type and
Thorase-deficient mice (Fig. 3C,D). In wild-type extracts, Tho-
rase, NSF, GRIP1, and Nicalin were coimmunoprecipitated with
GluR2 in an ATP+yS-dependent manner. In Thorase-deficient
mice, co-IP of NSF and GRIP1 with GluR2 was sharply dimin-
ished compared with wild-type, whereas co-IP of Nicalin was less
robustly affected. Consistent with these data, GluR2 was coim-
munoprecipitated with Nicalin (Fig. 3C,E), and this association
was diminished but still present in Thorase-deficient mice.

NSF, Nicalin, GluR2, and GRIP1 in wild-type brain extracts
were susceptible to pull down using an exogenously expressed
Thorase-GST fusion protein in the presence of ATP+S (Fig. 4).
Based on deletion constructs, the first 100 N-terminal amino
acids of Thorase are required for optimal capture of each protein,
whereas in the C-terminal 20 amino acids are less critical.

Since NSF, Nicalin, GRIP1, and GluR?2 associate with Thorase
in brain extracts, quantitative immunoblotting was used to de-
termine whether the steady-state levels of any of these proteins
were altered in Thorase-null mice (Fig. 5). Whereas NSF, Nicalin,
and GRIP1 were unaltered, GluR2 was significantly increased in
the Thorase mutant compared with wild-type.

Mice with altered brain ganglioside biosynthesis express
higher levels of Thorase, and Thorase-null mice express
higher levels of GT1b

To test whether genetic alterations in ganglioside biosynthesis
result in changes in the levels of GluR2 or GluR2-trafficking
proteins, mouse genetic models with mutations in ganglioside
glycosyltransferases were used (Fig. 1). Mice with a disrupted
B4galnt] gene lack all four of the major brain gangliosides;
instead they express two shorter gangliosides, GM3 and GD3.
Compared with wild-type mice, B4galntI-null mice displayed
amarked and significant increase in whole-brain Thorase (Fig.
6A), whereas GluR2 and Nicalin levels were unchanged. No-
tably, St3gal2/3 double-null mice, which have a block later in
the ganglioside biosynthetic pathway, had a nearly identical
~2-fold increase in Thorase (Fig. 6B). St3gal2/3 double-null
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mice. B, Quantitative analyses of blots in A. The band intensity of each lane was normalized to the corresponding actin band intensity. The values representing the mean SEM (n = 3, *p << 0.05, n.s.

p > 0.05, one-way ANOVA, post-test: Tukey’s multiple comparison).

mice lack nearly all GT1b and GDla, but express increased
GMI1 and GD1b (Sturgill et al., 2012). These data imply that
the lack of biosynthesis of GT1b and/or GD1a is directly or
indirectly related to steady-state Thorase levels. Consistent

with the immunoblot analyses, anti-Thorase immunohisto-
chemical staining of wild-type and St3gal2/3 double-null
mouse brains revealed higher levels of Thorase staining in the

mutant (Fig. 7).
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Figure 6. Increased Thorase levels in ganglioside mutant mice. 4, Triplicate wild-type and B4galnt 7-null whole mouse brains were homogenized and equivalent aliquots subjected to SDS-PAGE
separation and immunoblot analysis with antibodies to the indicated proteins. Quantification indicated that only Thorase was significantly different in the mutant mice (*p << 0.01, one-way ANOVA
with Tukey post hoc analysis). B, Triplicate wild-type, St3gal2-null, St3gal3-null, and St3gal2/3 double-null whole mouse brains were homogenized and equivalent aliquots subjected to SDS-PAGE
separation and immunoblot analysis with antibodies to the indicated proteins. Quantification indicated that only Thorase was significantly different, and only in the double-null mutant mice
(*p << 0.02 vs wild-type, one-way ANOVA with Tukey post hoc analysis).

Figure 7.  Increased intensity of Thorase immunohistochemistry in St3gal2/3 double-null mice. Sagittal sections from 8-week-old wild-type mice (4, €) and St3gal2/3 double-null mice (B, D)
were subjected to Thorase immunohistochemistry under identical conditions. Detailed images of hippocampus (4, B) and cerebellum (C, D) are shown. Scale bars: 200 p.m.

The relative amount of the four major brain gangliosides is
controlled within a narrow range animal-to-animal in wild-type
mice, and this range is unaltered in Thorase heterozygote mice. In
contrast, the relative amount of GT1b was significantly increased
in Thorase-null mice, whereas of the relative amounts of GD1a
and GM1 were significantly decreased (Fig. 8).

Modulation of cell-surface sialoglycans alters GluR2
trafficking in cultured hippocampal neurons

Treatment of intact neurons with highly purified V. cholerae siali-
dase converts the major brain disialogangliosides and trisialogan-
gliosides GD1a, GD1b, and GT1b to the monosialoganglioside
GM1 (G. Zhang et al,, 2011a; Mountney et al., 2013). To test
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Figure8. Altered ganglioside levels in Thorase-deficient (Atad 7-null) mice. Gangliosides were extracted from whole brains of wild-type (wt; n = 3), heterozygote (het; n = 5), and null (n =
3) mice and subjected to thin-layer chromatography separation, detected using a sialic acid-specific chemical stain and quantified by image analysis. Left, Thin layer chromatograph of representative
samples of each genotype with migration positions marked based on bovine brain standards (stds). Double bands at each migration position are due to minor variations in ceramide structure. Right,
Molar ratios of gangliosides based on densitometric quantification of all samples. Since stain intensity is proportional to sialic acid content, values are divided by the number of sialic acids per
ganglioside for molar ratio comparisons. Two-way ANOVA with Tukey post hoc analysis indicated significant differences in ganglioside percentage composition (*p << 0.02; **p << 0.005).

whether gangliosides regulate the number of surface GluR2 re-
ceptors, well differentiated, rat embryonic hippocampal neurons
in culture were treated with sialidase for 24 h or 48 h, fixed, and
analyzed immunocytochemically for surface and total GluR2 re-
ceptors. Image analysis was used to quantify the size and intensity
of >500 GIuR2 puncta per image (on average) for 19-20 images
per condition. After 24 h of sialidase treatment, GluR2 receptor
clusters were significantly shifted to smaller sizes (Fig. 9B, D).
The puncta were shifted slightly (but not significantly) toward
lower intensity as well (Fig. 9D). The size distribution of total
GIuR2 puncta, detected at a separate epitope after permeabiliza-
tion, was not significantly changed after 24 h of sialidase treat-
ment, but total puncta intensities were significantly lower (Fig.
9E). These changes reverted to control levels after 48 h of contin-
uous sialidase treatment. The reversion to control GluR?2 levels
was not due to loss of sialidase activity in culture; medium re-
trieved at the end of the 48 h treatment retained the same sialidase
activity as initially added (data not shown).

Consistent with a role for gangliosides in AMPAR trafficking,
we conclude that altering ganglioside structures on hippocampal
neurons alters trafficking of GluR2-containing AMPARs.

Discussion

Gangliosides are abundant cell-surface determinants on all mam-
malian nerve cells, and their structures are shared by all mammals
(Schnaar etal., 2014). Genetic linkage analyses of human congen-
ital disorders unexpectedly linked ganglioside biosynthesis to ex-
citatory neurotransmission, learning, and memory. Congenital,
refractory early onset seizures accompanied by profound psy-
chomotor delay were traced to mutations in ST3GAL5 (Fig. 1),
which codes for GM3 synthase, a sialyltransferase that acts early
in the complex ganglioside biosynthetic pathway (Simpson et al.,
2004; Fragaki et al., 2013; Boccuto et al., 2014). Hereditary spastic
paraplegia associated with intellectual disability and occasional
seizure susceptibility was traced to B4GALNT1, which codes for
GM2/GD2 synthase, a subsequent step in ganglioside biosynthe-
sis (Wilkinson et al., 2005; Boukhris et al., 2013; Harlalka et al.,
2013). Our unbiased proteomic screen for ganglioside-interacting
proteins unexpectedly revealed a molecular link between major

brain gangliosides and AMPAR trafficking that may help explain the
hyperexcitability and intellectual disability associated with human
congenital disorders of ganglioside biosynthesis.

AMPARs are involved in seizure generation (Loscher and
Schmidt, 2012; Rogawski, 2013) and AMPAR trafficking is a key
component of learning and memory (Anggono and Huganir,
2012; Henley and Wilkinson, 2013; Hanley, 2014). AMPARs are
tetrameric transmembrane proteins typically composed of a
dimer of dimers constructed from four types of subunits, GluR1-
GluR4 (Anggono and Huganir, 2012). The subunit composition
of AMPAR tetramers defines their function, with a key being the
abundant GluR2 subunit. Mature GluR2 subunits typically do
not support calcium entry (Isaac et al., 2007). Since calcium-
permeable AMPARs are of higher conductance (Liu and Sav-
tchouk, 2012), selective reduction of GluR2-containing AMPARs
increases excitability. For this reason, the trafficking and surface
expression of GluR2 subunits, in particular, is highly regulated
(Hanley, 2014). If the major brain gangliosides common to all
mammals are required for optimum regulation of the trafficking
of GluR2-containing AMPARS, it is reasonable to propose that
the seizures and cognitive deficits associated with human con-
genital disorders of ganglioside biosynthesis are due to AMPAR
dysregulation.

The major findings reported here are that GluR2-containing
AMPARs bind selectively to ganglioside GM1, whereas AMPAR-
trafficking complexes (ATCs) containing Thorase, y-SNAP,
NSF, and Nicalin bind selectively to ganglioside GT1b. Interest-
ingly, these protein—ganglioside interactions are diminished in
the presence of ATP+yS (Fig. 2) whereas direct associations be-
tween GluR2-containing AMPARs and ATCs are stimulated by
ATPS (Fig. 3). These findings support a model in which GluR2-
containing AMPARs and ATCs are sequestered from each other
via their association with different gangliosides (GM1 and GT1b,
respectively), but are in equilibrium with free-floating forms that
interact leading to receptor endocytosis (Fig. 10). A prediction of
this model is that altering gangliosides will result in increased
GluR2-containing AMPAR endocytosis. This prediction is sup-
ported by the finding that treatment of hippocampal neurons
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Hypothetical model. Ganglioside-regulated trafficking of GluR2-containing AMPARS. GluR2-containing AMPARs and an AMPAR trafficking complex containing Nicalin, Thorase, and

NSF are proposed to be sequestered in distinct membrane rafts by association with gangliosides GM1and GT1b, respectively. In an ATP-regulated process, the ganglioside associations are released,
resulting in lateral migration, association of AMPA receptors with their trafficking complexes, and receptor endocytosis.

with sialidase resulted in reduced surface expression of GluR2-
containing AMPARs (Fig. 9). We interpret this result as indicat-
ing that sialidase-mediated loss of GT1b released ATCs into the
free-floating pool where lateral diffusion increased interactions
with AMPARs, decreasing the size of GluR2 puncta due to ATC-
mediated AMPAR endocytosis at the periphery of the puncta.
Behavioral results from mouse strains blocked in brain gan-
glioside biosynthesis (Fig. 1) are consistent with this general
model. Mice double null for St3gal5 and St8sial, in which GM3
replaces the major brain gangliosides (GM1, GD1a, GD1b, and
GT1b), are highly susceptible to early onset lethal audiogenic
seizures (Kawai et al., 2001). In comparison, B4galntI-null mice,
in which gangliosides GM3 and GD3 replace the major brain
gangliosides, have a milder phenotype marked by hyperactivity,
late-onset audiogenic seizure susceptibility, and enhanced sus-
ceptibility to chemically induced seizures (Pan et al., 2005; Wu et
al., 2005). Transgenic mice overexpressing the same enzyme
(GM2/GD2 synthase, the B4galnt1 gene product) display a quan-
titative shift in brain gangliosides (less GT1b and GD1b, more
GD1la and GM1) and impaired hippocampal long-term potenti-
ation, a correlate to learning and memory involving changes in
AMPAR trafficking (Tkarashi et al., 2011). Although there are few
thorough cognitive studies on ganglioside-altered mice, B4galnt1
transgenics are learning impaired (Ikarashi et al., 2011), as are
St3gal2/3 double-null mice, which lack GT1b and GD1a but over-
express GM1 and GD1b (Sturgill et al., 2012; unpublished data).
The extent to which other ganglioside-altered mice share seizure
susceptibility and/or learning and memory deficits is not cur-
rently known. The increase in brain Thorase upon genetic mod-
ulation of gangliosides, and the shift in brain gangliosides upon
genetic loss of Thorase, are consistent with cross-regulation that

may imply a functional relationship (Figs. 6—8). However, func-
tional consequences due to these quantitative changes, and the
mechanisms of cross-regulation, remain unknown.

Exogenously added gangliosides protect neurons iz vitro from
glutamate excitotoxicity by modulating calcium currents (de Er-
ausquin et al., 1990; Costa et al., 1994). Whether this effect is due
to changes in AMPAR trafficking (quantitative or qualitative) has
not been reported. However, based on those prior studies gangli-
oside GM1 was administered intravenously or intramuscularly to
ischemic stroke patients in over a dozen clinical trials, but failed
to positively alter the overall clinical outcome (Candelise and
Ciccone, 2002). A more detailed understanding of the structures
and functions of gangliosides in regulating excitatory neu-
rotransmission may provide additional insights for their poten-
tial clinical applications.

Since AMPARSs are transmembrane proteins with large extra-
cellular domains, and gangliosides are plasma membrane com-
ponents with extracellularly oriented glycans, it is reasonable to
propose that AMPARs directly associate laterally with GM1. A
report of immunogold colocalization of GluR2 and GM1 in syn-
aptosomes is consistent with this hypothesis (Cole et al., 2010).
From a structural perspective, the AMPAR extends ~120 A out-
ward from the plasma membrane, each subunit equally com-
prised of a membrane-proximal ligand-binding domain and a
distal N-terminal domain (Sobolevsky et al., 2009). The oligosac-
charide of GM1 extends ~20 A outward from the plasma mem-
brane (Acquotti and Sonnino, 2000), providing ample lateral
surface area for specific molecular interactions with the 60 A
ligand-binding domain of the AMPAR. Given the mild dissocia-
tion conditions we used for ganglioside capture, other adapter
proteins that were not detected by mass spectrometry could also
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be involved. Since both gangliosides and AMPARs localize to
lipid rafts (Hou et al., 2008; Sonnino and Prinetti, 2013), these
small distinct lateral platforms within the plasma membrane may
provide the opportunity for selective molecular clustering (Vyas
etal., 2001).

Unlike AMPARs, Thorase and NSF are believed to be exclu-
sively intracellular (Shepherd and Huganir, 2007; J. Zhang et al.,
2011b). Since Nicalin (Haffner et al., 2004) is a single-pass mem-
brane protein that associates with Thorase and NSF (Fig. 3), and
binds to GT1b (Table 1), it may act as a transmembrane adapter,
with the latter (intracellular) proteins remaining associated dur-
ing capture. Since these three proteins also bind to GluR2 (Fig. 3),
we propose that they may shuttle between GT1b-binding and
GluR2-binding states (Fig. 10). In this model, the absence of
GT1b, GM1, or both may result in altered association of ATCs
and their target receptors, thereby shifting the quantitative
and/or qualitative expression of AMPARSs resulting in patholog-
ical changes in neuronal excitability and deficits in learning and
memory. The discovery of a molecular link between ganglio-
sides and AMPAR trafficking provides expanded opportuni-
ties to probe this molecular connection to human excitatory
neurotransmission.
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