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Neurobiology of Disease

GluA1 Phosphorylation Contributes to Postsynaptic
Amplification of Neuropathic Pain in the Insular Cortex
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Long-term potentiation of glutamatergic transmission has been observed after physiological learning or pathological injuries in different
brain regions, including the spinal cord, hippocampus, amygdala, and cortices. The insular cortex is a key cortical region that plays
important roles in aversive learning and neuropathic pain. However, little is known about whether excitatory transmission in the insular
cortex undergoes plastic changes after peripheral nerve injury. Here, we found that peripheral nerve ligation triggered the enhancement
of AMPA receptor (AMPAR)-mediated excitatory synaptic transmission in the insular cortex. The synaptic GluA1 subunit of AMPAR, but
not the GluA2/3 subunit, was increased after nerve ligation. Genetic knock-in mice lacking phosphorylation of the Ser845 site, but not that
of the Ser831 site, blocked the enhancement of the synaptic GluA1 subunit, indicating that GluA1 phosphorylation at the Ser845 site by
protein kinase A (PKA) was critical for this upregulation after nerve injury. Furthermore, A-kinase anchoring protein 79/150 (AKAP79/
150) and PKA were translocated to the synapses after nerve injury. Genetic deletion of adenylyl cyclase subtype 1 (AC1) prevented the
translocation of AKAP79/150 and PKA, as well as the upregulation of synaptic GluA1-containing AMPARs. Pharmacological inhibition of
calcium-permeable AMPAR function in the insular cortex reduced behavioral sensitization caused by nerve injury. Our results suggest
that the expression of AMPARSs is enhanced in the insular cortex after nerve injury by a pathway involving AC1, AKAP79/150, and PKA,
and such enhancement may at least in part contribute to behavioral sensitization together with other cortical regions, such as the anterior
cingulate and the prefrontal cortices.
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eral injury induces LTP-like enhancement (Ikeda et al., 2006).
Cortical LTP has been proposed as a cellular model for chronic
pain (Zhuo, 2008). Cingulate synapses undergo persistent
changes in the ACC after nerve injury (Xu et al., 2008; Li et al.,

Introduction

Long-term potentiation (LTP) of glutamatergic transmission,
the classic experimental model for studying the synaptic mecha-
nism for learning and memory, has been observed in several

pain-related sensory central synapses, such as the spinal dorsal
horn and the anterior cingulate cortex (ACC; Sandkuhler, 2007,
Zhuo, 2008, 2014). In the spinal dorsal horn, LTP can be induced
by the typical pairing stimulation (Wei et al., 2006), and periph-
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2013). Recent studies have revealed the molecular mechanisms of
pain-related LTP. Activation of NMDA receptors (NMDARSs) is
critical for the induction of LTP in the ACC, and the recruitment
and modification of AMPA receptors (AMPARs) mediates the
expression of pain-related LTP (Zhuo, 2014). Similar findings
have been reported in the spinal dorsal horn during acute or
persistent inflammatory pain (Galan et al., 2004; Larsson and
Broman, 2008; Kopach et al., 2011).

The insular cortex is one other brain region important for
pain-related perception (Burkey et al., 1999; Brooks et al., 2005;
Harris et al., 2009; Starr et al., 2009; Zhuo, 2011). Human brain
imaging studies show that the insular cortex is activated by nox-
ious stimuli (Henderson et al., 2008), and direct electrical stim-
ulation of the insular cortex could elicit painful and somatic
sensations, supporting the critical roles of the insular cortex in
acute pain and sensory perception (Ostrowsky et al., 2002; Maz-
zola et al., 2009; Mazzola et al., 2012). At the synaptic level,
AMPARs mediate most of the basal excitatory synaptic transmis-
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sion in the insular cortex (Koga et al., 2012). Peripheral nerve
injury or tail amputation produces long-term upregulation or
activation of the synaptic NMDARSs (Zhuo, 1998; Qiu etal., 2013)
or loss of long-term depression in the insular cortex (Liu and
Zhuo, 2014). In addition, the insular NMDAR-dependent LTP is
occluded during neuropathic pain (Qiu et al., 2013). However,
little is known about whether AMPAR function undergoes LTP
in the insular cortex after peripheral nerve injury.

In this study, we demonstrate that AMPAR function is en-
hanced in the insular cortex during neuropathic pain. The abun-
dance of synaptic GluA1 was increased, and phosphorylation of
GluAl at the Ser845 site was necessary for the enhancement of
synaptic AMPARs. Activation of adenylyl cyclase subtype 1
(AC1) and translocation of A-kinase anchoring protein 79/150
(AKAP79/150) and PKA into the synapse contributed to the en-
hanced phosphorylation of GluAl. Inhibiting AMPAR function
in the insular cortex or genetic dephosphorylation of GluAl at
the Ser845 site reduced behavioral sensitization to non-noxious
stimuli of neuropathic pain mice. Together, our results demon-
strate that the potentiation of excitatory synaptic transmission is
attributable to the enhanced phosphorylation of synaptic GluA1
in the insular cortex during neuropathic pain, and activation of
AC1 and translocation of AKAP79/150 and PKA play key roles in
the potentiation.

Materials and Methods

Animals. Adult male C57BL/6 mice (8—12 weeks old) were used in most
of the experiments. Mutant male mice lacking ACI were derived as de-
scribed previously and bred for several generations (F12-F16) to main-
tain a C57BL/6 background (Shema et al., 2011). GluA1-S845A and
GluA1-S831A gene knock-in lines (genetic background, C57BL/6) were
obtained from the laboratory of Dr. Richard Huganir (Johns Hopkins
School of Medicine, Baltimore, MD). Mice were housed under a 12 h
light/dark cycle with food and water provided ad libitum. All mouse
protocols were in accordance with the National Institutes of Health
guidelines and approved by the Animal Care and Use Committee of the
University of Toronto.

Neuropathic pain model. A model of neuropathic pain was induced by
the ligation of the common peroneal nerve (CPN) as described previ-
ously (Vadakkan et al., 2005; Xu et al., 2008). Briefly, the mice were
anesthetized by intraperitoneal injection of a saline mixture of ketamine
(0.16 mg/kg; Bimeda-MTC) and xylazine (0.01 mg/kg; Bayer). The CPN
was visible between the anterior and posterior groups of muscles running
almost transversely. The left CPN was slowly ligated with a chromic gut
suture 5-0 (Ethicon) until contraction of the dorsiflexors of the foot was
visible as twitching of the digits. Mechanical allodynia was tested on
postsurgical days 3, 7, and 14. Behavioral experiments were performed
blindly, and different individuals were responsible for the surgery and the
measurements of the mechanical sensitivity of mice.

Drugs and antibodies. Picrotoxin, tetrodotoxin, protease inhibitor
cocktail, and phosphatase inhibitor cocktails 2 and 3 were purchased
from Sigma. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) and
N, N,H,-trimethyl-5-[(tricyclo[3.3.1.13,7]dec-1-ylmethyl)amino]-1-
pentanaminiumbromide hydrobromide (IEM 1460) were purchased
from Tocris Bioscience. Antibodies against GluA1-Ser831 [catalog
#AB5847; 1:1000; Merck; Research Resource Identifier (RRID):
AB_11211981], GluA1-Ser845 (catalog #04-1073; 1:1000; EMD Milli-
pore; RRID: AB_1977219), and GluA2/3 (catalog #AB1506, 1:2000; EMD
Millipore; RRID:AB_90710) were purchased. Antibodies against actin
(catalog #A2066; 1:1000; RRID:AB_476693 or catalog #A5316; 1:5000;
RRID:AB_476743), tubulin (catalog #T2200; 1:3000; RRID:AB_262133),
and synaptophysin (catalog #S55768; 1:5000; RRID:AB_477523) were
purchased from Sigma-Aldrich. Antibodies against GluAl (catalog
#AB32436; 1:1000; RRID:AB_2113592), Rab3A (catalog #ab3335; 1:700;
RRID:AB_303714), PKA regulatory subunit IIee (PKA Rlla; catalog
#ab38949; 1:1000; RRID:AB_725890), PKA RIIB (catalog #ab75993;
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1:1000; RRID:AB_1524201), and PKA Rla (catalog #ab38936; 1:500;
RRID: AB_777492) were purchased from Abcam. Antibodies against
PSD95 (catalog #3450S; 1:1000; RRID:AB_2292883) and PKA catalytic
subunit @ (PKA Ca; catalog #4782; 1:1500; RRID:AB_10698746) were
purchased from Cell Signaling Technology. Antibody against AKAP79/
150 (catalog #sc-10765; 1:2000; RRID:AB_2289482) was purchased from
Santa Cruz Biotechnology. Horseradish peroxidase (HRP)-linked goat
anti-mouse IgG and goat anti-rabbit IgG for Western blot test were pur-
chased from Millipore.

Brain slice preparations and electrophysiology. The anatomical termi-
nology is based on the atlas of Franklin and Paxinos (1997). The rostro-
caudal levels correspond to 1.5-0.5 mm insular cortex relative to the
bregma. The mice were anesthetized with 2% isoflurane, and brain slices
(300 wm) containing the insular cortex were cut at 4°C with a vibratome
in oxygenated ACSF containing (in mm): 124 NaCl, 2 KCl, 26 NaHCO;,
2 CaCl,, 2 MgSO,, 1 NaH,PO,, and 10 p-glucose, pH 7.4. For electro-
physiology, brain slices were transferred to a submerged recovery cham-
ber with oxygenated ACSF at room temperature. Experiments were
performed in a recording chamber on the stage of a BX51W1 microscope
(Olympus) equipped with infrared differential interference contrast op-
tics for visualizing whole-cell patch-clamp recordings. EPSCs were re-
corded from layer II and layer III neurons with an Axon 700B amplifier
(Molecular Devices), and local stimulations were delivered with a bipolar
tungsten stimulating electrode placed in layer V of the insular cortex. The
recording pipettes (2-5 M()) were filled with a solution containing the
following (in mm): 145 K-gluconate, 5 NaCl, 1 MgCl,, 0.2 EGTA, 10
HEPES, 2 Mg-ATP, 0.1 Na;-GTP, and 10 phosphocreatine disodium, pH
7.2. AMPAR-mediated EPSCs were induced by repetitive stimulations at
0.05 Hz, and neurons were voltage clamped at —70 mV in the presence of
2-amino-5-phosphonovaleric acid (50 uwm). For miniature EPSC
(mEPSC) recording, 0.5 uM tetrodotoxin was added in the perfusion
solution. All experiments were conducted in the presence of picrotoxin
(100 uMm) to block GABA, receptor-mediated inhibitory synaptic cur-
rents. The access resistance of 15-30 M() was monitored throughout the
experiment. Data were discarded if the access resistance changed by 15%
during an experiment.

Tissue preparation, subcellular fractionation, and Western blot analysis.
Subcellular fractionation was conducted on tissue from C57BL/6 mice or
transgenic mice using an adapted protocol (Pacchioni et al., 2009; Mil-
nerwood et al., 2010). The insular cortices were dissected on ice in cold
ACSF and homogenized in 0.32 M sucrose buffer (10 mm sucrose and 10
mM HEPES, pH 7.4) containing a protease inhibitor cocktail and phos-
phatase inhibitor cocktails 2 and 3. Samples were centrifuged (1000 X g,
10 min, 4°C) to yield the nuclear enriched pellet and the S1 fraction. The
S1 fraction was then centrifuged (12,000 X g, 20 min, 4°C) to obtain the
pellet (P2; crude synaptosomal membranes) fraction. To further digest
synaptosomes and yield an insoluble “PSD-enriched” membrane frac-
tion and a “non-PSD enriched” membrane fraction, we resuspended the
P2 synaptosomal pellet in 4 mm HEPES buffer (4 mm HEPES and 1 mm
EDTA, pH 7.4) and again centrifuged (12,000 X g, 20 min, 4°C). Resus-
pension and centrifugation was repeated. The resulting pellet was resus-
pended with buffer A (20 mm HEPES, 100 mwm NaCl, 0.5% Triton X-100,
pH 7.2) and rotated slowly (15 min, 4°C), followed by centrifugation
(12,000 X g, 20 min, 4°C). The supernatant (Triton X-100-soluble non-
PSD fraction) containing non-PSD membranes were retained. The pellet
was resuspended in buffer B [20 mm HEPES, 0.15 mm NaCl, 1% Triton
X-100, 1% deoxycholic acid, 1% SDS, and 1 mum dithiothreitol (DTT),
pH 7.5), followed by gentle rotating (1 h, 4°C) and centrifugation
(10,000 X g, 15 min, 4°C). The pellet was discarded, and the supernatant
(Triton X-100-insoluble PSD fraction) was retained. PSD and non-PSD
samples were stored at —80°C until use. Western blotting was conducted
as described previously (Wang et al., 2008). Protein concentration was
normalized with the Bradford assay. Electrophoresis of equal amounts of
total protein was performed on SDS-polyacrylamide gels. Separated pro-
teins were transferred onto polyvinylidene membranes at 4°C. The mem-
branes were blocked [2 h, room temperature, 5% milk or 5% bovine
serum albumin (BSA) in TBST (Tris-buffered saline with Tween 20)] and
incubated with primary antibody (5% BSA in TBST, 4°C overnight).
After being washed, the membranes were incubated with the appropriate
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than the guide. The microinjection apparatus
consisted of a Hamilton syringe (10 ul) con-
nected to an injector needle (30 gauge) by a
thin polyethylene tube and a motorized syringe
pump. CNQX (1 mm/ul) was infused into each
side of the insular cortex at a rate of 0.05 ul/
min; [EM 1460 (1 mm/ul) was infused into
unilateral or bilateral sides of the insular cortex
at a similar rate of 0.05 ul/min; an equivalent
volume of saline was used as a control. After
injection, the microinjection needle was left in
place for at least 2 min. The injection sites were
confirmed at the end of all experiments, and
sites outside of the insular cortex region were
excluded from the study. The behavioral base-
line responses were taken 1 d before the micro-
injection of the insular cortex. Mechanical

*

*

AMPA-mediated EPSC

__|aomv . .

Figure1.

Open circles, Neurons from sham mice; filled circles, neurons from mice with nerve ligation.

HRP-coupled secondary antibody diluted 1:3000 for 1 h, followed by
enhanced chemiluminescence detection of the proteins with Western
lightning Chemiluminescence Reagent Plus according to the instructions
of the manufacturer. To verify equal loading, we also probed the mem-
branes with an antibody against actin or tubulin. The density of the
immunoblots was measured with the NIH ImageJ program.

Coimmunoprecipitation. Coimmunoprecipitation was performed as
reported previously with some modifications (Wang and Storm, 2003).
Adult mouse insular cortex was homogenized in radioimmunoprecipi-
tation assay buffer (50 mm Tris-HCI, 150 mm NaCl, 1% NP-40, 1 mm
EDTA, 1 mm DTT, and 0.5% sodium deoxycholate, pH 7.4) containing a
protease inhibitor cocktail. After centrifugation (20,000 X g, 20 min,
4°C), the supernatant was preincubated with Protein A-agarose for 5 h at
4°Cto preclear the preparation and then incubated with antibody against
GluAl or antibody against AKAP79/150 overnight at 4°C. Protein
A-agarose (GE Healthcare) was then added and incubated for another 2 h
at4°C. The mixtures were washed four times, eluted by boiling in loading
buffer, and subjected to Western blot.

Nociceptive behavioral experiments. Mice were placed in a round con-
tainer and allowed to acclimate for 30 min before testing. Experiments
were performed to characterize the threshold stimulus. Mechanical allo-
dynia was assessed on the basis of the responsiveness of the hindpaw to
the application of von Frey filaments (Stoelting) to the point of bending.
Positive responses include licking, biting, and sudden withdrawal of the
hindpaw. Mechanical allodynia was tested five times with an interval of
10 min. To test for the tactile threshold required to evoke withdrawal of
the stimulated paw, von Frey filaments with different bending forces
(0.008-0.04 g) were applied to the middle of dorsum part of the hindpaw
in an ascending order. Each filament was applied five times to its mini-
mum bending force, and a paw-withdrawal threshold was defined as
three positive responses. To avoid potential tissue damage, the cutoff
threshold was assigned as 0.04 g-force.

Cannula implantation and microinjection into the insular cortex. Mice
were anesthetized by intraperitoneal injections of a mixture of 1.3 ml of
ketamine (100 mg/ml; Bimeda-MTC) and 0.5 ml of xylazine (20 mg/ml;
Bayer) in 8.2 ml of normal saline at a dose of 10 ul/g body weight. Mouse
heads were secured on a stereotaxic frame, and 24 gauge guide cannulae
were implanted bilaterally into the insular cortex (1.5 mm anterior to
bregma, 3.5 mm lateral from the midline, 4.0 mm beneath the surface
of the skull). The mice were given 1 week to recover after the cannula
implantation. Intra-insular cortex injections were delivered via a 30
gauge injection cannula that was lowered 4.0 mm farther into the brain

Stimulating intenity (V)

AMPAR-mediated synaptic transmission is enhanced in the insular cortex after nerve ligation. A, When injected with
current steps from —100 to 100 pA in 400 ms, the pyramidal neuron fired repetitive action potentials with frequency adaptation
(top). The interneurons showed the fast-spike properties (bottom). B, Synaptic input— output curves in slices from sham (n = 6
neurons) and nerve-ligated (n = 7 neurons) mice. *p < 0.05 and **p << 0.01 compared with sham control (two-way ANOVA).

threshold was then reassessed 30 min after the
microinjection of either saline or CNQX or
IEM 1460 in the insular cortex within 7-14
days after nerve injury.

Data analysis. Data are presented as the
mean * SEM. Statistical analysis of differences
between two groups was tested by unpaired,
two-tailed Student’s ¢ test or Mann—Whitney
rank-sum test, based on normality test (Shapi-
ro-Wilk) of the data. We used a two-way
ANOVA and Tukey’s test for post hoc test if
there were two independent variables (for example, the input—output
analysis in Fig. 1B). A probability value of p < 0.05 was considered
significant.

T 1

8 10

Results
Enhanced excitatory synaptic transmission in the insular
cortex after nerve injury
We used an animal model of neuropathic pain as reported previ-
ously (Vadakkan et al., 2005; Xu et al., 2008; Qiu et al., 2013).
Unilateral ligation of the CPN produced behavioral responses to
non-noxious stimuli (or called mechanical allodynia) on day 3
after nerve ligation. Mechanical allodynia reached its peak on day
7 and lasted for at least 1 month. To explore whether there is any
change in the basal excitatory synaptic transmission in the insular
cortex during neuropathic pain, we recorded AMPAR-mediated
EPSCs in pyramidal neurons in the layer II or layer III of acutely
isolated insular cortical slices from nerve-ligated or sham mice on
postsurgical day 7. Recorded neurons were identified as pyrami-
dal neurons based on their ability to show spike frequency adap-
tation in response to prolonged depolarizing-current injection
(Zhao et al., 2005; Fig. 1A). On postsurgical day 7, the slope of the
input (stimulation intensity)—output (EPSC amplitude) curve
was steeper after peripheral nerve ligation (n = 7 neurons) than
that in the sham control (n = 6 neurons; Fig. 1B). This result
suggests that the AMPAR-mediated excitatory synaptic transmis-
sion is increased in the insular cortex during neuropathic pain.
Next, we tested AMPAR-mediated mEPSCs in the insular cor-
tex and found that the amplitude of mEPSCs was significantly
increased in the nerve-ligated group than that in the sham control
(sham, 18.5 = 0.6 pA, n = 13 neurons; nerve ligation, 21.2 * 0.8
PA, n = 19 neurons; p < 0.05; Fig. 2A, B). Moreover, a greater
increase in the frequency of mEPSC was observed on day 7 after
nerve ligation than that in the sham control (sham, 0.5 = 0.02 Hz,
n = 11 neurons; nerve ligation, 1.3 = 0.3 Hz, n = 11 neurons; p <
0.05; Fig. 2A,B). Paired-pulse facilitation (PPF) is a transient
form of plasticity used commonly as a measure of presynaptic
function, in which the response to the second stimulus is en-
hanced as a result of residual calcium in the presynaptic terminal
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Figure 2.

mEPSCs recorded in the insular cortex during neuropathic pain. A, Representative mEPSCs recorded in the insular cortical neuron in slices from sham mice (top) and mice with nerve

ligation (bottom) at a holding potential of —70 mV. Cumulative interevent interval (left) and amplitude (right) histograms of mEPSCs recorded in slices from sham mice (line) and mice with nerve
ligation (dotted line). B, Summary plots of mEPSC data. Averaged values of mEPSC parameters: mean amplitude (left, n = 13 neurons for sham and n = 19 neurons for nerve ligation) and mean
peak frequency (right, n = 11 neurons for both groups). , Representative traces with an interval of 50 ms recorded in layer II/Ill of the insular cortex. Paired-pulse ratios (the ratio of EPSC2/EPSC1)
were recorded at intervals of 35, 50, 75, 100, and 150 ms from sham and nerve-ligated mice. Open circles, Neurons from sham mice (n = 6 neurons); filled circles, neurons from mice with nerve

ligation (n = 11 neurons). *p << 0.05 compared with sham control (two-way ANOVA).

after the first stimulus (Foster and McNaughton, 1991). We
found that PPF at a stimulus interval of 35 ms was significantly
reduced in the insular neurons from nerve-ligated mice (n = 11
neurons) compared with those from sham mice (n = 6 neurons;
Fig. 2C). These findings indicate that peripheral nerve injury
causes presynaptic enhancement of the excitatory synaptic trans-
mission the insular cortex. Together, these results indicate that
the enhanced excitatory synaptic transmission is attributable to
an increase in the probability of presynaptic neurotransmitter
release and an increase of postsynaptic responsiveness as well in
the insular cortex after nerve ligation.

Increased amount of synaptic GluA1 subunits in the

insular cortex

To assess whether postsynaptic AMPAR:s are involved in neuro-
pathic pain, we performed biochemical analyses to investigate the
abundance of AMPAR subunits in different subcellular fractions
on days 3, 7, and 14 after surgery (Fig. 3A). The synaptosome was
digested to yield an insoluble PSD-enriched (synaptic) mem-
brane fraction and a soluble non-PSD enriched (peri/extrasynap-
tic and presynaptic) membrane fraction (Pacchioni et al., 2009;
Milnerwood et al., 2010). A clear separation of PSD and non-PSD
membranes was achieved as demonstrated by the distribution
of PSD95, synaptophysin, and Rab3A (Fig. 3B). PSD95 sorted
predominantly in the PSD fraction, whereas the marker of pre-
synaptic membrane, synaptophysin, sorted primarily into the
non-PSD fraction. Similarly, Rab3A, a presynaptically located
neuronal GTP-binding protein, also associated primarily with
the non-PSD fraction. AMPARs were located at both the extra-
synaptic non-PSD fraction and the synaptic PSD fraction (Fig.
3B). We found that the abundance of synaptic PSD GluAl was
significantly increased on postsurgical day 7 (119 * 2%, p < 0.01,
n = 7 mice for each group; Fig. 3C,E) and postsurgical day 14

(118 = 7%, p < 0.05, n = 4 mice for each group; Fig. 3D, E) but
not on day 3 (n = 4 mice for each group; Fig. 3D, E). In contrast,
no upregulation of synaptic PSD GluA2/3 was observed on post-
surgical days 3, 7, or 14 (n = 4—5 mice for each group; Fig. 3C-E).
The abundance of extrasynaptic non-PSD GluAl or GluA2/3
showed no changes at these three time points after nerve ligation
(n = 4-5 mice for each group; Fig. 3F,G). Together, these data
indicate that the synaptic GluA1 subunit is specifically increased
in the insular cortex during neuropathic pain.

Enhanced phosphorylation of synaptic GluA1 at the

Ser845 site

Phosphorylation of GluA1 regulates the localization and function
of AMPARs (Lu and Roche, 2012). To assess whether GluA1l
phosphorylation is changed in the insular cortex during neuro-
pathic pain, we focused on two serine phosphorylation sites of
GluAl, Ser845, a PKA site, and Ser831, a CaMKII and PKC site.
We found that the phosphorylation of synaptic GluAl at the
Ser845 site was significantly enhanced in the insular cortex on day
7 after nerve ligation compared with sham control (129 = 10%, p
< 0.05, n = 5 mice for each group; Fig. 4A,C). In contrast,
phosphorylation of extrasynaptic GluAl at the Ser845 site was
significantly decreased at the same time point (80 = 4%, p < 0.05,
n = 5 mice for each group; Fig. 4D, F). Phosphorylation of syn-
aptic or extrasynaptic GluAl at the Ser831 site was not changed
on day 7 after nerve ligation (Fig. 4B, C, E, F). This indicates that
the phosphorylation of synaptic GluA1 is relatively site selective.

Requirement of phosphorylation of GluA1 at the Ser845 site

To examine the role of phosphorylation in the upregulation of
insular GluA1l during neuropathic pain, we used two lines of
mutant mice specifically lacking phosphorylation of the Ser845
site (GluA1-S845A mutants) or lacking phosphorylation of the
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Figure3. Synaptic GluA1, but not GluA2/3, is upregulated in the insular cortex during neuropathic pain. A, The schematic diagram of the behavioral and biochemical experiments. B,
Fractionation of the insular cortex was probed for PSD95, synaptophysin, and Rab3A to confirm the accuracy of the subcellular fractionation procedure. H, Homogenate; S2, cytosome; P2,
crude synaptosome; Non-PSD, non-PSD enriched fraction; PSD, PSD-enriched fraction. C, Representative Western blots for GluAT and GluA2/3 in the PSD fraction of the insular cortex
obtained on postsurgical day 7. S, Sham; N, nerve ligation. D, Representative Western blots for GluA1 and GluA2/3 in the PSD fraction of the insular cortex obtained on postsurgical days
3and 14. E, The abundance of GluAT in the PSD fraction was significantly increased on postsurgical days 7 and 14 but not on day 3 (n = 47 mice for each group). The abundance of
GluA2/3 in the PSD fraction showed no changes after nerve ligation (n = 4 -5 mice for each group). F, Representative Western blots for GluA1 and GluA2/3 in the non-PSD fraction of the
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0.01 compared with sham control.
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Phosphorylation of GluA1 at the Ser845 site is required for neuropathic pain-induced upregulation of GluA1. A, Mechanical allodynia was significantly increased in the GluA1-S831A

mice with nerve ligation compared with sham control on postsurgical day 7 (n = 5 mice for each group) but not in the GluA1-S845A mice (n = 8 mice for each group). *p << 0.05. B, In the PSD
fraction of theinsular cortex from GluA1-5831A mice, the abundance of GluAT and its phosphorylation at the Ser845 site was significantly increased on day 7 after nerve ligation compared with sham
control (n = 5 mice for each group). €, In the non-PSD fraction of the insular cortex from the GluAT-5831A mice, the phosphorylation of GluA1 at the Ser845 site was significantly reduced on day
7 after nerve ligation compared with sham control, whereas no change was observed for GluA1 (n = 4 mice for each group). D, In the PSD fraction of the insular cortex from GluA1—S5845A mice with
nerve ligation, the abundance of GluA1 and its phosphorylation at the Ser845 site showed no change compared with sham control (n = 5 mice for each group). E, No change was observed for GluA1
orits phosphorylation at the Ser845 site in the non-PSD fraction of the insular cortex from GluA1-5845A mice with nerve ligation compared with sham control (n = 3 mice for each group). **p <

0.01 compared with sham control.

Ser831 site (GluA1-S831A mutants; Clem and Huganir, 2010).
We first evaluated the mechanical allodynia of these two lines
after nerve ligation and found that the GluA1-S845A mice
showed fewer responses to non-noxious mechanical stimulation
on day 7 after nerve ligation compared with that of the sham
group (p > 0.05, n = 8 mice for each group; Fig. 5A), whereas the
GluA1-S831A mice still demonstrated marked hypersensitiza-
tion to non-noxious mechanical stimulation (p < 0.05,n =5
mice for each group; Fig. 5A) after nerve ligation. It indicates that
phosphorylation of GluAl at the Ser845 site is important for
behavioral sensitization during neuropathic pain.

Next, we examined the abundance of synaptic GluA1 and its
phosphorylation in the insular cortex of GluA1-S845A mice or
GluA1-S831A mice during neuropathic pain. Synaptic GluAl
was significantly upregulated in GluA1-S831A mice on day 7
after nerve ligation compared with sham controls (120 % 8%, p <
0.01, n = 4 mice for each group; Fig. 5B). In addition, phosphor-
ylation of synaptic GluA1 at the Ser845 site was significantly in-
creased (125 = 4%, p < 0.01, n = 5 mice for each group; Fig. 5B).
The abundance of extrasynaptic GluAl in the insular cortex of
GluA1-S831A mice showed no significant changes (97 = 3%,

n = 4 mice for each group; Fig. 5C), whereas phosphorylation of
GluAl at the Ser845 site was significantly decreased (81 = 1%, p
< 0.01, n = 4 mice for each group; Fig. 5C). It indicates that
phosphorylation of the Ser831 site has no effect on the modifica-
tion of synaptic GluA1 during neuropathic pain. However, in the
insular cortex of GluA1-S845A mice, the abundance of synaptic
or extrasynaptic GluAl showed no change on day 7 after nerve
ligation compared with sham control (n = 3-5 mice for each
group; Fig. 5D, E). In addition, no change was observed for phos-
phorylation of GluAl at the Ser831 site (n = 3—5 mice for each
group; Fig. 5D, E). These results indicate that phosphorylation of
GluA1 at the Ser845 site is required for the upregulation of syn-
aptic GluAl.

Recruitment of AKAP79/150 and PKA to the synapse in the
insular cortex

Phosphorylation of GluA1 at the Ser845 site is a substrate of PKA.
AKAP79/150 is the main adaptor that combines PKA with GluA1l
through PSD binding proteins, such as synapse-associated pro-
tein 97 (SAP97) or PSD95, and determines the localization of
PKA (Sanderson and Dell’Acqua, 2011). Next, we decided to
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Figure 6.

AKAP79/150 and PKA are recruited to the synapses during neuropathic pain. A, Subcellular localization of AKAP79/150 and different PKA subunits in the insular cortex. B, Top, Extracts

from the insular cortex were immunoprecipitated with antibody against GluA1 and blotted with antibodies against GluA1, AKAP79/150, and GluK2/3. GluAT was coimmunoprecipitated with
AKAP79/150 but not with GluK2/3. Bottom, Extracts from the insular cortex were immunoprecipitated with antibody against AKAP79/150 and blotted with antibodies against GluA1, AKAP79/150,
and GluK2/3. AKAP79/150 was coimmunoprecipitated with GluA1 but not with GluK2/3 (n = 3 independent experiments). C, AKAP79/150 amount in the homogenate of the insular cortex showed
no change on day 7 after nerve ligation compared with the sham group (n = 5 mice for each group). D, AKAP79/150 amount was significantly increased in the PSD fraction (n = 6 mice for each
group) but decreased in the non-PSD fraction of the insular cortex (n = 5 mice for each group) on day 7 after nerve ligation. E, The abundance of PKA RII 3 and PKA Coe was significantly increased
inthe PSD fraction of the insular cortex on day 7 after nerve ligation (n = 5 mice for each group). *p << 0.05 compared with the sham group. H, Homogenate; S2, cytosome; P2, crude synaptosome;

Non-PSD, non-PSD enriched fraction; PSD, PSD-enriched fraction.

evaluate the localization of PKA and AKAP79/150 in the insular
cortex during neuropathic pain. Using subcellular fractionation
of the insular cortex, we found that AKAP79/150 was located at
both the synaptic and extrasynaptic sites of the insular cortex
(Fig. 6A). In addition, the antibody directed against GluA1l im-
munoprecipitated AKAP79/150 along with GluAl but not
GluK2/3 (Fig. 6B). Likewise, the antibody directed against
AKAP79/150 immunoprecipitated GluAl along with AKAP79/
150 but not GluK2/3 (Fig. 6B), indicating that AKAP79/150 is
present together within AMPAR complexes in the insular cortex.
We tested the total expression level of AKAP79/150 on day 7 after
nerve ligation and found that there was no significant difference
between the sham group and the nerve ligation group (n = 5 mice
for each group; Fig. 6C). However, the abundance of AKAP79/
150 in the PSD fraction was significantly increased (128 * 7%, p
< 0.05, n = 6 mice for each group), whereas that of AKAP79/150
in the non-PSD fraction was significantly decreased (80 % 8%, p
< 0.05, n = 5 mice for each group; Fig. 6D). These results indicate
that, in the insular cortex, AKAP79/150 is translocated from the
extrasynaptic site to the synaptic site during neuropathic pain.
PKA is a tetramer formed by two catalytic subunits (C) and
two regulatory subunits (R) (Ventra et al., 1996; Brandon et al.,
1997). We performed the biochemical analysis to determine their
subcellular distribution in the insular cortex. We found that PKA
RIla and PKA Rla were preferentially located in the cytosolic
fraction but not the synaptosome of the insular cortex. In addi-
tion, neither PKA Rlla nor PKA Rla was observed in the PSD

fraction (Fig. 6A). In contrast, both PKA Ca and PKA RIIB were
found in the PSD fraction (Fig. 6A), suggesting that PKA Ca and
PKA RIIP were the dominantly expressed subunits in the synapse
of the insular cortex. Next, we focused on the abundance of PKA
Ca and PKA RIIB. On day 7 after nerve ligation, both PKA Ca
subunit (118 = 3%, p < 0.05, n = 5 mice for each group) and
PKA RIIS subunit (130 = 10%, p < 0.05, n = 5 mice for each
group) were significantly enhanced in the PSD fraction (Fig. 6E).
Together with our data that the phosphorylation level of synaptic
GluAl at the Ser845 site was increased during neuropathic pain,
these results suggest that, in the insular cortex, the activity of PKA
in the synaptic site may be enhanced after nerve ligation.

Requirement of AC1 in the enhancement of synaptic GluA1l

ACI is the major Ca**/calmodulin-stimulated AC isoform
among the cAMP signaling pathway (Cooper et al., 1998; Cooper
and Crossthwaite, 2006). To explore the role of AC1 in the regu-
lation of AMPAR in the insular cortex, we used the knock-out
mice lacking AC1 (ACI ~/~ mice). We found that the amount of
synaptic GluAl and its phosphorylation at the Ser845 site re-
mained unchanged in the insular cortex on day 7 after nerve
ligation compared with sham control (99 = 5% for GluA1l and
96 = 7% for GluA1-Ser845, respectively, p > 0.05, n = 4 mice for
each group; Fig. 7A). Furthermore, no upregulation of AKAP79/
150, PKA Ca, or PKA RIIP was detected from the ACI ~/~ mice
with nerve ligation compared with sham controls (105 = 9% for
AKAP79/150, 90 = 6% for PKA RIIfB, and 98 * 2% for PKA Ca,
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Fig. 8A, B). In contrast, microinjection of
saline into the insular cortex bilaterally
(n = 4 mice) did not have any significant
effect (pvalues >0.05; Fig. 8 A, B). Second,
we microinjected the GluA1-containing AMPAR antagonist [EM
1460 (0.5 wl/side; 1 mm/pul) into the insular cortex and assessed
the effect of IEM 1460 on the mechanical allodynia induced by
nerve ligation. After unilateral or bilateral microinjection of IEM
1460 into the insular cortex on postsurgical days 8 —14, both ip-
silateral and contralateral mechanical allodynia were decreased
compared with those of the saline groups (p values <0.05,n =7
mice for the unilateral IEM 1460 group, n = 6 for the saline
group, n = 6 for the bilateral IEM 1460 group, n = 5 for the saline
group; Fig. 8C,D). In contrast, there was no difference in bilateral
mechanical responses after bilateral microinjection of IEM 1460
and saline in the sham groups ( p values >0.05, n = 5 for the IEM
1460 group, n = 5 for the saline group; Fig. 8E).

Figure7.

Discussion

In this study, we provide strong evidence that AMPAR-mediated
excitatory synaptic transmission is enhanced and synaptic GluA1l
is upregulated in the insular cortex of adult mice during neuro-
pathic pain. Blocking insular GluAl-containing AMPARs re-
duced nerve injury-induced mechanical allodynia. These results

AKAP79/150 Ser845

ACT determines the upregulation of synaptic GluAT and translocation of AKAP79/150 and PKA in the insular cortex. A,
On day 7 after nerve ligation, the abundance of GluA1 and its phosphorylation at the Ser845 site in the PSD fraction from ACT /"~
mice with nerve ligation showed no change compared with sham control (n = 4 mice for each group). B, No upregulation of
AKAP79/150, PKA RII 3, or PKA Ca was observed in the PSD fraction of the insular cortex from AC7 ™ mice with nerve ligation
compared with sham control (n = 5 mice for each group). C, In the non-PSD fraction of the insular cortex from ACT ~~ mice, the
abundance of AKAP79/150 or phosphorylation of GIuAT at the Ser845 site showed no change on day 7 after nerve ligation
compared with sham control (n = 5— 6 mice for each group).

indicate that insular AMPARSs undergo long-term enhancement
after nerve injury, and this enhancement is critical for behavioral
sensitization after nerve injury. Furthermore, we reveal that
phosphorylation of synaptic GluA1 AMPARs at the Ser845 site
determines the increase of the synaptic GluA1l subunit. Activa-
tion of calcium-stimulated AC1 and then translocation of
AKAP79/150 and PKA to the synapse may contribute to the
maintenance of the enhanced phosphorylation status of synaptic
GluA1 AMPARs in the insular cortex.

Insular cortex and neuropathic pain

The insular cortex is critical in pain and sensory perception (Os-
trowsky et al., 2002; Mazzola et al., 2009, 2012). Several lines of
evidence suggest the enhanced activation of the insular cortex in
experimental animals and in patients of neuropathic pain
(Garcia-Larrea and Peyron, 2013). Inhibition or lesion of the
insular cortex induces analgesia (Greenspan and Winfield, 1992;
Burkey et al., 1999; Jasmin et al., 2003). However, little is known
about whether excitatory transmission in the insular cortex un-
dergoes plastic changes after peripheral nerve injury. Our previ-
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ous work has shown that AMPARs
mediate most of the basal excitatory syn-
aptic transmission in the insular cortex
(Koga et al., 2012). In the present study,
we found that the AMPAR-mediated syn-
aptic transmission was increased in the in-
sular cortex after nerve ligation. These
results provide the first evidence that the
excitatory transmission in the insular cor-
tex was enhanced after peripheral nerve
injury. More importantly, in recent work,
we have found that upregulation of the in-
sular  NMDARs contributes to the
development of neuropathic pain, and
NMDAR-dependent LTP is occluded af-
ter neuropathic pain (Qiu et al., 2013).
These results indicate that neuropathic
pain may activate similar cortical signal-
ing mechanisms that are also involved in
electrically induced LTP in the insular
cortex.

Furthermore, we found that synaptic
GluA1l, but not GluA2/3, was unregulated in
the insular cortex during neuropathic pain,
which indicated that increased calcium-
permeable AMPARs (Cp-AMPARs) were
formed in the insular cortex after nerve in-
jury. Similarly, enhanced Cp-AMPARs
are found in the spinal cord (Hartmann et
al., 2004; Luo et al., 2008; Park et al., 2008)
and the ACC (Xu et al., 2008) after periph-
eral injuries. These data indicate that the
insular cortex, as one part of the CNS, may
function in coordination with other brain
regions (such as the ACC) by sharing the
similar signaling mechanisms of the up-
regulation and phosphorylation of synaptic

<«

Figure 8.  Behavioral sensitization of insular GluA1-containing
AMPARs. A, A schematic diagram of microinjection and the behavioral
experiment and representative coronal section (top) showing in-
jection sites in the insular cortex. The lower column shows the
cannula tip placements in mice injected with CNQX or saline in
the insular cortex. Scale bar, T mm. B, After bilateral microin-
jection of CNQX (1 mm/pul) into the insular cortex on day 7 after
nerve injury, the pain thresholds of the injured hindpaw and
contralateral feet were significantly increased (CNQX group,
n = 6 mice) compared with the saline-injected group (saline
group, n = 4 mice). , After unilateral and bilateral microin-
jection of IEM 1460, ipsilateral mechanical allodynia were sig-
nificantly decreased compared with the saline injection group
(unilateral IEM 1460 group, n = 7 mice; saline group,n = 6
mice; bilateral IEM 1460 group, n = 6 mice; saline group,n =
5mice). D, After unilateral and bilateral microinjection of IEM
1460, contralateral mechanical allodynia were significantly
decreased compared with the saline injection group (unilat-
eral [EM 1460 group, n = 7 mice; saline group, n = 6 mice;
bilateral IEM 1460 group, n = 6 mice; saline group, n = 5
mice). E, There were no significant differences in bilateral me-
chanical allodynia after bilateral microinjection of IEM 1460
and saline in the sham group (P values >0.05, IEM 1460
group, n = 5; saline group, n = 5). *p < 0.05, **p << 0.01,
***p <0.001 compared with the saline-injected group.
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GluA1l-containing AMPARs. However, pharmacological inhibi-
tion of AMPAR-mediated synaptic transmission in the insular
cortex or in the ACC can both reduce behavioral sensitization in
neuropathic pain states, indicating that the insular cortex and the
ACC of brain cortical areas can act independently in the modu-
lation of neuropathic pain.

Previous work has shown that unilateral inhibition of the
rostral agranular insular cortex produces a bilateral increase in
withdrawal latency through a disinhibition of the descending in-
hibitory system (Jasmin et al., 2003). Similarly, we observed that
either unilateral or bilateral microinjection of the AMPAR GluAl
antagonist IEM 1460 decreased bilateral mechanical allodynia
after nerve injury. These results indicate that the insular cortex
may exert bilaterally descending modulation on pain thresholds
during neuropathic pain, in addition to its centrally bilateral pro-
cess of painful information. Postsynaptic amplification of
GluAl-containing AMPARs in the insular cortex may contribute
to mechanical allodynia after nerve injury.

AMPAR phosphorylation and chronic pain

AMPARSs are dynamically moving in and out of synapse based on
synaptic activity, which in turn determines the synaptic strength
and excitability (Gerges et al., 2006; Ehlers et al., 2007). Phos-
phorylation of AMPAR subunits is a major modification that
regulates the synaptic localization of AMPARSs. In this study, we
found that phosphorylation of GluA1 at the Ser845 site in the
insular cortex, but not at the Ser831 site, was required for behav-
ioral sensitization. Enhanced phosphorylation of GluAl at the
Ser845 site has been reported in the ACC and spinal cord in
chronic pain (Xu et al., 2008; Lee et al., 2012). These results
emphasize the importance of the phosphorylation of GluAl in
controlling AMPAR trafficking under pathological conditions.
By using transgenic knock-in mice, we demonstrate that the
GluA1-S845 site plays an important role in injury-induced be-
havioral sensitization. However, it is unlikely that behavioral ef-
fects are simply attributable to the upregulation of insular GluA1l.
Future studies are clearly needed to show the role of insular
GluA1-S845A in behavioral sensitization by using regional selec-
tive mutant mice or alternative knock-out mice. From the signal-
ing pathway point of view, phosphorylation of GluAl at the
Ser845 site attributable to the activation of AC1 and PKA may
enhance synaptic AMPARs through inhibiting endocytosis of
AMPARs (Kam et al., 2010) or increasing exocytosis of GluA1l
to extrasynaptic sites on the plasma membrane and priming
AMPARSs for synaptic delivery (Oh et al., 2006). More work is
needed to determine the molecular mechanism underlying the
maintenance of enhanced GluA1 phosphorylation in the insular
cortex after nerve injury.

ACl1-linked intracellular signaling pathways

Phosphorylation of GluA1 at the Ser845 site is a substrate of PKA
(Man et al., 2007; He et al., 2009). Synaptic localization of PKA
and interaction of PKA with GluAl are mediated mainly by
AKAP79/150, an adaptor that may directly interact with PSD-
binding proteins, such as SAP97 or PSD95, and then combines
PKA with GluA1 together. In this study, we found that AKAP79/
150 was translocated to the postsynaptic site of the insular cortex
after nerve ligation, together with the RII and Ca subunits of
PKA after the activation of AC1. It indicates that the translocation
of AKAP79/150 may lead to the enhanced activity of PKA and
then increased phosphorylation of GluAl at the Ser845 site. In
line with our results, some research has found that AKAPs are not
static anchors that position signaling proteins near fixed-target
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substrates and instead that AKAPs can regulate local signaling
events in more dynamic manners (Dell’Acqua et al., 2006; Sand-
erson and Dell’Acqua, 2011). Moreover, a recent study reports
that AKAP79/150 may be recruited to the postsynaptic part or
recycling endosome by seizure activity in vivo and plasticity-
inducing stimuli in cultured hippocampal neurons (Keith et al.,
2012). PKA is also found to be dynamically trafficked in the neu-
ron (Zhong et al., 2009). These findings emphasize the emerging
importance of translocation of AKAP79/150 and PKA in control-
ling synaptic function. AKAP79/150 anchors not only kinases but
also phosphatases (such as calcineurin) in an appropriate synap-
tic position (Jurado et al., 2010; Kam et al., 2010; Dacher et al.,
2013). Therefore, additional studies are clearly needed to find out
how the balance between kinases and phosphatases are affected in
chronic pain conditions.
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