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Spike Trains of Auditory-Nerve Fibers

Adam J. Peterson,1 X Dexter R.F. Irvine,2,3 and X Peter Heil1,4

1Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany, 2School of Psychological Sciences, Monash University, Victoria 3800, Australia, 3Bionics
Institute, East Melbourne, Victoria 3002, Australia, and 4Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany

In mammalian auditory systems, the spiking characteristics of each primary afferent (type I auditory-nerve fiber; ANF) are mainly
determined by a single ribbon synapse in a single receptor cell (inner hair cell; IHC). ANF spike trains therefore provide a window into the
operation of these synapses and cells. It was demonstrated previously (Heil et al., 2007) that the distribution of interspike intervals (ISIs)
of cat ANFs during spontaneous activity can be modeled as resulting from refractoriness operating on a non-Poisson stochastic point
process of excitation (transmitter release events from the IHC). Here, we investigate nonrenewal properties of these cat-ANF spontaneous
spike trains, manifest as negative serial ISI correlations and reduced spike-count variability over short timescales. A previously discussed
excitatory process, the constrained failure of events from a homogeneous Poisson point process, can account for these properties, but
does not offer a parsimonious explanation for certain trends in the data. We then investigate a three-parameter model of vesicle-pool
depletion and replenishment and find that it accounts for all experimental observations, including the ISI distributions, with only the
release probability varying between spike trains. The maximum number of units (single vesicles or groups of simultaneously released
vesicles) in the readily releasable pool and their replenishment time constant can be assumed to be constant (�4 and 13.5 ms, respec-
tively). We suggest that the organization of the IHC ribbon synapses not only enables sustained release of neurotransmitter but also
imposes temporal regularity on the release process, particularly when operating at high rates.
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Introduction
In several sensory systems, the conversion of stimulus represen-
tations from graded changes in membrane potential to stochastic
trains of spikes is achieved by ribbon synapses (Matthews and
Fuchs, 2010). Uniquely, in mammalian auditory systems, each
primary afferent (a type I auditory-nerve fiber; ANF) contacts
only a single receptor cell (an inner hair cell; IHC) and is excited
by a single ribbon synapse. Furthermore, there is evidence that
each transmitter release event from a given IHC ribbon synapse
gives rise to a postsynaptic spike unless the ANF is refractory
(Siegel, 1992; Rutherford et al., 2012). Therefore, the ANF spike
patterns provide information about the release statistics of these

synapses. These statistics can be studied in the absence of
experimenter-controlled sound because ANFs are spontaneously
active (Liberman, 1978).

In models of ANF spike patterns, the excitatory (release)
events are commonly thought to be produced by a Poisson point
process that is homogeneous during spontaneous activity (Kiang
et al., 1965; Gaumond et al., 1983; Young and Barta, 1986; Car-
ney, 1993; Li and Young, 1993; Miller and Wang, 1993; Johnson,
1996; Zhang et al., 2001). A fractal doubly stochastic point pro-
cess has also been proposed to account for rate trends over longer
timescales (�100 ms; Lowen and Teich, 1991, 1992; Delgutte,
1996; Jackson and Carney, 2005). Both processes lead to identical
exponential distributions of interevent intervals (Teich et al.,
1990). The deviations of empirical distributions of interspike in-
tervals (ISIs) from the hypothesized exponential distribution of
interevent intervals have therefore traditionally been attributed
to refractory properties of the ANFs. However, the long refrac-
tory periods (tens of milliseconds) required by this assumption
are at variance with the short refractory periods (�1–2 ms) ob-
tained from direct measures (Brown, 1994; Cartee et al., 2000;
Miller et al., 2001; Shepherd et al., 2004; Morsnowski et al., 2006).
Heil et al. (2007) suggested a solution to this problem in the form
of a non-Poisson excitatory point process and found that, when
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followed by refractoriness consistent with the experimental data,
it describes the ISI distributions from spontaneous activity of cat
ANFs nearly two orders of magnitude better than the Poisson
model.

ISIs of ANFs during spontaneous activity can also exhibit
nonrenewal properties that manifest, for example, as serial ISI
correlations or a spike-count variability different from that of a
memoryless renewal process (Lowen and Teich, 1992). These
aspects have received little attention, and their origin has re-
mained unclear. Here, we examine whether the previously dis-
cussed non-Poisson excitatory process can account for these
nonrenewal properties. We find it does not provide a simple
explanation for the dependence of nonrenewal measures on
mean ISI, so we investigate an alternative model of excitation
based on vesicle-pool depletion and replenishment. This alterna-
tive model is physiologically plausible and accounts for both the
nonrenewal properties and the ISI distributions, with the varia-
tion of only a single parameter between spike trains. Our findings
will help clarify the processes of vesicle release at ribbon synapses
and information transfer in the auditory nerve.

Materials and Methods
Data
The data for this study include those data used in a previous study of the
ISI distributions of ANFs during spontaneous activity (Heil et al., 2007).
All details of data acquisition can be found there. Briefly, in five
barbiturate-anesthetized adult cats (three females, two males), spikes of
171 individual ANFs were recorded extracellularly with microelectrodes
from the left auditory nerve near its exit from the internal auditory me-
atus. Continuous samples of spontaneous activity (between 12.5 and
134.4 s long) were recorded, along with responses to various stimulus
protocols for other purposes (Heil et al., 2008, 2011). Spike times were
taken as the instants at which the amplified and filtered electrode
signal crossed a Schmitt trigger level, and were stored on disk with a
precision of 1 �s.

Data analysis
All data analysis was performed using MATLAB R2014a (The Math-
Works) or C�� code compiled with Microsoft Windows SDK 7.1. The
data presented here are always from complete samples of spontaneous
activity, unlike the previous study (Heil et al., 2007) in which pruning was
applied to remove initial periods of nonstationary spike rate.

Serial ISI correlation coefficient. First-order ISIs (i.e., those between
consecutive spikes) were computed from the spike times with 1 �s pre-
cision. In a renewal point process, the successive time intervals between
adjacent events are drawn independently from a common probability
distribution (Cox, 1962; Teich and Khanna, 1985). Consequently, there
is no serial correlation between first-order or higher-order interevent
intervals and the process is said to be memoryless. A homogeneous Pois-
son point process is a special case of a renewal process where the inter-
event intervals are exponentially distributed (Cox, 1962; Lowen and
Teich, 1992; Ratnam and Nelson, 2000). To probe the spontaneous spike
trains of ANFs for nonrenewal properties, the serial interspike interval
correlation coefficient (SIICC) was computed for each sample of spon-
taneous activity using the equation proposed by Lowen and Teich (1992):

� �
(N � 2)�1�i�1

N�1
(�i � ��	)(�i�1 � ��	)

(N � 1)�1�i�1

N
(�i � ��	)2

. (1)

Here, � is the SIICC and N is the number of first-order ISIs. The mean ISI
��	 is computed from all N individual intervals �i. The equation is not
defined for fewer than three intervals. For comparative purposes, we also
computed SIICCs using similar equations provided by Ratnam and Nel-
son (2000), Chacron et al. (2001), Engel et al. (2008), Schwalger and
Lindner (2010), and Urdapilleta (2011), but because the results were
similar, we report only those obtained with Equation 1. Because the
first-order SIICCs were of low magnitude (see Results), we refrained

from analyzing higher-order interval correlations, shown by others to be
even smaller (Ratnam and Nelson, 2000; Chacron et al., 2001; Avila-
Akerberg and Chacron, 2011).

Conditional means of ISIs. For comparative purposes, nonrenewal
properties of ANF spike trains during spontaneous activity were also
probed using conditional means of ISIs, similar to analyses performed by
Tsuchitani and Johnson (1985) and Johnson et al. (1986). For each spike
train, a criterion ISI was selected. The conditional mean of all ISIs directly
following an ISI shorter than or equal to the criterion was then calculated.
The conditional mean of the remaining ISIs, those directly following an
ISI longer than the criterion, was also calculated. This was done for a
range of criteria, from 1 to 25 ms in steps of 0.5 ms. For a renewal process,
the two conditional means will not differ systematically and, on average,
their ratio will be 1. In the presence of negative serial ISI correlations,
however, the conditional mean of the ISIs following an ISI longer than
the criterion will be shorter than the conditional mean of the ISIs follow-
ing an ISI shorter than the criterion. On average, the ratio of the two
conditional means will therefore be �1. This latter behavior was ob-
served in the data, with 87% of the ratios �1 (from 180 spike trains with
�500 ISIs). From these data, we derived a single ratio for each spike train,
the geometric mean of the individual ratios across criteria. We found that
the logarithm of this geometric mean ratio was closely and positively
correlated with the SIICC (r 2 � 0.83; n � 180). Therefore, we report only
the results based on the SIICC analysis.

Spike-count distributions and Fano factors. Additional information
about spike-train variability was derived from spike-count distributions,
also referred to as pulse-number distributions (PNDs; Teich and
Khanna, 1985). Each spike train was first divided into nonoverlapping
time windows of duration T. Then, the number of spikes in each window
was counted. Division by the total number of spikes yields the probability
P(n, T ) of observing n spikes during the counting time T. A histogram of
these probabilities yields the PND. The PNDs can be characterized by the
Fano factor F(T ) (Fano, 1947), which is defined for each counting time T
as the ratio of the variance to the mean number of spikes per window:

F
T� �
�2
T�

�
T�
. (2)

The Fano factor has units of spikes. For a Poisson process, F(T ) � 1 for all
T (Cox and Lewis, 1966; Chacron et al., 2001; Amarasingham et al.,
2006). Processes with F(T ) �1 are less variable than a Poisson process
(Gabbiani and Koch, 1998). For each of the 446 spontaneous spike trains
with at least one spike, we computed Fano factors for a range of counting
times in octave steps from �0.1 to 250 ms. Specifically, the values were
T � 500/(2n) ms, where n represents the integers from 1 to 12. Nine spike
trains were omitted because their total durations could not be divided
into integer numbers of these counting times.

Simulations and models
Homogeneous and inhomogeneous Poisson point processes. For various
comparative purposes described below, events from a homogeneous
Poisson point process were simulated by drawing random intervals from
an exponential distribution with a specified mean parameter (using the
MATLAB function exprnd). To simulate nonstationary (rate-varying)
processes, event trains were generated for discrete time series with time
steps of 0.01 ms or 0.05 ms. A nonhomogeneous Poisson point process
was approximated by drawing a random number from the standard uni-
form distribution at each time step and comparing it to the instantaneous
event probability per unit of time, which is the expected number of events
per time step (the product of the rate in events per seconds and the
duration of the time step in seconds). An event was said to occur at each
time point for which the randomly drawn number was less than or equal
to the instantaneous event probability.

Simulation of refractory effects. Effects of refractoriness were also mod-
eled. Each simulated event triggers a simulated spike unless the event falls
into the refractory period that follows the previous spike. The refractory
period, or dead time, consists of a portion with a fixed duration tD and a
portion whose duration varies and was drawn after each spike from an
exponential distribution with mean tR. The cumulative distribution
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function of dead times, p(t), is therefore given by the product of the
Heaviside function H(t) and an exponential function, both shifted by tD:

p
t� � H
t � tD��1 � e�1}tR

t�tD�� , (3)

where t is the time since the last spike and tD � 0. This implementation
of refractoriness is identical to that proposed by Young and Barta (1986)
and to that used in the previous study of ISI distributions (Heil et al.,
2007). Mathematically, it is described by the convolution of the distribu-
tion of interevent intervals with the refractory function of Equation 3
(Young and Barta, 1986; Heil et al., 2007; Neubauer et al., 2009).

In this implementation of refractoriness, the duration of the refractory
period is a random variable. Notably, the outcome of this implementa-
tion differs from that of implementations of refractoriness in popular
models of the auditory periphery (Carney, 1993; Zhang et al., 2001; Sum-
ner et al., 2002, 2003; Zilany and Bruce, 2006; Zilany et al., 2009). These
follow the (possibly more conventional) view that there is a nonrandom
stereotypical refractory function composed of an absolute refractory pe-
riod during which the probability that an event will trigger a spike is zero,
followed by a relative refractory period during which the probability that
an event will trigger a spike increases exponentially with time. It should
be noted that unlike the model of Sumner et al. (2002), the model of
Zilany et al. (2009) does not explicitly model synaptic release events and
subject them to refractory effects to yield spikes. Instead, the refractory
effects are incorporated directly into the calculation of the (nonhomoge-
neous) rate for the Poisson spike generator; in either case, the result is the
same. Although the probability distribution of refractory periods given
by Equation 3 has the same form as the conventional refractory function
composed of an absolute refractory period with duration tD and a relative
refractory period characterized by an exponential recovery with time
constant tR � 0, the two implementations are not equivalent. This dif-
ference can be seen by comparing the effects of each implementation on
simulated Poisson event trains. The model by Sumner et al. (2003) as-
sumes that in the relative refractory period the probability that an event
will trigger a spike increases exponentially from a probability of c to 1
(where 0 	 c 	 1). The model of Zilany et al. (2009) is similar but uses a
double-exponential relative refractory function. When the second time
constant is set to zero and the remaining parameters are identical, the
distributions of ISIs produced by the models of Sumner et al. (2003) and
Zilany et al. (2009) are identical. However, with c � 0 to match Equation
3, the mean ISI produced by each of these models is systematically shorter
than that produced by our approach and that of Young and Barta (1986),
Heil et al. (2007), and Neubauer et al. (2009), which predicts a mean ISI
of tD 
 tR 
 tE, where 1/tE is the rate of the Poisson process. The absolute
and relative differences between implementations increase with increas-
ing duration of the time constant tR of the relative refractory period.

The reason for this difference becomes evident from considerations of
probability. Following a simulated spike, there may be a series of simu-
lated release events that fail to trigger spikes due to refractoriness, fol-
lowed by one event that finally succeeds in triggering a spike. In our
implementation of refractoriness, the probability that the duration of the
dead time lies between t � 0 and t � T is given by �
t 	 T� � p
T�.
Thus, the probability that the dead time exceeds t � T is given by
�
t � T� � 1 � p
T�. All simulated events falling into this dead time
fail to trigger spikes. In the implementation of Sumner et al. (2003) and
Zilany et al. (2009), however, the probability that all events falling into
the interval T fail to trigger spikes is given by the product of the individual
probabilities that these events at intervals t1, t2,…tI fail to trigger spikes:
�
t � T� � 
1 � p
t1��
1 � p
t2��…
1 � p
tI��. Because this
probability is lower than �
t � T� � 1 � p
T� when more than one
event falls into this dead time, the number of events triggering a spike will
be higher and the mean ISI will be shorter. In all simulations, both the
absolute refractory period and the time constant of the relative refractory
period were set to 0.6 ms, based on previous modeling of the ISI distri-
butions of the same cat-ANF spontaneous spike trains (Heil et al., 2007).

The constrained-failure model. Gamma-mixture distributions of the
first-order intervals between simulated events (IEIs) were generated
from simulated homogeneous Poisson event trains by removing speci-

fied fractions of events, but without ever removing more than one in a
row. This “never-two-in-a-row rule” is required to generate gamma-
mixture IEI distributions from Poisson event trains (Heil et al., 2007;
Neubauer et al., 2009). Following this rule, the effects of different re-
moval scenarios on serial correlation coefficients and Fano factors were
explored. These removal scenarios are described in Results.

The depletion–replenishment model. The model of vesicle-pool deple-
tion and replenishment used here is equivalent to that proposed by Gold-
man et al. (2002) for central synapses, and contains three parameters.
The model describes a pool of readily releasable units whose maximum
size is specified by parameter nmax. Each unit has the same constant and
independent probability per unit of time of being depleted, specified by
parameter pdepl. Finally, each depleted unit has the same constant and
independent probability per unit of time, prepl, of being replenished. On
average, this yields an exponential replenishment with a time constant of
�repl � 1/prepl (Goldman et al., 2002). Figure 1A illustrates the model as it
would apply to the auditory periphery, in the form of a synaptic ribbon
with tethered vesicles, some of which are readily releasable. Although a
single releasable unit is represented here as a single vesicle, it could also be
a group of vesicles that are released simultaneously in a coordinated
fashion (multivesicular release; Glowatzki and Fuchs, 2002; Grant et al.,
2010). Following Goldman et al. (2002), depletion is constrained such
that maximally one unit can be released during a given time step. The
instantaneous probability that a synaptic release event occurs, pevent(ti),
depends only on pdepl and the instantaneous number of available units,
n(ti) (where 0 	 n(ti) 	 nmax):

Pevent
ti� � 1 � 
1 � pdepl�
n
ti�, (4)

A B

C D

Figure 1. The depletion–replenishment model. A, Schematic ribbon synapse with tethered
vesicles, some of which (green and blue) are ready for release. They constitute the pool of
releasable units of maximal size nmax. In this scheme, a releasable unit is a single vesicle, but in
the model, such a unit could also represent a group of vesicles released simultaneously. Each
unit has a constant and independent probability per unit of time, pdepl, of being released. When
a unit is released (blue vesicle), the pool size is depleted by 1 and replenished exponentially with
time constant �repl. If replenishment was instantaneous, the release process would be a homo-
geneous Poisson point process with a mean interval of approximately 1/( pdepl � nmax). B, A
50 ms simulation demonstrating the change in size of the readily releasable pool for a single
combination of pdepl, �repl, and nmax (0.05/ms, 15 ms, and 4, respectively). C, Mean SIICCs (color
coded) resulting from the combinations of pdepl, �repl, and nmax that produce a mean interval of
10 ms after refractoriness, as a function of �repl and nmax. D, Mean SIICC (color coded) from a
denser sampling of the relevant parameter space. A tenth-order polynomial was fitted to the
pairs of �repl and nmax capable of producing a mean ISI of 10 ms and a mean SIICC of �0.1 (cf.
Fig. 2D; see text for rationale).
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where ti is the current time step. When a unit is depleted, n is reduced by
1. If each depleted unit was replenished instantaneously, the pool of
available units would always remain full (i.e., n would always equal nmax)
and the release process would be a homogeneous Poisson point process
with a mean interval of approximately 1/( pdepl � nmax) or a rate of ap-
proximately pdepl � nmax. This is so because Pevent
ti� can be approximated
by pdepl � n
ti� for small values of pdepl and n
ti�, as were used in our
simulations. However, replenishment is not instantaneous in the model,
so that the time-varying number of readily releasable units in the pool is
given by the following:

n
ti� � n
ti�1� 
 
nmax � n
ti�1���1 � e�1}�repl

ti�trel��, (5)

where ti is the current time step, ti�1 is the prior time step, and ti � trel is
the time since the last release event. Each release event in the depletion–
replenishment model triggers a spike unless the release event falls into the
refractory period following the previous spike, as described above. Neg-
ative SIICCs occur due to the fluctuation of the pool size, as captured by
Equation 5, and its effect on release probability, as captured by Equation
4; for example, when two release events occur in close succession to form
an interval shorter than the mean, the pool of readily releasable units will
tend to need a long replenishment period and the next interval will
therefore tend to be longer than the mean (Fig. 1B).

Procedure to determine pdepl in the depletion–replenishment model.
When simulating cat-ANF spike trains with the depletion–replenish-
ment model, it is important that the model spike train has the same or a
very similar mean ISI as the cat-ANF spike train to be simulated. To
explore how to achieve this, event trains were simulated (with a time step
of 0.05 ms and between 20 and 100 repetitions) for various combinations
of the three model parameters ( pdepl, �repl, and nmax) and then subjected
to refractoriness to yield simulated spike trains from which mean ISIs
were calculated. For a given pair of �repl and nmax, we found the mean ISI
to increase approximately linearly with increasing 1/pdepl. The value of
pdepl required to yield a particular mean ISI, given �repl and nmax, was
therefore calculated from a linear fit.

Procedure to obtain preliminary parameters for the depletion–replenish-
ment model. A multistep simulation procedure was used to obtain a set of
preliminary parameter combinations that might account for the serial
correlations observed in the cat data. This procedure was based on the
simplifying assumption that only the depletion probability pdepl varies
between synapses to account for differences in spontaneous rates be-
tween spike trains; therefore, we specifically sought to identify a set of
�repl and nmax pairs that might account for the data, with pdepl free to vary
as needed to yield the appropriate mean ISI to match each sample of cat
data. We first targeted parameter combinations that would produce a
mean SIICC of �0.1 and a mean ISI of 10 ms (i.e., a mean rate of 100
spikes/s). This single point was chosen because it closely matches the
mean SIICC in cat-ANF spike trains with mean ISIs of �10 ms and
because of the high density of data points near it (cf. Fig. 2D); pairs of �repl

and nmax that could not reproduce this point were considered unable to
account for the dataset, whereas those that could reproduce this point
were included in the set of preliminary pairs to be explored further. The
first step in the procedure was to determine the values of pdepl necessary
to obtain a mean ISI of 10 ms after refractoriness. This was done for
10,000 different pairs of �repl and nmax (100 values of �repl, log-spaced
between 1 and 50 ms, times 100 values of nmax, log-spaced between 1 and
100, forming the grid in Fig. 1C) using the linear-fit procedure described
above. For certain pairs of long �repl and small nmax, such a short mean ISI
cannot be obtained (Fig. 1C, white area), and these pairs were not con-
sidered further. Next, the mean SIICCs (color coded in Fig. 1C) were
calculated from 12.5 s long simulated spike trains for each of the remain-
ing pairs (with a time step of 0.05 ms and 200 repetitions). The narrow
yellow band marks the combinations of �repl and nmax which, together
with an appropriate pdepl, give rise to SIICCs near �0.1. For longer �repl

and smaller nmax, the resulting SIICCs are more negative and vice versa.
Next, and as a first approximation, a power law was fitted to the pairs of
�repl and nmax that yielded SIICCs within the range of �0.1 � 0.004; to
improve the fit, short values of �repl � 5 ms were excluded to omit the

vertical portion below the bend in the yellow band in Figure 1C. The
fitted power law was used to define a region of parameter space that was
then resampled at a higher density (Fig. 1D). Specifically, the power law
was used to calculate values of ncenter for 100 log-spaced values of �repl

between 5 and 50 ms. For each ncenter, 50 log-spaced values of nmax were
specified between ncenter � 0.85 and ncenter/0.85. The steps described
above were then repeated with this new set of �repl and nmax pairs to
determine the appropriate value of pdepl for each and the resulting mean
SIICCs (color coded in Fig. 1D). This time, a more precise tenth-order
polynomial was fitted to the pairs of �repl and nmax that yielded SIICCs
within the range of �0.1 � 0.001. For 150 log-spaced values of �repl

between 5 and 50 ms, the corresponding values of nmax were calculated
from this polynomial fit to yield, together with the appropriate pdepl, 150
preliminary parameter combinations, each of which produces a mean ISI
of 10 ms and a mean SIICC of �0.1. Finally, for each of the 150 pairs of
�repl and nmax, 180 values of pdepl were determined (via the linear-fit
procedure described above) to approximate the mean ISIs of all 180 ANF
spike trains with �500 ISIs used to evaluate this model (see Results).
These parameters were then used to simulate a complete set of 180 spike
trains (with a time step of 0.01 ms), such that each cat-ANF spike train
had a simulated counterpart of the same duration and with approxi-
mately the same number of ISIs. Twenty such sets of 180 simulations
were made for each of the 150 pairs of �repl and nmax and were compared
with the cat data to identify which pairs of �repl and nmax best reproduce
the observed SIICCs and ISI distributions (described in Results).

Results
The results are organized into three parts. First, the nonrenewal
properties of ANF spike trains are characterized using SIICCs and

A B

C D

Figure 2. Spike trains of cat ANFs are nonrenewal and exhibit serial interspike interval cor-
relations. A, SIICCs obtained from 414 samples of spontaneous activity as a function of the
number of first-order ISIs in the sample (gray dots). The means, computed for 18 bins containing
23 entries each, are also shown (open circles). B, Plot of individual SIICCs (gray dots) and their
means (open circles) obtained from simulated spike trains as a function of sample size. Spike
trains were generated by a homogeneous Poisson process, so there is no systematic serial
correlation of ISIs. The SIICC measure (Eq.1; adopted from Lowen and Teich, 1992) exhibits a
bias toward negative values, particularly for small sample sizes. C, Cumulative probability of
SIICCs obtained from 180 samples of ANF spontaneous activity with �500 ISIs (continuous line)
and after duplicating and shuffling each train of ISIs 10 times (dashed line). Shuffling removes
the systematic serial correlations. D, SIICCs obtained from the 180 cat-ANF spontaneous spike
trains with �500 ISIs plotted as a function of mean ISI (two samples with mean ISIs longer than
50 ms are not shown).
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Fano factors. Second, the constrained-failure model of excitation
is evaluated to determine whether it can adequately reproduce
the nonrenewal properties. Finally, we show that the alternative
depletion–replenishment model of synaptic vesicle pools can bet-
ter account for the nonrenewal properties, while also accounting
for the ISI distributions.

Characterization of the nonrenewal properties of ANF
spike trains
Serial interspike intervals of ANF spike trains are predominantly
negatively correlated
In this section, we demonstrate the existence of predominantly
negative serial correlations in the spike trains of ANFs during
spontaneous activity. For each recorded spike train with �4
spikes (�3 ISIs), we computed the SIICC using the equation
suggested by Lowen and Teich (1992) (Eq.1 in Materials and
Methods). A negative value (anticorrelation) means that short
ISIs tend to be followed by long ISIs and vice versa, whereas a
positive value means that short ISIs tend to be followed by short
ISIs and long ISIs by long ISIs. According to Lowen and Teich
(1992), the SIICC ranges from �1 (perfect anticorrelation) to 1
(perfect correlation) and is zero for uncorrelated intervals.

Figure 2A shows the SIICCs obtained from 414 samples of
spontaneous activity (each between 12.5 and 134.4 s long) of 156
cat ANFs as a function of the number of first-order ISIs in the
sample. Most SIICCs (70%) are negative. For the smallest sample
size of three ISIs, all SIICCs are 	0 and some are even less than
�1. With increasing sample size, the spread of the SIICCs de-
creases, as well as the magnitude of the mean SIICC (open cir-
cles). Still, for large sample sizes, most SIICCs are negative.

We performed simulations to determine which SIICCs can be
expected by chance from a renewal point process and to identify
a possible bias in the SIICC measure. Spikes were generated from
a homogeneous Poisson point process (see Materials and Meth-
ods) so that the intervals between them (ISIs) exhibit no system-
atic serial correlations. For each sample size (between 3 and
8000), �250,000 ISIs were partitioned into samples from which
individual SIICCs were calculated. Figure 2B shows the individ-
ual SIICCs (gray dots) along with the means (open circles) as a
function of sample size. Despite the absence of systematic serial
correlations in these ISIs, the mean SIICC measure is strongly
negative for small sample sizes and therefore has a systematic
bias. With increasing sample size, the spread decreases and the
mean asymptotically approaches zero. For large sample sizes,
the small spread appears symmetrical around zero. Because of the
bias toward negative values for small sample sizes, we restrict our
analysis of SIICCs to the 180 samples with �500 ISIs (each be-
tween 12.5 and 52.5 s long). Here, the spread is small and the
means from the simulated data are close to zero (Fig. 2B). This
restriction, however, results in the exclusion of samples with low
spontaneous rates (SRs), because they were not long enough to
reach the criterion of at least 500 ISIs; the lowest rate present in
our SIICC analysis is 13.7 spikes/s.

Figure 2C shows the cumulative probability of SIICCs obtained
from the samples of ANF spontaneous activity with �500 ISIs (solid
line; n � 180). The distribution has a median of �0.060 and an
interquartile range from �0.083 to �0.028. The median differs sig-
nificantly from zero (Wilcoxon signed rank test: z � �9.88, p �
4.97 � 10�23). Figure 2C also shows the cumulative probability of
SIICCs obtained from the same spike trains after duplicating and
shuffling the ISIs of each train 10 times (dashed line, n � 1800),
which removes the serial correlations. The distribution of the SIICCs
after shuffling has a median of �0.0015 and an interquartile range

from �0.022 to 0.018. The median does not differ significantly from
zero in any of the 10 shuffled sets (Wilcoxon signed rank test:
�1.65 	 z 	 1.22, 0.10 	 p 	 0.98).

The spread of SIICCs in the original (unshuffled) spontane-
ous spike trains has a strong dependence on the mean ISI. Figure
2D shows the SIICCs from the 180 ANF spike trains with �500
ISIs as a function of the mean ISI. The SIICCs from two samples
with mean ISIs �50 ms (SRs �20 Hz) are not shown to allow for
better resolution. The most negative SIICCs tend to come from
spike trains with short mean ISIs (high SRs). As the mean ISI
increases (SR decreases), the SIICCs increase systematically and
approach zero. The few positive SIICCs here are due mainly to
nonstationary spike rates, as we briefly demonstrate in the next
section.

Positive correlations in serial interspike intervals of ANFs are likely
due to nonstationary spike rates
One factor contributing to the spread of SIICCs in the original
(unshuffled) spike trains may be nonstationarities in the spike
rate. Scrutiny of the samples with the most positive SIICCs re-
vealed obvious (monotonic or non-monotonic) changes in spike
rate over time, whereas this was not the case for samples with
negative SIICCs. To examine the issue systematically, we investi-
gated how SIICCs were affected when the ISIs of each spike train
were shuffled within contiguous, nonoverlapping time bins. For a
given spike train, the bins were chosen such that each contained
the same number of ISIs and thus the same proportion of the total
number of ISIs in the spike train. If positive serial correlations are
caused by long-term nonstationarities in rate (as opposed to, for

Figure 3. Positive SIICCs are due to nonstationary spike rates. The ISIs of each spike train
were divided into nonoverlapping groups of equal size and then shuffled within each group.
This was repeated for each spike train using all group sizes that fit into it an integer number of
times. SIICCs were calculated for 500 shuffles and averaged to yield mean values, which are
plotted as a function of the proportion of ISIs in each group. Each line connecting black dots
represents one spike train in which the original intervals (leftmost black dots) yielded an
SIICC �0.025, whereas gray dots represent the spike trains in which the original intervals
(leftmost gray dots) yielded an SIICC �0.025. Samples with SIICCs �0.025 converge to zero
after relatively localized shuffling, but samples with SIICCs �0.025 are only slightly affected
until the proportion of ISIs in each group becomes much larger. The fact that localized shuffling
removes negative but not positive serial correlations indicates that the latter are due to changes
in spike rate over longer timescales.
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example, localized bursting behavior),
then shuffling the ISIs locally within such
bins would remove only the negative se-
rial correlations, but leave the positive
correlations intact. For each of the 180
ANF spike trains with �500 ISIs, we first
removed the last few spikes (	9 spikes),
such that the remaining number of ISIs
was a multiple of 10; this was done to in-
crease, on average, the number of factors
that divide the total number of ISIs into
groups of equal integer size. ISIs within
each group were then shuffled. The mean
SIICCs calculated from 500 repetitions of
this procedure are shown in Figure 3 as a
function of the proportion of ISIs in each
group relative to the total number of ISIs
in the spike train. Each black line repre-
sents one spike train in which the original
(unshuffled) intervals yielded an SIICC
�0.025, as indicated by the leftmost dot.
The rightmost dot indicates the case in which all ISIs were shuf-
fled within a single group, and the dots in between represent the
intermediate group sizes. The samples in which the original in-
tervals yielded an SIICC �0.025 are shown as gray dots. Samples
with SIICCs �0.025 tend to converge to zero even when the
proportion of ISIs in each group is small (��0.02). In contrast,
samples with SIICCs �0.025 tend not to converge to zero until
the proportion of ISIs in each group is larger (��0.1). This
indicates that nonstationary spike rates are responsible for the
few clearly positive SIICCs that exist. However, due to the rela-
tively small number of such conditions, we neither excluded
them from further analyses nor attempted to incorporate nonsta-
tionarity into our modeling.

Spike-count variability
In the following sections, we examine the spike-count variability
of ANF spontaneous spike trains using the Fano factor. These
analyses are not restricted to spike trains with �500 ISIs, but
instead include trains with at least one spike (n � 446). Thus,
unlike the SIICC analysis, the spike trains here have a broad range
of spontaneous rates. For each of these spontaneous spike trains,
the Fano factor F (the ratio of the variance to the mean number of
spikes per window) was computed for a range of counting times
T (see Materials and Methods).

Large Fano factors at long counting times are likely due to
nonstationary spike rates
For short counting times, F(T) was nearly always �1, but for
counting times in excess of a few hundred milliseconds, F(T)
increased in most samples in a power-law fashion with increasing
T. A representative example is shown in Figure 4A. Such behavior
of F(T) has been described previously for ANFs (Lowen and
Teich, 1992) and for electrosensory afferents (Ratnam and Nel-
son, 2000). Chacron et al. (2001) and Avila-Akerberg and Cha-
cron (2011) have shown that the power-law-like increase of F(T)
at long counting times is likely a consequence of nonstationarities
in the data, because even subtle changes in the mean spike rate on
long timescales can lead to weak positive serial correlations that
extend out to higher-order intervals (long lags). This was also the
case in our data. Figure 4B shows, for the same 50 s sample as in
Figure 4A, the cumulative sum of the number of ISIs as a function
of time since the first spike. A linear fit of these data through the
origin is also shown (dashed line), as well as the differences be-

tween the fit and the data (residuals; gray curve, right ordinate).
The residuals are pronounced and systematic in that they are
positive for the initial 35 s and negative for the remaining time,
reflecting a gradual increase in the spike rate over time. The RMS
value of the residuals (�49 ISIs for this example) served as a
quantitative measure of nonstationarity.

Figure 4C shows the Fano factor obtained for a counting time of
5 s, F(T � 5 s), versus the RMS value of the residuals (filled symbols).
The analysis was restricted to samples with at least 100 spikes and
with durations of at least 35 s (n � 56), so that the computation of
F(T � 5 s) was always based on at least seven counting windows.
Figure 4C shows a correlation between the RMS values and F(T �
5 s). Shuffling the ISIs from these spike trains abolishes the nonsta-
tionarities (and the ISI correlations) and results in lower RMS and
F(T � 5 s) values (Fig. 4C, open symbols, each averaged from 1000
shuffles). Because we are not primarily interested in the effects of
slow changes in spike rate on Fano factors, we restrict further analy-
ses to counting times 	250 ms.

Fano factors at short counting times are determined by
refractoriness and spontaneous rate
Figure 5A shows, for all 446 samples with at least one spike, F(T)
as a function of counting times 	250 ms. For counting times
shorter than �1 ms, all F(T) are �1. For longer counting times,
the majority (91%) of F(T) are �1. The spike trains therefore
tend to be more regular than a homogeneous Poisson point pro-
cess, for which F(T) � 1. The spread of F(T) increases with
increasing T. To scrutinize the spread at a higher resolution, the
321 samples for which F(T) � 1 for all T 	 250 ms are shown in
Figure 5B in the form 1 � F(T) on a logarithmic axis. This mea-
sure can be thought of as the excess regularity of the spike train
compared with that of a homogeneous Poisson point process, for
which 1 � F(T) � 0. Figure 5B shows that, in all samples, 1 �
F(T) grows linearly with T (with a slope of 1 in the log-log plot)
up to counting times of �1 ms. In some samples, this linear
growth continues out to the longest value of T plotted, whereas in
others, the growth becomes compressive at longer values of T
before saturating. Samples with low values of 1 � F(T) at short
counting times tend to have linear growth out to much longer
counting times than samples with higher values of 1 � F(T) at
short counting times. The spread of 1 � F(T) at a given value of
T, i.e., the differences in the proportionality coefficient between
1 � F(T) and T, are related to differences in SR. This is illustrated

A B C

Figure 4. Large Fano factors at long counting times are due to nonstationary spike rates. A, Fano factor F(T ) plotted as a function
of counting time T for a representative 50 s sample of spontaneous activity (A7-U5-R2, 49.74 spikes/s). As T increases, F(T )
gradually decreases until T � 125 ms, after which F(T ) increases in a power-law-like fashion. This rapid increase disappears after
shuffling the ISIs (dashed line represents the geometric mean of 1000 shuffles). B, Cumulative sum of the number of ISIs versus time
since the first spike (black continuous line) for the same sample used in A, and a linear fit of these data through the origin (dashed line). The
differences between the linear fit and the data (residuals; gray line and right ordinate) emphasize the gradually increasing spike rate in this
sample. C, Fano factor for T�5 s, F(T�5 s), versus the RMS of these residuals, for all samples with�100 spikes and a duration of at least
35 s (black circles). Note the positive relationship. The measure is also shown after 1000 shuffles of the ISIs of each sample (open symbols
represent the geometric mean of F(T � 5 s) and the arithmetic mean of the RMS residuals).
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in Figure 5C, which shows, in double logarithmic coordinates,
1 � F(T) as a function of SR, for selected values of T. Again, for
short counting times (represented by T � 125/512 ms in Fig. 5C),
1 � F(T) grows linearly with SR, whereas for longer counting
times, values of 1 � F(T) from high-SR fibers fall below the trend
extrapolated from low-SR fibers.

The linear growth of 1 � F(T) with T and with SR can be
understood from the effects of refractoriness (Rajdl and Lansky,
2014). The definition of the Fano factor (Eq. 2) can be reformu-
lated to the following:

F
T� � �
i�1

N

ni
2��

i�1

N

ni � �
i�1

N

ni�NT,

where ni is the number of spikes in counting window i and NT the
total number of counting windows for a given T. When T is shorter
than the shortest ISI in the spike train, each counting window can
contain either no spike or one spike. Under this condition, it
follows that �i�1

N ni
2 � �i�1

N ni, so that F
T� � 1 � �ni	, where
�ni	 � �i�1

N ni/NT is the mean number of spikes per T. This
number increases linearly with T for a given SR and linearly with
SR for a given T. Hence, as long as each counting window con-
tains either no spike or one spike, 1 � F
T� � �ni	. In our data,
we find this to be true for �ni	 ��0.04 spikes per counting win-
dow (Fig. 5D). Because the shortest ISI in a spike train is bounded

by the absolute refractory period, that pe-
riod and the spike rate uniquely deter-
mine the Fano factor for short values of T.

Measures of nonrenewal characteristics
based on serial ISI correlations and spike-
count variability are related
Next, we explore the relationship between
two measures of the nonrenewal charac-
teristics of ANF spike trains: the (predom-
inantly negative) serial correlations of ISIs
and a measure derived from the Fano fac-
tor analysis. The latter measure is the dif-
ference in the values of F(T) derived from
the original spike trains and those from
the same spike trains after the ISIs were
shuffled. For a renewal process, both mea-
sures of nonrenewal should equal zero on
average. A negative Fano factor difference
means that the original spike train is more
regular than the spike train with shuffled
ISIs. It also represents an increase in the
variance of the number of spikes per
counting time after shuffling the ISIs, be-
cause the mean number of spikes per
counting time is not affected by the shuf-
fling. In other words, the PNDs from the
original spike trains are narrower than
those from the trains with shuffled ISIs.
Figure 6 shows scatterplots of the Fano
factor difference and the SIICC for all 180
samples with �500 ISIs and for selected
counting times. As expected, the slope of
the relationship between Fano factor dif-
ference and SIICC increases with the
counting time T. The most negative Fano
factor differences tend to be obtained
from the spike trains also characterized by
the most negative SIICCs, those with high
SRs (Fig. 2D).

Evaluation of the constrained-failure model
The ISI distributions of cat-ANF spontaneous spike trains have
previously been described as resulting from refractoriness oper-
ating on trains of excitatory events with IEIs whose distribution is
a mixture of a gamma distribution with shape factor 2 and an
exponential distribution (a gamma distribution with shape factor
1), with a common rate factor (Heil et al., 2007). In the following
sections, we explore whether processes that could generate such a
“gamma-mixture” distribution provide a parsimonious explana-
tion for the nonrenewal properties of ANF spike trains described
above.

A gamma-mixture distribution of IEIs can be generated from
a homogeneous Poisson point process generating “primary”
events (Fig. 7A, filled circles in top row). The primary events can
give rise to “secondary” events (Fig. 7A, squares, asterisks, and
open circles) that, for the present purpose, can be conceived of as
excitatory (release) events (each of which triggers a spike in the
ANF unless the ANF is refractory). However, some of the primary
events may fail to become secondary events. A single failure of a
primary event results in an interval between secondary events, a
secondary IEI, whose duration corresponds to the sum of two
successive intervals from the exponential distribution of primary

A C

B D

Figure 5. Fano factors for short counting times are determined by refractoriness and spontaneous rate. A, Fano factors F(T ) for
all ANF spike trains with at least one spike (n �446) computed for values of T �500/(2n) ms, where n represents the integers from
1 to 12. Data from a given sample are connected. B, Plot of 1 � F(T ) as a function of T for those 321 samples for which F(T ) �1 at
all T 	 250 ms. Note the linear increase for short T. C, Plot of 1 � F(T ) as a function of SR for all samples and for four selected
counting times. Note the linear increase of 1 � F(T ) with SR for short T and for low SR for all T. D, Plot of 1 � F(T ) as a function of
the mean number of spikes per counting window. Note the equality up to �0.04 spikes/T.

Peterson et al. • Nonrenewal Properties of Auditory-Nerve Fibers J. Neurosci., November 5, 2014 • 34(45):15097–15109 • 15103



IEIs. The resulting secondary IEI will therefore be an interval
from a gamma-2 distribution, with the same rate as the original
exponential distribution. As the proportion of failures increases,
the proportion of gamma-2 intervals between the secondary
events in the gamma-mixture distribution increases and the pro-
portion of gamma-1 intervals decreases. If every second primary
event failed, the resulting distribution of secondary IEIs would be
a pure gamma-2 distribution. To generate a gamma-mixture dis-
tribution of secondary IEIs, failures must not occur entirely at
random, otherwise the resulting distribution of secondary IEIs
would still be exponential, but with a lower rate. Specifically, the
model has the constraint that two or more failures must not occur
in direct succession (never-two-in-a-row rule; Heil et al., 2007).

Despite this rule, there are several ways in which failures could
occur to yield a given gamma-mixture distribution of secondary
IEIs. Three scenarios are illustrated in Figure 7A, using a failure

probability of 1/3. This failure probability results in fractions of
gamma-2 and gamma-1 intervals of 1/2 each, close to the frac-
tions estimated from the ISI distributions of ANF spike trains
(Heil et al., 2007). In the “regular” scenario, every third primary
event fails to become a secondary event. In the “irregular” scenario,
failures occur irregularly but without violating the never-two-in-a-
row rule. In the “block” scenario, every second primary event fails
during (the initial) two-thirds of the total time, whereas no events fail
during the remaining one-third of the time.

The constrained-failure scenarios cause serial interevent
interval correlations
Figure 7B shows the SIICCs for the secondary IEIs resulting from
these scenarios for a range of failure probabilities. Each point
represents the mean SIICC obtained from 400 simulated repeti-
tions, each with �20,000 secondary IEIs. For a failure probability
of 1/2, where every second primary event fails and the distribu-
tion of the secondary IEIs is a pure gamma-2 distribution, the
mean SIICC is zero for all scenarios, as expected. For the other failure
probabilities, however, serial correlations emerge from all scenarios.
The regular and the irregular scenarios result in negative mean
SIICCs and the block scenario in positive mean SIICCs. For all fail-
ure probabilities �1/2, the magnitudes of the mean SIICCs for the
irregular scenario are smaller than those for the regular scenario. The
most negative mean SIICC (�0.143) is obtained from the regular
scenario when every third primary event fails.

To examine the effects that refractoriness might have on the
serial correlations in such event trains, we simulated trains of
secondary events according to each of the three failure scenarios
and applied refractoriness, as described in Materials and Meth-
ods, to obtain simulated spike trains. Primary event rates were
chosen such that the resulting spike rates had means of �50 and
100 spikes/s. The mean SIICCs obtained from these simulations
are also plotted in Figure 7B (thin and thick gray lines). The
simulations show that refractoriness, as implemented here, gen-
erally reduces the magnitude of the SIICCs. The magnitude of the
reduction depends on the failure scenario, the failure probability,
and the mean spike rate. The reduction becomes more pro-
nounced as the spike rate increases and is largest for the regular
scenario with a failure probability of 1/3. The mean SIICC does
not change when the failure probability is zero, so refractoriness
per se does not introduce serial correlations.

The constrained-failure scenarios do not provide a parsimonious
explanation for the dependence of serial correlations in auditory-
nerve fiber spike trains on mean interspike interval
The block scenario does not account for the cat data, because the
mean SIICC and the associated SD obtained from the 180 cat-
ANF spike trains with �500 ISIs (Fig. 7B, filled triangle and error
bars) falls largely between the SIICCs obtained from simulations
of the regular and irregular scenarios. To address whether the
latter scenarios can account for the dependence of the SIICC on
the mean ISI in the cat data (cf. Fig. 2D), a set of 180 event trains
was generated with each scenario, with a failure probability of
1/3, and subjected to refractoriness. The simulated spike trains
approximately matched the ANF spike trains with respect to
numbers and means of ISIs. Figure 7, C and D, show the resulting
SIICCs as a function of mean ISI. SIICCs from the regular sce-
nario (Fig. 7C) are all negative, but, unlike those from the cat data
(Fig. 2D), do not increase as mean ISI increases. Rather, the
SIICCs tend to become more negative as mean ISI increases, a
trend expected from the spike-rate-dependent effect of refracto-
riness on SIICC magnitude (Fig. 7B). SIICCs from the irregular
scenario cluster near zero with a slight tendency to be negative

Figure 6. Serial ISI correlations and spike-count characteristics used to measure nonrenewal
properties of ANF spike trains are related. The panels show, for each of 180 samples with �500
ISIs and for selected counting times, the difference in F(T ) between the original spike train and
that with shuffled ISIs as a function of the SIICC from the original spike train. Note that the two
measures of nonrenewal characteristics are positively correlated and that the slope of the rela-
tionship increases with increasing counting time T.

A C

B

D

Figure 7. Constrained failures of events from a homogeneous Poisson point process yield
serial interevent interval correlations. A, Three scenarios in which the failure of primary events
from a homogeneous Poisson point process (primary; filled circles) can lead to a gamma mixture
of intervals between secondary events (squares, asterisks, and open circles). See description in
text. B, SIICCs resulting from the different scenarios applied to simulated event times, plotted as
a function of failure probability. The SIICCs after refractoriness are also shown for two simulated
spike rates (50 and 100 spikes/s). The mean (filled triangle) and SD (error bars) of the SIICCs
obtained from 180 cat-ANF spontaneous spike trains with �500 ISIs (cf. Fig. 2C) are also shown
and plotted at the failure probability estimated from the ISI distributions (Heil et al., 2007). C, D,
SIICCs of 180 simulated spike trains, with numbers of spikes and mean ISIs approximately
matching those of the cat-ANF spike trains, generated according to the “regular” scenario (C)
and the “irregular” scenario (D), both with a failure probability of 1/3. Note that neither scenario
reproduces the dependence of SIICCs on the mean ISI in the cat data (cf. Fig. 2D).
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(Fig. 7D) and show no obvious dependence on mean ISI, as ex-
pected (cf. Fig. 7B). Thus, to account for the increase in the SIICC
with mean ISI in the cat data (Fig. 2D), one could assume that as the
mean ISI increases, the failure scenario gradually changes from reg-
ular to irregular or the spike trains are increasingly affected by non-
stationarities. A third possibility is that the failure probability
decreases as mean ISI increases. Although ISI distributions from
cat-ANF spike trains were found to be consistent with a constant
failure probability (Heil et al., 2007), the probability could not be
determined with high confidence in individual spike trains, so a
dependence on mean ISI cannot be ruled out. In any case, none of
these failure scenarios provides a parsimonious explanation for the
dependence of the SIICC on the mean ISI as observed in the cat data.

Similarly, neither scenario provided a parsimonious account
of the dependence of the Fano factor on mean ISI (i.e., spontane-
ous rate; data not shown). In the following, we therefore explore
whether another model, termed the depletion–replenishment
model, can do so. Such a model has been shown to produce
negative SIICCs whose magnitudes decrease as mean ISIs in-
crease (Goldman et al., 2002).

Reproducing cat-ANF spike-train statistics with the
depletion–replenishment model
The depletion–replenishment model provides a parsimonious
explanation for the dependence of serial correlations in auditory-
nerve fiber spike trains on mean interspike interval
The set of 180 cat-ANF spike trains with �500 ISIs was simulated
20 times for each of the 150 preliminary pairs of replenishment
time constant �repl and maximum pool size nmax derived using the
procedure described in Materials and Methods. By selecting the
appropriate depletion probability pdepl separately for each spike
train (see Materials and Methods), simulated spike trains had
the same mean ISIs (and durations) as the corresponding ANF
spike trains. The goal in this section is to determine which pair(s)
of �repl and nmax can best reproduce the relevant statistics for the
complete dataset. Each set of simulated spike trains is therefore
evaluated on the basis of how well it reproduces the SIICCs from
the data.

The SIICCs from one set of simulations with �repl � 13.7 ms
and nmax � 4.0 are plotted in Figure 8A as a function of mean ISI

(black dots). For comparison, the SIICCs
from the cat data are replotted from Fig-
ure 2D (gray dots). The model clearly re-
produces the trend in the data; only the
positive SIICCs of some ANF spike trains,
which are likely due to nonstationarities
in the spike rate (cf. Fig. 3), are not repro-
duced by the simulations. The effect of
nonstationarity is also reflected in the dif-
ferences in the cumulative probabilities of
the SIICCs derived from this set of simu-
lations and the cat spike trains (Fig. 8B; cat
data replotted from Fig. 2C). The two dis-
tributions are close together at more neg-
ative SIICCs (��0.05), but diverge
somewhat at less negative and at positive
SIICCs. Nevertheless, a Kolmogorov–
Smirnov test provided no reason to reject
the null hypothesis that the two sets of
values are drawn from the same continu-
ous distribution (D � 0.088; p � 0.46).
The other 19 sets of simulations for this
pair of �repl and nmax provided similar
results.

Next, we examine how well the SIICCs are reproduced across
all 150 pairs of �repl and nmax tested. Figure 8C shows the propor-
tion of times the null hypothesis of equal distributions of SIICCs
from the simulated and cat spike trains had to be rejected (aver-
aged across the 20 sets of simulations and smoothed by a moving
average over 21 points). This function reveals a global minimum
at a �repl of �13.3 ms (Fig. 8C, lower abscissa) and a correspond-
ing nmax of �3.9 (Fig. 8C, upper abscissa). With a criterion for a
rejection fraction of 0.05, the ranges for �repl and nmax capable of
reproducing the SIICCs from the cat data are 10.8 –17.2 ms and
3.2– 4.9, respectively.

For comparative purposes, the same analysis was performed
for 20 simulated datasets using the constrained-failure model
(regular failure scenario with a failure probability of 1/3); the null
hypothesis was rejected all 20 times (i.e., the proportion rejected
equals 1), so the constrained-failure model does not account for
the observed distribution of SIICCs.

The depletion–replenishment model also accounts for the
distributions of ISIs from auditory-nerve fiber spike trains
Although the depletion–replenishment model can account for
the serial ISI correlations and their dependence on mean ISI, it
should also account for the ISI distributions from the cat-ANF
spontaneous spike trains. These ISI distributions provide a sepa-
rate view of the data, and therefore a separate opportunity to
estimate the optimal pair(s) of �repl and nmax for the depletion–
replenishment model. The SIICC values assessed in the previous
section neither determine nor follow trivially from the ISI distri-
butions, so it is not necessarily the case that the same parameter
pair would best describe both; the intervals from an ISI distribu-
tion could be arranged so as to yield an arbitrary SIICC value. In
this section, each preliminary parameter pair is evaluated on the
basis of how well it reproduces the mean ISI distribution from the
data. First, we computed the probability density function (PDF)
of each ANF spike train with �500 ISIs (using a bin width of 0.05
ms) and of its counterpart from the simulations, and computed
the difference between the two PDFs in each bin. Figure 9A shows
these differences as a function of ISI (gray dots) for the same set of
simulations as used for Figure 8A and B (i.e., �repl � 13.7 ms and

A B C

Figure 8. The depletion–replenishment model provides a parsimonious account of the serial ISI correlations in cat-ANF spike
trains and their dependence on mean ISI. A, Plot of the SIICCs from 180 cat-ANF spontaneous spike trains with �500 ISIs as a
function of mean ISI (gray dots; replotted from Fig. 2D) and from 180 simulated spike trains (black dots). Simulated spike trains
were generated by the depletion–replenishment model (using �repl � 13.7 ms and nmax � 4.0) followed by refractoriness (tD �
0.6 ms and tR � 0.6 ms), with pdepl and train duration varied to match the cat-ANF spike trains with respect to numbers of spikes
and mean ISIs. B, Cumulative probability of the SIICCs from these 180 cat-ANF spike trains (gray; replotted from Fig. 2C) and from
the simulations (black). A Kolmogorov–Smirnov test provided no reason to reject the null hypothesis of equal distributions. C, Plot
of the proportion of times the null hypothesis of equal distributions of SIICCs from the cat and the simulated spike trains had to be
rejected as a function of the combinations of �repl (lower abscissa) and nmax (upper abscissa) used in the simulations. The propor-
tions shown are the means across 20 sets of simulations and after smoothing by a moving average over 21 points. Note the global
minimum near �repl � 13.3 ms and nmax � 3.9 (vertical dashed line).
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nmax � 4.0). The mean difference in each
bin is also shown (black). The mean dif-
ference scatters unsystematically around
zero and its magnitude is small (	0.001 in
all bins). This correspondence is further
illustrated in Figure 9B, which shows the
mean PDF from the cat data (gray), com-
puted by averaging the probabilities
across the 180 spike trains with �500 ISIs,
and the mean PDF from the correspond-
ing simulations (black). The two mean
PDFs are in close agreement. This demon-
strates that the depletion–replenishment
model can also reproduce the ISI distribu-
tions of ANF spontaneous spike trains.
The other 19 sets of simulations for this
parameter pair provided similar results.

As with the SIICCs above, we exam-
ined how well the PDFs from the cat data
and the simulations agree across all 150
pairs of �repl and nmax tested. The same 20
sets of simulated spike trains per parame-
ter pair were used as for the analysis of the
SIICC distributions. Figure 9C shows the root mean square dif-
ferences between the PDFs from the cat spike trains and the cor-
responding simulated spike trains (averaged across the 20 sets of
simulations, normalized to the minimum, and smoothed by a
moving average over 21 points) as a function of �repl (lower ab-
scissa) and nmax (upper abscissa). This function reveals a global
minimum at a �repl of �13.6 ms and a corresponding nmax of
�4.0, very close to the numbers obtained from the SIICC analy-
ses (cf. Fig. 8C). With a criterion for a normalized root mean
square difference of 1.025, the ranges for �repl and nmax capable of
reproducing the ISI distributions from the cat data are 10.7–19.4
ms and 3.2–5.3, respectively.

For comparative purposes, the same analysis was performed
for 20 simulated datasets using the constrained-failure model
(regular failure scenario with a failure probability of 1/3); the
normalized root mean square difference was 1.03. Thus, although
the constrained-failure model does not account for the depen-
dence of SIICCs from the cat data on mean ISI (and is therefore
not preferred), it does reproduce the ISI distributions well (Heil
et al., 2007), almost as well as the depletion–replenishment
model.

Fano factors from auditory-nerve fiber spike trains are consistent
with the depletion–replenishment model
Finally, we examine whether the depletion–replenishment model
also accounts for the Fano factors. For this purpose, we generated
446 spike trains with the depletion–replenishment model to ap-
proximately match the cat-ANF spike trains with respect to mean
ISI and spike numbers. Parameters were fixed to �repl � 13.4 ms
and nmax � 4.0 to approximate the best values estimated above.
Figure 10A summarizes the cat data (446 spike trains) by showing
the geometric means of F(T) from each of three sample groups:
the one-third of the samples with the lowest SRs, the one-third
of the samples with the highest SRs, and the one-third of the
samples with SRs in between. The geometric means of F(T) are
also plotted for the same sample groups after shuffling the ISIs
within each spike train to remove the serial correlations (dashed
lines). For very short counting times, shuffling has no effect on
F(T), due to the deterministic effect of refractoriness. As the
counting time increases, the difference in F(T) between the orig-

A B

C D

Figure 10. The depletion–replenishment model provides a parsimonious account of the
Fano factors from ANF spike trains. A, Geometric mean of F(T ) from each of three ANF sample
groups (symbols): the one-third of the samples with the lowest SRs, the one-third of the sam-
ples with the highest SRs, and the one-third of the samples with SRs in between. The geometric
mean of F(T ) is also plotted for the same sample groups after shuffling the ISIs to remove the
serial correlations (dashed lines). B, Geometric means of F(T ) obtained from simulations. Sim-
ulated spike trains (n � 446) were generated by the depletion–replenishment model (using
�repl �13.4 ms and nmax �4.0) followed by refractoriness (tD �0.6 ms and tR �0.6 ms), with
pdepl and train duration varied to match the cat-ANF spike trains with respect to numbers of
spikes and mean ISIs. The geometric means of F(T ) are also plotted for the same simulated
sample groups after shuffling the ISIs to remove the serial correlations (dashed lines). Legend in
A also applies to B. C, D, Plots of the geometric means of F(T ) from the simulations in B against
those from the cat data in A, from the original spike trains (C), and after shuffling the ISIs (D).
The legend in C also applies to D. The continuous gray line represents the diagonal. Note the
tight correlations.

A B C

Figure 9. The depletion–replenishment model provides a parsimonious account of the ISI distributions of cat-ANF spike trains.
A, Plot of the differences of the PDFs (0.05 ms time steps) of ISIs computed from 180 cat-ANF spontaneous spike trains with �500
ISIs and from 180 simulated spike trains as a function of ISI (gray dots). The mean difference is also shown (black). Simulated spike
trains were generated by the depletion–replenishment model (using �repl � 13.7 ms and nmax � 4.0) followed by refractoriness
(tD � 0.6 ms and tR � 0.6 ms), with pdepl and train duration varied to match the cat-ANF spike trains with respect to numbers of
spikes and mean ISIs. B, Mean PDFs from these 180 cat-ANF spike trains (gray) and from the simulations (black). C, Plot of the root
mean square differences (RMSD) between the PDFs from the 180 cat-ANF spike trains with �500 ISIs and those from the
simulations as a function of the combinations of �repl (lower abscissa) and nmax (upper abscissa) used in the simulations. The RMSDs
are averaged across 20 sets of simulations, normalized to the minimum, and smoothed by a moving average over 21 points. Note
the global minimum near �repl � 13.6 ms and nmax � 4.0 (vertical dashed line).
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inal spike trains and those with shuffled ISIs initially increases.
Generally, the values of F(T) from the original spike trains are
lower than those from the trains with shuffled ISIs. This differ-
ence is most pronounced for the sample group with the highest
SRs and least pronounced for the sample group with the lowest
SRs. As the counting time increases further, the differences be-
come smaller and then reverse sign, presumably due to nonsta-
tionary spike rates (cf. Fig. 3).

The 446 simulated spike trains were likewise grouped and
averaged. The results are shown in Figure 10B. Apart from the
trends in the data at larger counting times, attributable to non-
stationary spike rates (see above), the mean F(T) behaves simi-
larly to that from the cat data, for all three sample groups, and
both before and after shuffling the ISIs (cf. Figs. 10A,B). The
close match of the Fano factors from the cat data and the model
simulation is emphasized in Figure 10C, which shows the geo-
metric mean of the Fano factors (for all counting times 	250 ms)
from the original spike trains in the cat data plotted against the
corresponding values from the simulation. Figure 10D shows the
result after shuffling the ISIs.

Discussion
We analyzed nonrenewal properties of cat ANFs during sponta-
neous activity and first examined whether a previously suggested
excitatory process, constrained failures of events from a homo-
geneous Poisson point process (Heil et al., 2007), can account for
them. While such failure scenarios can produce negative SIICCs
and Fano factors of the magnitudes observed, they do not
straightforwardly account for certain trends in the data. We
therefore examined another parsimonious, physiologically more
plausible, three-parameter model of vesicle-pool depletion and
replenishment. We show that, combined with refractoriness, it
accounts not only for the nonrenewal properties of cat-ANF
spontaneous spike trains on short timescales but also for the
dependence of SIICCs and Fano factors on mean rate and for the
ISI distributions, with only release probability varying between
spike trains.

Comparison with the literature
Several previous studies have addressed nonrenewal properties of
ANF spike trains, particularly over long timescales (Teich, 1989;
Teich et al., 1990; Lowen and Teich, 1991, 1992; Jackson and
Carney, 2005). Nonrenewal properties over shorter timescales
have attracted less attention (Kiang et al., 1965; Lowen and Teich,
1992). Kiang et al. (1965) regarded successive ISIs from cat-ANF
spontaneous spike trains as independent, based on visual inspec-
tions of plots of each ISI against that which precedes it (also called
ISI return maps; Chacron et al. (2000)). They did not compute
slopes of best-fit lines, which would have yielded the SIICCs
(Wang, 1998). Lowen and Teich (1992) computed SIICCs for 10
long (�60 – 620 s) samples of spontaneous activity from different
ANFs in the cat. Based on a statistical test and simulated spike
trains with exponentially distributed ISIs, Lowen and Teich
(1992) suggested significant negative SIICCs in four samples, but
significant positive correlations in three, and no significant
correlations in the remaining three. SIICCs ranged from approx-
imately�0.045 to 0.094, with a median of 0.013 and interquartile
range from �0.038 to 0.087. Their distribution is shifted toward
more positive values than our data, which have predominantly
negative serial ISI correlations (cf. Fig. 2C). Our analyses (Fig. 3)
and simulations (Fig. 7, block scenario) show that positive
SIICCs can emerge from nonstationary spike rates. We therefore
hypothesize that the more positive SIICCs in the spike trains

analyzed by Lowen and Teich (1992) resulted from nonstationary
spike rates in the course of the long measurements, and that
nonstationarity obscures the negative serial correlations present
on shorter timescales.

The functions relating the Fano factor to counting time (Figs.
4A, 5A) generally agree with the only example from ANFs in the
literature (Lowen and Teich, 1992; their Figs. 2 and 3) including
the effects on F(T) of shuffling the ISIs. We have shown addition-
ally that the power-law-like increase in F(T) with T at long count-
ing times is likely due to nonstationary spike rates (Fig. 4), that
the shape of the F(T) function depends on SR, and that ANF
refractoriness and SR determine F(T) for short counting times
(Fig. 5).

Origin of negative serial ISI correlations
Avila-Akerberg and Chacron (2011) summarize current hypoth-
eses and models of how negative serial correlations may be pro-
duced. Generally, the mechanisms must prevent or delay the
onset of a spike when the preceding ISI was short. Neuron-
intrinsic and network mechanisms have been proposed. For ex-
ample, Chacron et al. (2000, 2001) assume in their models that
the voltage threshold for a spike is dynamic and carries memory.
A spike is generated when the voltage equals the threshold. While
the voltage is reset to its baseline value after each spike, the thresh-
old is incremented by some constant amount, maintained at this
value for the duration of the absolute refractory period, and then
relaxed exponentially toward its equilibrium value until the next
spike occurs. These properties result in cumulative refractory
effects that produce negative serial ISI correlations. Geisler and
Goldberg (1966) proposed a related model, in which the memory
is carried in the membrane potential following a spike, rather than in
the threshold. Specifically, to account for negative SIICCs, the
model requires post-spike hyperpolarizations whose amplitude
depends inversely on the previous ISI. Delayed inhibitory feed-
back may also produce nonrenewal properties of spike trains
(Doiron et al., 2003).

We show here that the nonrenewal properties of the ANF
spike trains could arise from a presynaptic process involving the
depletion and replenishment of a pool of readily releasable vesi-
cles. Our model is based on that proposed by Goldman et al.
(2002) to account for serial ISI correlations of central neurons
receiving input from spiking neurons. It assumes that each re-
lease event from the IHC triggers a spike unless the release event
falls into the ANF refractory period following the previous spike.
There is good evidence for this assumption (Siegel, 1992; Ruth-
erford et al., 2012). Multivesicular release at the ribbon synapse
(Glowatzki and Fuchs, 2002; Grant et al., 2010; Graydon et al.,
2011; Kim et al., 2013) may ensure that each EPSP is large and fast
enough to trigger a spike unless the ANF is refractory. When
combined with physiologically plausible refractory periods (see
references in Introduction), our model requires only a rate pa-
rameter pdepl to vary between spike trains. The maximum size of
the readily releasable pool nmax and the replenishment time
constant �repl can be assumed to be constant. This leads to the
prediction that, on average, the number of units in the readily
releasable pool is smaller at synapses driving high-SR fibers than
at those driving low-SR fibers, just as has been observed (Kan-
tardzhieva et al., 2013). With these parsimonious assumptions,
the model not only accounts for the nonrenewal properties of
ANF spike trains on shorter timescales, but also for their depen-
dence on the mean ISI, as well as for the ISI distributions. In the
mammalian inner ear, each ANF is driven by a single ribbon
synapse, but each IHC is likely contacted by ANFs of different SRs
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(Liberman et al., 1990; Moser et al., 2006; Wu et al., 2014). This
unique arrangement suggests that the differences in pdepl likely
originate from differences in release probability at individual rib-
bons. If the IHC is isopotential, such differences could arise, for
example, from differences in the number or spatial arrangement
of the voltage-gated Ca 2� channels required for exocytosis, as
discussed elsewhere (Heil and Neubauer, 2001, 2010; Frank et al.,
2009; Heil et al., 2011). The value of nmax was estimated here to be
�4. If each release event comprises the coordinated simultaneous
release of �8 vesicles (Grant et al., 2010), the readily releasable
pool would consist of �32 vesicles, within the range estimated by
other methods (Lenzi et al., 1999, 2002; Khimich et al., 2005;
Nouvian et al., 2006; Kantardzhieva et al., 2013; Wong et al.,
2014). With the further assumption that �repl does not change
during acoustic stimulation, the estimate of �13.5 ms would
support a maximum release rate of 256 s�1 if units are released
the moment they are replenished. This rate is high enough to
account for the maximum sustained spike rates observed in these
ANFs (Heil et al., 2011). Of course, we cannot exclude variation
in nmax or �repl between synapses or according to release history,
but such assumptions are not needed to explain the data.

We also cannot exclude other mechanisms (e.g., those dis-
cussed above) contributing to the spiking properties analyzed
here. Comparison of the statistics of EPSP intervals with those of
ISIs may help identify possible contributions by spiking-related
mechanisms.

Functional significance of the nonrenewal properties of ANF
spike trains
As shown repeatedly (Ratnam and Nelson, 2000; Chacron et al.,
2001; Avila-Akerberg and Chacron, 2011), the narrow spike-
count distributions (PNDs) that result from negative serial ISI
correlations have implications for information transmission and
stimulus detection, at least in the ideal-observer framework of
signal detection theory (Green and Swets, 1966). The theory as-
sumes Gaussian-like distributions of an internal variable in the
absence (“noise”) and presence (“signal plus noise”) of a stimu-
lus, which differ in mean (and possibly variance). The d
 measure
for discriminability of a signal from noise (i.e., for detection) is
defined as the ratio of the absolute difference of the means of the
two distributions divided by the square root of their summed
variances. If a weak stimulus gives rise to some extra spikes, the d

measure will therefore increase more when the variances of the
two distributions are narrower. The negative serial ISI correla-
tions and reduced Fano factors in the spontaneous spike trains of
ANFs (relative to those after shuffling the ISIs) are thus beneficial
for the detection of weak signals. It is noteworthy that the
high-SR fibers, which have the lowest rate thresholds (Winter et
al., 1990; Yates, 1991; Taberner and Liberman, 2005) and there-
fore have been seen as responsible for weak signal detection, are
also those with the most negative SIICCs.

Conclusion
The ISI distributions, the negative serial ISI correlations and the
spike-count variability, and their dependencies on mean ISI (or
spike rate), as observed in spontaneous activity of cat primary
auditory afferents, are all consistent with a physiologically plau-
sible, parsimonious model assuming vesicle-pool depletion and
replenishment. Only the release probability must be assumed to
vary, whereas the maximum pool size and the mean time re-
quired for replenishment of a released unit can be constant. We
suggest that the organization of the IHC ribbon synapse not only

enables indefatigable neurotransmitter release, but also imposes
regularity on the release process, particularly at high rates.
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