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Learning To Minimize Efforts versus Maximizing Rewards:
Computational Principles and Neural Correlates
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The mechanisms of reward maximization have been extensively studied at both the computational and neural levels. By contrast, little is
known about how the brain learns to choose the options that minimize action cost. In principle, the brain could have evolved a general
mechanism that applies the same learning rule to the different dimensions of choice options. To test this hypothesis, we scanned healthy
human volunteers while they performed a probabilistic instrumental learning task that varied in both the physical effort and the
monetary outcome associated with choice options. Behavioral data showed that the same computational rule, using prediction errors to
update expectations, could account for both reward maximization and effort minimization. However, these learning-related variables
were encoded in partially dissociable brain areas. In line with previous findings, the ventromedial prefrontal cortex was found to
positively represent expected and actual rewards, regardless of effort. A separate network, encompassing the anterior insula, the dorsal
anterior cingulate, and the posterior parietal cortex, correlated positively with expected and actual efforts. These findings suggest that the
same computational rule is applied by distinct brain systems, depending on the choice dimension— cost or benefit—that has to be
learned.
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Introduction
Learning how to maximize rewards is one of the crucial abilities
for the survival of species. Reinforcement learning (RL) models
provide a reasonable computational account for reward maximi-
zation (i.e., the adaptation of behavioral choices across trials,
based on past outcomes; Sutton and Barto, 1998; Dayan and
Balleine, 2002). In basic RL models, learning is implemented by a
delta rule (Rescorla and Wagner, 1972) that adjusts the expected
value of the chosen option proportionally to prediction error
(actual minus expected reward).

Neural signals of expected reward values and prediction errors
were repeatedly found in the ventral corticostriatal circuit
(O’Doherty et al., 2001; Pagnoni et al., 2002; Galvan et al., 2005;
Hare et al., 2008; Rutledge et al., 2010), primarily in the ventro-
medial prefrontal cortex (vmPFC) and ventral striatum. The
same delta rule can be applied to learning aversive values that

drive avoidance behavior. Several studies have found evidence for
a punishment system that signals aversive expected values and
prediction errors, and which includes the anterior insula (AI) and
dorsal anterior cingulate cortex (dACC; Büchel et al., 1998;
Nitschke et al., 2006; Seymour et al., 2007; Samanez-Larkin et al.,
2008; Palminteri et al., 2012).

While the neural signals involved in learning appetitive and
aversive state values have been extensively studied, little is known
about how the brain learns about costs such as the effort required
to obtain a reward or the delay in reward delivery. These costs
must be integrated to calculate the net value of each alternative
and make a sound decision (Bautista et al., 2001; Walton et al.,
2006; Berns et al., 2007; Kalenscher and Pennartz, 2008). In non-
learning contexts, previous evidence has shown that reward re-
gions such as vmPFC integrate the negative value of delay, but the
encoding of the effort cost has been more consistently observed in
“aversive regions,” such as AI and dACC (Rudebeck et al., 2006;
Kable and Glimcher, 2007; Prévost et al., 2010; Kurniawan et al.,
2013; Meyniel et al., 2013).

These observations suggest that the effort cost might be pro-
cessed by the brain in a particular way, perhaps because it is
attached to actions and not to states. The question therefore arises
of whether effort cost is learned through the same mechanisms as
state values. Here, we monitored brain activity using fMRI while
healthy participants performed an instrumental learning task in
which choice options were probabilistically associated with vari-
ous levels of effort and reward. Options were always left versus
right button press, and contingencies were cued by an abstract
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symbol. All options were associated with a physical effort (high or
low) leading to a monetary reward (big or small). Depending on
the cue, left and right options differed either in the probability of
high effort or in the probability of big reward. This design allowed
us to compare the mechanisms driving reward maximization and
effort minimization, at both the computational and neural levels.

Materials and Methods
Subjects. The study was approved by the Pitié-Salpêtrière Hospital ethics
committee. Participants were screened out for poor vision, left-
handedness, age �18 and �39 years, history of psychiatric and neuro-
logical disorders, use of psychoactive drugs or medications, and
contradictions to MRI scanning (metallic implants, claustrophobia,
pregnancy). Twenty subjects (11 females; mean age, 24.0 � 2.8 years)
gave their written informed consent for participation in the study. To
maintain their interest in the task, subjects were told that they would
receive an amount of money corresponding to their performance. In fact,
to avoid discrimination, payoff was rounded up to a fixed amount of
100€ for all participants, who were informed about it at the debriefing.

Behavioral data. Subjects lay in the scanner holding in each hand a
power grip made of two molded plastic cylinders compressing an air
tube, which was connected to a transducer that converted air pressure
into voltage. Isometric compression resulted in a differential voltage sig-
nal that was linearly proportional to the exerted force. The signal was
transferred to a computer via a signal conditioner (CED 1401, Cam-
bridge Electronic Design) and was read by a script using a library of
Matlab functions named Cogent 2000 (Wellcome Trust for Neuroimag-
ing, London, UK). Real-time feedback on the force produced was pro-
vided to subjects in the form of a mercury level moving up and down
within a thermometer drawn on the computer screen. To measure max-
imal force, subjects were asked to squeeze the grip as hard as they could
during a 15 s period. Maximal force (fmax) was computed as the average
over the data points above the median, separately for each hand. The
forces produced during the task were normalized by the maximal force of
the squeezing hand, such that the top of the thermometer was scaled to
fmax on both sides.

Before scanning, subjects received instructions about the task and
completed a practice session. It was a probabilistic instrumental learning
task with binary choices (left or right) and the following four possible
outcomes: two reward levels (20 or 10¢) times two effort levels (80% and
20% of fmax). Reward and effort magnitudes were calibrated in pilot
studies such that the average performance for the two dimensions was
matched across subjects.

Every choice option was paired with both a monetary reward and a
physical effort. Subjects were encouraged to accumulate as much money
as possible and to avoid making unnecessary effort. Every trial started
with a fixation cross followed by an abstract symbol (a letter from the
Agathodaimon font) displayed at the center of the screen (Fig. 1A). When
interrogation dots appeared on the screen, subjects had to make a choice
between left and right options by slightly squeezing either the left or the
right power grip. Once a choice was made, subjects were informed about
the outcome (i.e., the reward and effort levels, materialized respectively
as a coin image and a visual target; horizontal bar on the thermometer).
Next a command, “GO!,” appeared on screen, and the bulb of the ther-
mometer turned blue, triggering effort exertion. Subjects were required
to squeeze the grip until the mercury level reached the target. At this
moment, the current reward was displayed with Arabic digits and added
to the cumulative total payoff. The two behavioral responses (choice and
force) were self-paced. Thus, participants needed to produce the re-
quired force to proceed further, which they managed to achieve on every
trial. Random time intervals (jitters), drawn from a uniform distribution
between 1000 and 3000 ms, were added to cue and outcome presenta-
tions to ensure better sampling of the hemodynamic response.

Subjects were given no explicit information about the stationary prob-
abilistic contingencies that were associated with left and right options,
which they had to learn by trial and error. The contingencies were varied
across contextual cues, such that reward and effort learning were separa-
ble, as follows: for each cue the left and right, options differed either in the

associated reward or in the associated effort (Fig. 1B). For RL cues, the
two options had distinct probabilities of delivering 20 versus 10¢ (75% vs
25% and 25% vs 75%), while probabilities of having to produce 80%
versus 20% of fmax were identical (either 100% vs 100% or 0% vs 0%).
Symmetrical contingencies were used for effort learning cues, with dis-
tinct probabilities of high effort (75% vs 25% and 25% vs 75%) and
unique probability of big reward (100% vs 100% or 0% vs 0%). The four
contextual cues were associated with the following contingency sets: re-
ward learning with high effort; reward learning with low effort; effort
learning with big reward; and effort learning with small reward. The best
option was on the right for one reward learning and one effort learning
cues, and on the left for the two other cues. The associations between
response side and contingency set were counterbalanced across sessions
and subjects. Each of the three sessions contained 24 presentations of
each cue, randomly distributed over the 96 trials, and lasted about 15
min. The four symbols used to cue the contingency sets changed for each
new session and had to be learned from scratch.

A model-free analysis was performed on correct choices using logistic
regression against the following factors: learning dimension (reward vs
effort); correct side (left and right); trial number; and the three interac-
tion terms. Correct choice was defined as the option with the highest
expected reward or the lowest expected effort. Individual parameter es-
timates (betas) for each regressor of interest were brought to a group-
level analysis and tested against zero, using two-tailed one-sample t tests.
To ensure that the manipulation of effort level was successful, we com-
pared the force produced after low-effort outcome (Flow) and high-effort
outcome (Fhigh). The difference was significant [Flow � 0.037 � 0.005
arbitrary units (a.u.); Fhigh � 0.212 � 0.0 a.u.; t(1,19) � 11.59; p � 0.001].
We also observed a small but significant difference in the effort duration
(low-effort duration � 470 � 22 ms; high-effort duration � 749 � 66
ms; t(1,19) � �5.46; p � 0.001). Yet this difference was negligible com-
pared with the total delay between cue and reward payoff (6402 � 92 ms).

Computational models. The model space was designed to investigate
whether subjects used similar computations when learning to maximize
their payoff and minimize their effort. We tested three types of learning
models: ideal observer (IO); Q-learning (QL); and win-stay-lose-switch
(WSLS). All models kept track of the reward and effort expectations
attached to every choice option. In a learning session, there were eight
options (four contextual cues � two response sides). The IO model
simply counts the events and updates their frequencies after each choice.
The expectations attached to each choice option are therefore the exact
frequencies of big reward and high effort. The QL model updates expec-
tations attached to the chosen option according to the following delta
rule: QR(t � 1) � QR(t) � �R � PER(t) and QE(t � 1) � QE(t) � �E �
PEE(t), where QR(t) and QE(t) are the expected reward and effort at trial t,
�R and �E are the reward and effort learning rates, and PER(t)and PEE(t)
are the reward and effort prediction errors at trial t. PER and PEE were
calculated as PER(t) � R(t) � QR(t) and PEE(t) � E(t) � QE(t), where
R(t), and E(t) are the reward and effort outcomes obtained at trial t. R and
E were coded as 1 for big reward and high effort (20¢ and 80% of fmax),
and as 0 for small reward and low effort (10¢ and 20% fmax). All Q values
were initiated at 0.5, which is the true mean over all choice options. The
WSLS model generates expectations based on the last outcome only. This
model corresponds to an extreme version of the QL model (with a learn-
ing rate equal to 1). The combination of these models gives a total of nine
possibilities, as any of the three models could be used for reward and
effort learning. In the case where QL was applied to both reward and
effort, we also tested the possibility of a shared learning rate (�E � �R),
making a total of 10 combinations.

The three models differ in their learning rule, and, therefore, in the
trial-by-trial estimates of reward and effort expectations attached to left
and right options. The next step is to combine reward and effort expec-
tations to calculate a net value for each option. We tested the following
two discounting rules: a linear function for simplicity, and a hyperbolic
function by analogy with delay-discounting models (Kable and Glim-
cher, 2007; Prévost et al., 2010; Peters and Büchel, 2011). Net values were
calculated as Q(t) � QR(t) � � � QE(t) or Q(t) � QR(t)/(1 � k � QE(t)),
where � and k are the linear and hyperbolic discount factors, respectively.
We set the discount factors to be positive, given the vast literature show-
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Figure 1. Behavioral task and results. A, Trial structure. Each trial started with a fixation cross followed by one of four abstract visual cues. The subject then had to make a choice by slightly
squeezing the left or right hand grip. Each choice was associated with two outcomes: a monetary reward and a physical effort. Rewards were represented by a coin (10 or 20¢) that the subject received
after exerting the required amount of effort, indicated by the height of the horizontal bar in the thermometer. The low and high bars corresponded respectively to 20% and 80% of a subject’s maximal
force. Effort could only start once the command GO! appeared on the screen. The subject had to squeeze the handgrip until the mercury reached the horizontal bar. In the illustrated example, the
subject made a left-hand choice and produced an 80% force to win 20¢. The last screen informed the subject about the gain added to cumulative payoff. B, Probabilistic contingencies. There were
four different contingency sets cued by four different symbols in the task. With cues A and B, reward probabilities (orange bars) differed between left and right (75%/25% and 25%/75%,
respectively, chance of big reward), while effort probabilities (blue bars) were identical (100%/100% and 0%/0%, respectively, chance of big effort). The opposite was true for cues C and D: left and
right options differed in effort probability (75%/25% and 25%/75%, respectively) but not in reward probability (100%/100% and 0%/0%, respectively). The illustration only applies to one task
session. Contingencies were fully counterbalanced across the four sessions. C, Learning curves. Circles represent, trial by trial, the percentage of correct responses averaged across hands,
sessions, and subjects for reward learning (left, cues A and B) and effort learning (right, cues C and D). Shaded intervals are intersubject SEM. Lines show the learning curves generated
by the best computational model (QL with linear discount and different learning rates for reward and effort) identified by Bayesian model selection. D, Model fit. Scatter plots show
intersubject correlations between estimated and observed responses for reward learning (left) and effort learning (right). Each dot represents one subject. Shaded areas indicate 95%
confidence intervals on linear regression estimates.
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ing that effort is aversive, and the model-free analyses of the present data
showing that subjects tend to avoid high efforts. Finally, the net values of
the two choice options had to be compared to generate a decision. We
used a softmax rule, which estimates the probability of each choice as a
sigmoid function of the difference between the net values of left and right
options, as follows: PL(t) � 1/(1 � exp((QR(t) � QL(t))/�)), where � is a
temperature parameter that captures choice stochasticity. Overall, the model
space included 20 possibilities (10 combinations for the learning rule �
two discounting rules) that could be partitioned into families that dif-
fered in the following three dimensions: (1) learning rule (IO, QL, or
WSLS); (2) discounting rule (linear or hyperbolic); and (3) learning rate
(same or different). All models were first inverted using a variational
Bayes approach under the Laplace approximation (Daunizeau et al.,
2014). This iterative algorithm provides approximations for both the
model evidence and the posterior density of free parameters. As model
evidence is difficult to track analytically, it is approximated using varia-
tional free energy (Friston and Stephan, 2009). This measure has been
shown to provide a better proxy for model evidence compared with other
approximations such as Bayesian Information Criterion or Akaike Infor-
mation Criterion (Penny, 2012). In intuitive terms, the model evidence is
the probability of observing the data given the model. This probability
corresponds to the marginal likelihood, which is the integral over the
parameter space of the model likelihood weighted by the priors on free
parameters. This probability increases with the likelihood (which mea-
sures the accuracy of the fit) and is penalized by the integration over the
parameter space (which measures the complexity of the model). The
model evidence thus represents a tradeoff between accuracy and com-
plexity, and can guide model selection.

The log evidences estimated for each model and each subject were
submitted to a group-level random-effect analysis (Penny et al., 2010).
This analysis provides estimates of expected frequency and exceedance
probability (xp) for each model and family in the search space, given the
data gathered from all subjects (Stephan et al., 2009; Rigoux et al., 2014).
Expected frequency quantifies the posterior probability (i.e., the proba-
bility that the model generated the data for any randomly selected sub-
ject). This quantity must be compared with chance level (one over the
number of models or families in the search space). Exceedance probabil-
ity quantifies the belief that the model is more likely than the other
models of the set, or, in other words, the confidence in the model having
the highest expected frequency. The same best model was identified ei-
ther by comparing all single models or by taking the intersection of the
winning families.

To ensure that the best model provided a similar fit of reward and
effort learning curves, we computed intersubject and intertrial correla-
tions between observed and predicted choices. Individual free parame-
ters (mean � SEM: �R � 0.50 � 0.04; �E � 0.39 � 0.05; � � 0.95 � 0.24;
and � � 2.12 � 0.30) were used to generate trial-by-trial estimates of
reward and effort expectations and prediction errors, which were in-
cluded as parametric modulators in the general linear models (GLMs)
designed for the analysis of fMRI data.

fMRI data. T2*-weighted echoplanar images (EPIs) were acquired
with BOLD contrast on a 3.0 T magnetic resonance scanner (Trio, Sie-
mens). A tilted-plane acquisition sequence was used to optimize sensi-
tivity to BOLD signal in the orbitofrontal cortex (Deichmann et al., 2003;
Weiskopf et al., 2006). To cover the whole brain with sufficient temporal
resolution (TR, 2 s), we used the following parameters: 30 slices; 2 mm
thickness; and 2 mm interslice gap. Structural T1-weighted images were
coregistered to the mean EPI, segmented and normalized to the standard
T1 template, and then averaged across subjects for anatomical local-
ization of group-level functional activation. EPIs were analyzed in an
event-related manner, using general linear model analysis, and were
implemented in the statistical parametric mapping (SPM8) environment
(Wellcome Trust Center for NeuroImaging, London, UK). The first five
volumes of each session were discarded, to allow for T1 equilibration
effects. Preprocessing consisted of spatial realignment, normalization
using the same transformation as anatomical images, and spatial
smoothing using a Gaussian kernel with a full-width at a half-maximum
of 8 mm.

Individual time series of preprocessed functional volumes were re-
gressed against the following main GLM (i.e., GLM1). Five categorical
regressors were included as indicator functions modeling the onsets of
(1) cue presentation, (2) motor response, (3) outcome presentation, (4)
squeezing period, and (5) payoff screen. In addition, the following five
parametric regressors were added: expected reward and effort from the
chosen option (QR and QE) at cue onset, the chosen option (�1 for left
and 1 for right) at response time, and PER and PEE at outcome onset.
Note that predictions and prediction errors were modeled for all cues and
outcomes (i.e., even when they could not be used to improve choices;
because the two responses were equivalent). All regressors of interest
were convolved with the canonical hemodynamic response function. To
correct for motion artifact, subject-specific realignment parameters were
modeled as covariates of no interest.

Regression coefficients were estimated at the single-subject level using
the restricted maximum-likelihood estimation. Linear contrasts of re-
gression coefficients were then entered in a random-effect group-level
analysis (one-sample paired t test). All main activations reported in the
text survived a cluster-extent FWE-corrected threshold of p � 0.05. Pri-
mary contrasts of interest were parametric modulations by expected re-
ward and effort, and the difference between them, as they were assumed
to reflect the learning process. Formal conjunction analyses were per-
formed to test for simultaneous encoding of both expected reward and
effort. Regression coefficients (� estimates) were extracted from signifi-
cant functional clusters in whole-brain group-level contrasts. To test for
the encoding of prediction errors, one-sample t tests were performed on
� estimates extracted from the clusters of interest, which were identified
using an independent contrast.

We ran several additional GLMs to confirm the results and to assess
supplementary hypotheses. In GLM2, we replaced the two regressors
modeling expected reward and effort with a single regressor modeling the
net chosen value to confirm the activation maps showing brain regions
that encode expected reward and effort with an opposite sign. In GLM3,
we replaced the chosen value regressors with regressors modeling the
difference between chosen and unchosen values to assess whether the
clusters of interest encoded a differential value signal. In GLM4, we split
trials based on the left and right choice, and replaced the regressors
modeling chosen values by regressors modeling expected reward and
effort for left and right options separately to test for lateralization of value
coding. In any case, we kept other regressors identical to the main model
(GLM1).

Results
Behavior
A model-free analysis of correct choices using logistic regression
showed a significant main effect of trial number (t(1,19) � 3.75,
p � 0.007) with no effect of learning dimension (reward vs effort)
or correct side (left vs right) and no interaction. This indicates
that learning performance was similar for reward and effort (Fig.
1C), and independent from the hand to which the correct re-
sponse was assigned. We checked that learning was not depen-
dent on the other dimension by comparing performance between
contingency sets corresponding to the different cues. Specifically,
there was no significant difference in reward learning between
high- and low-effort conditions (cue A vs B: t(1,19) � 0.94, p �
0.36), and no significant difference in effort learning between big
and small reward conditions (C vs D: t(1,19) � 0.49, p � 0.63).

To refine the comparison between reward and effort learning,
we estimated 20 models (Table 1) that differed in the learning rule
used to update the estimates of reward and effort attached to the
different cues, and in the discounting function used to scale the
positive effect of reward and the negative effect of effort on
choices. Bayesian model selection over the families of models
with different learning rules identified the QL model as giving the
best account for both reward and effort learning compared with
the IO or WSLS model (with xp � 0.97). Within the family of
models that used QL for both reward and effort, those with dis-

15624 • J. Neurosci., November 19, 2014 • 34(47):15621–15630 Skvortsova et al. • Effort versus Reward Learning



tinct learning rates were selected as far more plausible (xp �
0.99). Direct comparison using a paired t test confirmed that
posterior learning rates were higher for reward than for effort
(mean � SEM, 0.50 � 0.04 vs 0.39 � 05; t(1,19) � 2.91; p � 0.01).
Comparison of the two families with different discounting func-
tions revealed that linear discounting of reward by effort was
preferable to hyperbolic discounting (xp � 0.99). When compar-
ing all single models, the most plausible one was again the model
using QL for both reward and effort, with distinct learning rates,
and linear discounting (xp � 0.87). This model contains four free
parameters (reward and effort learning rates, discount factor, and
choice temperature).

To summarize, model comparison suggests that the most
plausible computational mechanism underlying learning perfor-
mance is the following. At the time of the outcome, both the
reward and effort associated with the chosen option are updated
in proportion to the reward and effort prediction errors, accord-
ing to a Rescorla–Wagner rule. Then, at the time of cue onset, the
net values of left and right options are estimated through linear
discounting of the expected reward by the expected effort, and
choice is made by selecting the higher net value with a probability
given by the softmax function. The fact that the same mechanism
was used for reward and effort learning suggests that the same
brain system might learn the two dimensions. However, the fact
that distinct learning rates were used rather hints that separate
brain systems might be involved, even if they implemented the
same computations.

To disentangle these hypotheses using fMRI data, it was im-
portant to check first that the winning computational model pro-
vided an equally good fit of reward and effort learning. Figure 1C
illustrates the fit of choice data averaged across subjects, using the
posterior parameter estimates obtained from group-level fixed-
effect inversion (meaning that the same parameters were used for
all subjects, as in the analysis of fMRI data). The intertrial corre-
lations between predicted and observed choices were similar for
reward and effort learning (R 2 � 0.87 and 0.82, respectively; both
p � 0.01). Figure 1D illustrates the correlations across subjects,

between observed and predicted choices using individual param-
eters. Again correlations were similar for reward and effort learn-
ing (R 2 � 0.88 and 0.94, respectively; both p � 0.01).

Neuroimaging
We first looked for brain regions tracking the reward and effort
estimates through learning sessions. BOLD signal time series
were regressed against the reward and effort expected from the
chosen option, modeled at the time of cue onset (QR and QE in
GLM1; see Materials and Methods). Table 2 provides a list of all
significant activations, both at a liberal threshold of p � 0.001
uncorrected and at a stringent threshold of p � 0.05, FWE cor-
rected at the cluster level. Focusing on the corrected threshold, we
found that expected reward was positively encoded in the vmPFC
(Fig. 2A). Activity in this region was not influenced by expected
effort. More generally, we found no brain area showing any effect
of expected effort in addition to positive correlation with ex-
pected reward, even at a very liberal threshold (p � 0.01, uncor-
rected). However, there were regions showing both negative
correlation with expected reward and positive correlation with
expected effort (Fig. 2B). These regions encompass the dACC
with extension to the supplementary motor area, the right AI, the
right posterior parietal cortex (PPC), and the dorsal occipital
cortex. Similar clusters were found in the negative correlation
with the net value modeled in a single regressor (Q � QR � � �
QE in GLM2; see Materials and Methods). There was no region
showing increased activation in response to decreasing expected
efforts, even at a liberal threshold (p � 0.01, uncorrected).

Formal conjunction analyses were used to identify regions
that simultaneously encoded reward and effort estimates (Nich-
ols et al., 2005). The only conjunction that yielded significant
activations was the negative correlation with expected reward
coupled with the positive correlation with expected effort. In this
conjunction, only the PPC survived the FWE-corrected cluster-
wise threshold. The right AI and the dACC clusters were observed
at p � 0.001 (uncorrected). The other conjunctions confirmed
that no brain region encoded the two dimensions with the same
sign. There was no region showing positive encoding of net value
(positive correlation with expected reward coupled with negative
correlation with expected effort). Thus, our results bring evi-
dence for partially distinguishable brain networks, with one re-
gion encoding expected rewards (vmPFC) and a set of other
regions encoding negative net values (dACC, AI, PPC). This dis-
sociation was also obtained when using the same learning rates
for reward and effort. It was therefore driven by the difference in
the content (reward vs effort) and not in the timing of learning.

We tested several variants of the regressors modeling expected
values. First, we examined whether the brain encodes a differen-
tial signal (chosen � unchosen value in GLM3; see Materials and
Methods) instead of just reflecting expectations. We obtained
almost identical results to those of GLM1, with the vmPFC for
expected reward and the same network (dACC, AI, PPC) for
negative net value. However, these effects were driven by the
chosen value, as the correlation with the unchosen value alone
was not significant. Second, we tested whether the value signal
could be spatially framed (with regressors for left and right values
in GLM4; see Materials and Methods). We did not observe any
lateralization effect, neither for expected reward nor for expected
effort. Together, these results suggest that the clusters identified
above encoded expected values (reward and effort level associ-
ated with the chosen option) and not decision or action values,
which should be attached to the option side or the motor effector
(left vs right).

Table 1. Bayesian model comparison

Reward learning
rule

Effort learning
rule

Discount
function

Model
frequency

Exceedance
probability

WSLS WSLS Linear 0.0284 0.0012
QLshared QLshared Linear 0.1058 0.0601
QLdiff QLdiff Linear 0.2333 0.8661
IO IO Linear 0.0263 0.001
WSLS QL Linear 0.0901 0.0356
QL WSLS Linear 0.0272 0.0004
WSLS IO Linear 0.0283 0.0006
IO WSLS Linear 0.0378 0.002
QL IO Linear 0.0267 0.0012
IO QL Linear 0.0695 0.0141
WSLS WSLS Hyperbolic 0.0275 0.0007
QLshared QLshared Hyperbolic 0.026 0.0012
QLdiff QLdiff Hyperbolic 0.0261 0.0005
IO IO Hyperbolic 0.0277 0.0008
WSLS QL Hyperbolic 0.0273 0.0004
QL WSLS Hyperbolic 0.0314 0.0013
WSLS IO Hyperbolic 0.0575 0.0073
IO WSLS Hyperbolic 0.0455 0.0032
QL IO Hyperbolic 0.031 0.0014
IO QL Hyperbolic 0.0267 0.0009

Models combined different learning rules for reward and effort dimensions: WSLS, QL, and IO. They also differed in
the form of the effort discounting function (linear or hyperbolic). For QL, models were used in both reward and effort
dimensions; we tested the possibilities of shared or different learning rates. QLshared, shared QL rate; QLdiff,
different QL rate.
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To assess whether these regions were also implicated in updat-
ing reward and effort estimates, we tested the correlation with
reward and effort prediction error signals at the moment of out-
come display. Regression coefficients (� values) were extracted
from all the clusters that survived the corrected threshold in the
group-level analysis (Fig. 2). Note that the contrasts used to de-
fine the clusters of interest (correlations with expected reward
and negative net value) were independent from the correlation
with the prediction errors tested here.

Activity in the vmPFC was found to positively signal reward
prediction errors (t(1,19) � 2.36, p � 0.03), but not effort predic-
tions errors (t(1,19) � 0.40, p � 0.69). Conversely, activity in the
right AI showed positive correlation with effort prediction errors
(t(1,19) � 2.52, p � 0.01), but not with reward prediction errors
(all p � 0.5). The same trend was observed in the PPC but did
not reach significance (t(1,19) � 1.96, p � 0.06). There was no
significant encoding of effort prediction errors within the
dACC (t(1,19) � 1.13, p � 0.27).

Other regions were found to reflect prediction errors at the
whole-brain level (Table 2), notably the ventral striatum, poste-

rior cingulate cortex, occipital cortex, thalamus, and cerebellum
for reward prediction errors, and the superior temporal gyrus,
occipital cortex, and thalamus for effort prediction errors. In
another GLM, we split the prediction error term with outcome
(reward and effort) and prediction (expected reward and effort)
in separate regressors. Only the outcome part was significantly
encoded in our ROI, with reward in the vmPFC (t(1,19) � 4.13,
p � 0.0006), and effort in the AI (t(1,19) � 2.72, p � 0.014), dACC
(t(1,19) � 2.13, p � 0.04), and PPC (t(1,19) � 4.62, p � 0.0002).
Thus, while our data suggest that reward and effort regions are
sensitive to reward and effort outcomes (respectively), they re-
main inconclusive about whether these regions truly encode
signed prediction errors.

Discussion
We explored the computational principles and neural mecha-
nisms underlying simultaneous learning of reward and effort
dimensions. In principle, the brain could have evolved a gen-
eral learning mechanism applying the same process to update
any choice dimension. Consistently, choice behavior sug-

Table 2. Brain activations

Contrast name Region name

MNI coordinates

BA Number of voxels t valuex y z

Positive correlation with reward Q values vmPFC* �2 44 10 10, 11, 32 346 5.81
Superior temporal gyrus Right 58 �26 12 42, 22 95 5.35
Posterior cingulate gyrus Left �8 �50 26 30, 23 137 5.13
Supramarginal gyrus left �38 �52 26 39 38 4.48
Middle temporal gyrus Right 60 �12 �18 21, 2 93 4.67
Middle temporal gyrus left �52 �10 �18 21, 2 28 3.62

Negative correlation with reward Q values dACC/SMA* �8 10 40 6, 8, 32 649 6.38
PPC right* 40 �48 38 7, 4 174 5.35
Caudate nucleus left �16 6 14 48 5.38
Dorsolateral prefrontal cortex left �36 54 8 10 48 5.28
Frontal inferior gyrus Left �32 40 14 46 23 4.46
AI Left �28 24 2 47, 48 67 4.21
AI Right 36 28 2 47, 48 129 3.88

Positive correlation with effort Q values Occipital middle gyrus left* �16 �80 14 17, 18, 7 2504 6.51
PPC right* 46 �44 42 7, 40, 39 1433 6.10
PPC left �38 �34 52 3, 40 720 5.44
Posterior insula right 50 �36 �6 47 58 4.64
Middle temporal gyrus right 48 �16 �4 48 62 5.04
Inferior temporal lobe right 50 �46 �6 21 50 4.69
dACC 12 18 34 32 23 4.55
Caudate nucleus right 18 8 14 118 4.31
Caudate nucleus left �14 2 10 41 4.20

Negative correlation with effort Q values
Positive correlation with reward PE Caudate nucleus left �20 �18 20 153 6, 71

Posterior cingulate cortex* 10 �34 48 23, 30 2563 6.06
Thalamus left �20 �18 20 135 5.92
Cerebellum �18 �50 �16 37 321 5.87
Middle cingulate cortex 0 �4 36 23, 24 141 5.72
Putamen left �12 2 �14 20 5.22
Occipital cortex* �12 �92 4 17, 18 446 5.02
Angular gyrus right 48 �74 36 39 95 4.95
vmPFC �4 52 �2 10 29 4.05
Caudate nucleus right 8 18 �2 51 3.93

Positive correlation with effort PE Occipital cortex* 6 �64 18 17, 18, 7 3509 10.34
Thalamus right 14 �12 10 145 6.85
Posterior parietal cortex left �36 �26 50 7, 4 159 5.49
Posterior parietal cortex right 38 �28 50 7, 4 120 5, 05
AI right 32 26 6 47 19 4.86
Superior temporal gyrus left �56 �20 12 22, 42 151 4.68
dACC �6 4 42 24 29 4.12
AI left �32 26 14 48 18 4.05

All voxels in the listed clusters survived a statistical threshold of p � 0.001, uncorrected. MNI, Montreal Neurological Institute; BA, Brodmann area; SMA, supplementary motor area. Abbreviations are used for regions shown in activation
maps (Fig. 2).

*Regions survived a threshold of p � 0.05 after FWE correction for multiple comparisons at the cluster level.
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Figure 2. Neural underpinnings or effort and reward learning. A, B, Statistical parametric maps show brain regions where activity at cue onset significantly correlated with expected reward (A)
and with the difference between expected effort and reward (B) in a random-effects group analysis ( p�0.05, FWE cluster corrected). Axial and sagittal slices were taken at global maxima of interest
indicated by red pointers on glass brains, and were superimposed on structural scans. [x y z] coordinates of the maxima refer to the Montreal Neurological Institute space. Plots show regression
estimates for reward (orange) and effort (blue) prediction and prediction errors in each ROI. No statistical test was performed on the �-estimates of predictions, as they served to identify the ROIs.
p values were obtained using paired two-tailed t tests. Errors bars indicate intersubject SEM. ns, Nonsignificant.
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gested that the same computational process could equally ac-
count for reward maximization and effort minimization.
However, neuroimaging data revealed that the brain systems
underlying reward and effort learning might be partially
dissociable.

The capacity of delta rules (also called Rescorla–Wagner rules)
to account for learning behavior has been shown previously in a
variety of domains, not only reward approach and punishment
avoidance, but also the monitoring of perceptual features or so-
cial representations (Behrens et al., 2008; Preuschoff et al., 2008;
Law and Gold, 2009; den Ouden et al., 2009; Zhu et al., 2012).
These delta rules may represent a domain-general form of learn-
ing applicable to any choice dimension with stable or slowly drift-
ing values (Nassar et al., 2010; Trimmer et al., 2012; Wilson et al.,
2013). The present study extends this notion by showing that the
same delta rule provides an equally good fit of reward and effort
learning. We compared the delta rule to the ideal observation,
which means counting the events and computing an exact fre-
quency. The ideal observer thereby implements an adaptive
learning rate, as it puts less weight on the new observation
relative to previous ones. At the other extreme of the spec-
trum, we have the win-stay-lose-switch strategy, which takes
only the last observation into consideration. The delta rule was
identified as the most plausible model in the Bayesian selec-
tion, even if it was penalized for having an extra free parameter
(the learning rate).

Another conclusion of the model selection is that subjects
discounted linearly reward with effort. This may seem at odds
with the literature on cost discounting showing the advantages of
hyperbolic or quasi-hyperbolic models over simpler functions
(Loewenstein and Prelec, 1992; Green et al., 1994; Prévost et al.,
2010; Minamimoto et al., 2012; Hartmann et al., 2013). A key
difference between the present task and standard delay and effort
discounting paradigms is that the attributes of choice options
(reward and effort levels) were not explicitly cued, but instead
had to be learned by trial and error. However, the winning model
in the Bayesian comparison had distinct learning rates for reward
and effort. Note that the discount factor already explained the
different weights that reward and effort had on choice. This scal-
ing parameter was necessary as there was no reason to think a
priori that the reward levels should be directly comparable to
effort levels. The fact that, in addition to the discount factor, a
good fit needed distinct learning rates, suggests that participants
were faster to maximize reward than to minimize effort. Of
course we do not imply that the reward learning system is intrin-
sically faster than the effort learning system. Here, subjects might
have put a priority on getting the high reward, with less emphasis
on avoiding high effort. It is likely that priorities could be other-
wise in different environments, where for instance fatigue would
be more constraining.

We nevertheless acknowledge that the model space ex-
plored in our comparison was rather limited. In particular, we
did not test more complex architectures that would track
higher-order dynamics (Hampton et al., 2006; Behrens et al.,
2007; Mathys et al., 2011; Doll et al., 2012). This is because
higher-order dynamics would not give any advantage in our
environment, which had a null volatility. Also, the complexity
of task structure, with four sets of contingencies linking the
four cues to the four outcomes, makes the construction of
explicit representations quite challenging. At debriefing, none
of the subjects but one could report the key task feature,
namely that only one dimension (reward or effort) differed
between the choice options. This suggests that participants

have built and updated both reward and effort estimates in all
conditions (i.e., for every cue). Thus, we believe we have set a
situation where reward and effort are learned using the same
simple computations, which enables asking the question of
whether in this case the same brain systems are engaged.

The primary objective of the neuroimaging data analysis was
to identify the regions that track the expected reward and effort
given the chosen option. These expectations are the quantities
that are updated after the outcome, and thereby are the main
correlates of learning. We did not observe any activity that would
be correlated to reward and effort with the same sign, which
validates the assumption that these two quantities are processed
in an opponent fashion. The representation of expected reward
was localized principally in the vmPFC, a brain region that has
been classically implicated in positive valuation of choice options
(Rangel et al., 2008; Haber and Knutson, 2010; Peters and Büchel,
2010; Levy and Glimcher, 2012; Bartra et al., 2013). This finding
is also consistent with the observation that damage to the vmPFC
impairs reward learning in humans and monkeys (Camille et al.,
2011; Noonan et al., 2012; Rudebeck et al., 2013). Effort was
absent from the expectations reflected in the vmPFC, which is in
keeping with previous findings in nonlearning contexts that the
vmPFC discounts rewards with delay or pain, but not with effort
(Kable and Glimcher, 2007; Peters and Büchel, 2009; Talmi et al.,
2009; Plassmann et al., 2010; Prévost et al., 2010). This might be
linked to the idea that the vmPFC encodes value in the stimulus
space, and not in the action space (Wunderlich et al., 2010). Also
consistent with this idea is the absence of lateralization in reward
representations associated with left and right responses, which
was observed in a previous study (Palminteri et al., 2009) where
the two options were associated with left and right cues on the
computer screen. Other studies have shown lateralization of ac-
tion value representations in motor-related areas but not in or-
bitofrontal regions (Gershman et al., 2009; Madlon-Kay et al.,
2013).

A separate set of brain regions was found to represent ex-
pected effort, as well as the following negative reward: the
anterior insula; the dorsal anterior cingulate cortex; and the
posterior parietal cortex. These regions have already been im-
plicated in the representation of not only effort but also neg-
ative choice value during nonlearning tasks (Bush et al., 2002;
Samanez-Larkin et al., 2008; Croxson et al., 2009; Prévost et
al., 2010; Hare et al., 2011; Burke et al., 2013; Kurniawan et al.,
2013). The dissociation of vmPFC from dACC is reminiscent
of the rodent studies reporting that after a cingulate (but not
orbitofrontal) lesion physical cost is no longer integrated into
the decision value (Walton et al., 2003; Roesch et al., 2006;
Rudebeck et al., 2006), although this analogy should be taken
with caution due to anatomical differences between species.
As the net value expressed in this network was attached to the
chosen option, and not to the difference between option val-
ues, it is unlikely to participate in the decision process. It
might rather represent an anticipation of the outcomes that
later serve to compute prediction errors.

The neural dissociation made for expectations at cue onset
was also observed in relation to outcomes. Whereas the reward
region (vmPFC) reflected reward prediction errors, the negative
value network (at least AI) reflected effort prediction errors. This
fits with a predictive coding account of brain architecture, in
which regions that estimate a given dimension of the environ-
ment reflect both predictions and prediction errors (Rao and
Ballard, 1999; Friston, 2005; Spratling, 2010). While all our ROIs
were undoubtedly sensitive to outcomes, we found no clear evi-
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dence that they encoded signed prediction errors. It remains pos-
sible that they implement other computations integrating the
outcomes, for instance unsigned prediction errors, as was previ-
ously observed in dACC single units (Bryden et al., 2011; Hayden
et al., 2011; Klavir et al., 2013). In more dynamic environments,
these signals might be used at a meta-cognitive level to regulate
learning rate or choice temperature (Pearce and Hall, 1980; Doya,
2002; Khamassi et al., 2013). Also, the fact that neural activity in
ROIs such as vmPFC and AI correlated with prediction errors
does not imply that these regions compute prediction errors.
While the reward prediction errors in the positive valuation sys-
tem have been linked to dopamine release (Schultz et al., 1997;
Frank et al., 2004; Pessiglione et al., 2006), the origin of effort
prediction error signals is less clear. Animal studies have sug-
gested that dopaminergic activity does not integrate effort cost, a
pattern that we observed here in vmPFC activity (Walton et al.,
2005; Gan et al., 2010; Pasquereau and Turner, 2013). Further
studies are needed to examine whether dopamine or other neu-
romodulators might have an impact on effort prediction errors in
humans.

More generally, our findings support the existence of multiple
brain learning systems that have evolved to track different attri-
butes of choice options, through similar computational mecha-
nisms. Dissection of independent and joint nodes within positive
and negative value systems may contribute to a better under-
standing of neuropsychiatric symptoms such as apathy, which in
principle could arise from either insensitivity to potential re-
wards or overestimation of required efforts.

References
Bartra O, McGuire JT, Kable JW (2013) The valuation system: a

coordinate-based meta analysis of BOLD fMRI experiments examin-
ing neural correlates of subjective value. Neuroimage 76:412– 427.
CrossRef Medline

Bautista LM, Tinbergen J, Kacelnik A (2001) To walk or to fly? How birds
choose among foraging modes. Proc Natl Acad Sci U S A 98:1089 –1094.
CrossRef Medline

Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning
the value of information in an uncertain world. Nat Neurosci 10:1214 –
1221. CrossRef Medline

Behrens TE, Hunt LT, Woolrich MW, Rushworth MF (2008) Associative
learning of social value. Nature 456:245–249. CrossRef Medline

Berns GS, Laibson D, Loewenstein G (2007) Intertemporal choice—toward
an integrative framework. Trends Cogn Sci 11:482– 488. CrossRef
Medline

Bryden DW, Johnson EE, Tobia SC, Kashtelyan V, Roesch MR (2011) At-
tention for learning signals in anterior cingulate cortex. J Neurosci 31:
18266 –18274. CrossRef Medline
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