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Neurobiology of Disease

Early Alzheimer’s Disease Neuropathology Detected by
Proton MR Spectroscopy
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Proton magnetic resonance spectroscopy (‘H-MRS) is sensitive to early neurodegenerative processes associated with Alzheimer’s disease
(AD). Although "H-MRS metabolite ratios of N-acetyl aspartate (NAA)/creatine (Cr), NAA/myoinositol (mI), and mI/Cr measured in the
posterior cingulate gyrus reveal evidence of disease progression in AD, pathologic underpinnings of the "H-MRS metabolite changes in
AD are unknown. Pathologically diagnosed human cases ranging from no likelihood to high likelihood AD (n = 41, 16 females and 25
males) who underwent antemortem 'H-MRS of the posterior cingulate gyrus at 3 tesla were included in this study. Inmunohistochemical
evaluation was performed on the posterior cingulate gyrus using antibodies to synaptic vesicles, hyperphosphorylated tau (pTau),
neurofibrillary tangle conformational-epitope (cNFT), amyloid-3, astrocytes, and microglia. The slides were digitally analyzed using
Aperio software, which allows neuropathologic quantification in the posterior cingulate gray matter. MRS and pathology associations
were adjusted for time from scan to death. Significant associations across AD and control subjects were found between reduced synaptic
immunoreactivity and both NAA/Crand NAA/mI in the posterior cingulate gyrus. Higher pTau burden was associated with lower NAA/Cr
and NAA/ml. Higher amyloid-B burden was associated with elevated mI/Cr and lower NAA/ml ratios, but not with NAA/Cr. '"H-MRS
metabolite levels reveal early neurodegenerative changes associated with AD pathology. Our findings support the hypothesis that a
decrease in NAA/Cr is associated with loss of synapses and early pTau pathology, but not with amyloid-3 or later accumulation of cNFT
pathology in the posterior cingulate gyrus. In addition, elevation of mI/Cr is associated with the occurrence of amyloid- 3 plaques in AD.
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Introduction
The utilization of neuroimaging as an Alzheimer’s disease (AD)
biomarker has been included in the most recent National Insti-
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ever, structural changes evident on MRI occur once loss or
shrinkage of neurons and synapses has already begun. Therefore,
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Figure 1. A, Placement of the "H-MRS voxel on a midsagittal T1 weighted image. The 8 cm ® voxel is covering right and left hemispheric posterior cingulate gyri and inferior precunei. Examples
of proton spectra obtained from the posterior cingulate voxel with an echo time of 30 ms in B, an AD patient, and in C, a control subject. The NAA/Cr and NAA/ml ratio is lower and the ml/Cr ratio is
higher in the patient with AD than the control subject. All spectra are scaled to the height of the reference peak Cr for demonstration of the differences in ratios to Cr.

a biomarker that could detect early changes before neuronal
death would be a highly effective option for tracking early disease
progression for identifying patients for preclinical interventions.

Proton magnetic resonance spectroscopy ('H-MRS) is a non-
invasive neuroimaging technique that quantitatively measures
metabolite changes associated with AD-type pathology (Ross et
al., 1998; Kantarci et al., 2008). '"H-MRS measurements of the
metabolite N-acetylaspartate (NAA) and the ratio of NAA to the
reference metabolite creatine (NAA/Cr) longitudinally decrease
over the course of AD dementia and mild cognitive impairment
(Adalsteinsson et al., 2000). Conversely, an elevation in myoi-
nositol (mlI) and the mI/Cr ratio are observed earlier compared
with NAA metabolite changes in the disease course (Miller et al.,
1993; Kantarci et al., 2000; Catani et al., 2001; Bartha et al., 2008;
Schott et al., 2010). These '"H-MRS changes have been shown to
associate with the global neuropathologic scores of amyloid-f3
plaque severity and neurofibrillary tangle stage (Kantarci et al.,
2008). However, the local histopathologic findings underlying
these metabolite alterations in AD are unknown.

Decreased glucose metabolism from positron emission to-
mography (PET) studies of the posterior cingulate gyrus have
shown this region to be involved early in AD dementia (Herholz
et al., 2002). Moreover, the posterior cingulate gyrus has readily
definable neuroanatomical landmarks and importantly does not
suffer from susceptibility artifacts and lipid contamination on
MRS related to proximity to the skull and sinuses. A multivoxel
MRS study demonstrated that the short echo-time spectra in the
posterior cingulate have a higher quality compared with the tem-
poral lobe voxel (Kantarci et al., 2000; Ebel et al., 2001). "H-MRS
findings have supported evaluation of the posterior cingulate
gyrus, having demonstrated differential metabolite measure-
ments across AD, dementia with Lewy bodies, frontotemporal
dementia, and healthy elderly controls (Kantarci, 2007). The pos-
terior cingulate gyrus exhibits dysfunction in mild symptomatic
AD dementia (Brun and Gustafson, 1976; Vogt et al., 1990; Liu et
al., 1996; Vogt et al., 1998). These observations underscore the
rationale for selecting the posterior cingulate gyrus to investigate
the relationship between MRS metabolite changes with abnormal
biological underpinnings.

We sought to examine the specific regional correlates between
antemortem 'H-MRS metabolite measurements and AD-related
neuropathologic immunoreactivity (i.e., burden) in the posterior
cingulate gyrus of a cohort with a range of AD pathology using
quantitative digital microscopy. We used immunohistochemical
markers to measure synaptic vesicle loss and accumulation of
amyloid-B, phospho-tau (“early” tau pathology; neurites, pre-

tangles, mature tangles), neurofibrillary tangle conformational
specific antibodies (“late” tau pathology; mature and extracellu-
lar tangles), microglia, and astrocytes to investigate the neuro-
pathologic basis of '"H-MRS metabolite alterations associated
with AD dementia.

Materials and Methods

Design. Consecutive patients with an antemortem "H-MRS performed at
3 tesla MRI who came to autopsy were selected from both the Mayo
Clinic Alzheimer Disease Research Center, a dementia clinic cohort, and
the Mayo Clinic Study of Aging, a longitudinal population-based cohort
(Roberts et al., 2008). Case selection was performed based on neuro-
pathologic diagnosis and not antemortem clinical diagnosis. Neuroim-
aging studies were performed on a total 138 autopsied patients between
10/24/2005 until 4/28/2011, with the first autopsy performed 11/1/2006
and the last on 2/9/2012 at the ADRC Neuropathology Core. Neuroim-
aging exclusion criteria were as follows: (1) presence of structural abnor-
malities that could impact 'H-MRS measurements such as brain tumors
and stroke or (2) illnesses or treatments interfering with cognitive func-
tion other than AD at the time of "H-MRS. Of the remaining 127 patients
that came to autopsy, the posterior cingulate gyrus was sampled in 80 of
the brains. Neuropathology exclusion criteria were as follows: (1) hip-
pocampal sclerosis or frontotemporal lobar degeneration, (2) tauopa-
thies (progressive supranuclear palsy, corticobasal degeneration, and
neurofibrillary tangle predominant dementia), and (3) and Lewy body
disease. Amygdala predominant Lewy body cases were not excluded, how-
ever, because it is considered an isolated amygdala a-synucleinopathy found
frequently in neuropathologically diagnosed AD brains (Uchikado et al.,
2006). The final study cohort included 41 autopsied individuals (25 men
and 16 women; age at death 51-101 years) who had a range of AD-type
pathologies but no other substantial disease processes.

MRI and 'H-MRS. All subjects underwent MRI and "H-MRS studies
on a 3 tesla scanner using an 8-channel phased array coil (GE Healthcare)
within a median of 2.0 years before death. '"H-MRS studies were per-
formed using the automated single-voxel MRS package (PROBE/ SV; GE
Healthcare) (Webb et al., 1994). A trained imaging technician placed an
8 cm? (2 X 2 X 2 cm) voxel on a midsagittal T1-weighted image over the
medial parietal posterior cingulate. The splenium of the corpus callosum
was used for the anterior inferior corner, and the cingulate sulcus was
used for the anterior superior corner of the voxel. The voxel covered the
right and left posterior cingulate gyri and inferior precunei (posterior
cingulate voxel) (Fig. 1). "H-MRS examinations were performed using
the point-resolved spectroscopy (PRESS) pulse sequence with TR = 2000
ms, TE = 30 ms, 2048 data points, and 128 excitations. PROBE’s prescan
algorithm makes automatic adjustments to the transmitter and receiver
gains and center frequency. Before PRESS acquisition, the flip angle of
the third water suppression pulse was adjusted for chemical shift water
suppression (CHESS). At the end of each PROBE/SV acquisition, metab-
olite intensity ratios were automatically calculated using a previously
validated algorithm (Webb et al., 1994). MRS metabolite ratios that were
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Table 1. Patient characteristics

No to low Intermediate to high
likelihood of AD likelihood of AD
(n=17) (n=24) p
Females (%) 5(29) 11 (46) 0.29
APOE £4 carriers (%) 1(6) 14 (58) <0.001
Age at scan, y 87 (82, 89) 82 (70.5, 85.5) 0.03
Education, y 4 (12,16) 16 (12, 18) 0.34
(DR sum of boxes .0 (0.0, 0.0) 5.5(0.75,9.5) <0.001
Time to death from 1. 56 (0.65, 3.06) 2.42(1.12,3.57) 0.12
scan (yrs.)
(linical diagnosis
Normal 15 2 <0.001
md 2
Probable AD 0 13
DLB 0 2
Progressive visual 0 1
dysfunction
NAA/Cr 1.72 (1.64, 1.76) 1.56 (1.49, 1.64) 0.006
Cho/Cr 0.67 (0.61,0.73) 0.69 (0.65, 0.72) 0.50
ml/Cr 0.50 (0.47, 0.55) 0.58 (0.52, 0.64) 0.04
NAA/mI 3.20(2.91,3.71) 2.72(2.44,3.11) 0.004
Neurons/mm2 144. 15 (134.87,159.19)  147.93 (128.21, 154.01) 0.40
Synaptic, % r. 93(91,93) 91(90, 93) 0.07
pTau, % burden 0.02 (0.01, 0.02) 8.00(1.09, 14.01) <0.001
NFT, % burden 0.06 (0.03, 0.09) 0.21(0.12, 0.68) <0.001
Total AB, % burden 0.10(0.07, 0.73) 1.32(0.84, 2.54) <0.001
“Diffuse” A3, % burden 0.09 (0.07, 0.57) 1.04 (0.67, 1.57) <0.001
“Cored” A3, % burden 0.00 (0.00, 0.11) 0.27 (0.14,0.77) <0.001
Microglia, % burden 0.26 (0.19, 0.35) 0. 40 (0.29, 0.50) 0.002
Astrocyte, % burden 22 (16, 26) 33(26, 42) <0.001

Median (25, 75th interquartile range) reported for the continuous variables and number (%) for the categorical
variables.

(DR, Clinical dementia rating scale; DLB, dementia with Lewy bodies.

analyzed for this study included NAA/Cr, choline (Cho)/Cr, mI/Cr and
NAA/ml.

Neuropathologic examinations. Standardized methods for sampling
and neuropathologic examination were performed according to the The
Consortium to Establish a Registry for Alzheimer’s Disease and the Third
Report of the Dementia with Lewy bodies Consortium (Mirra et al., 1991;
McKeith et al., 2005). Braak neurofibrillary tangle (NFT) stage was de-
termined based on the distribution of NFTs assessed with Bielschowsky
silver stain (Braak and Braak, 1991). The likelihood of a subject having
AD was judged to not meet criteria or be low, intermediate, or high,
according to the NIA-Reagan Institute Working Group criteria (Hyman
and Trojanowski, 1997). Table 1 shows the separation of normal patho-
logic controls (i.e., criteria not met or low likelihood of AD) and AD cases
(i.e., intermediate and high likelihood of AD) using the NIA-Reagan
criteria.

Serial 5-um-thick sections of the posterior cingulate were immuno-
stained on a DAKO Autostainer (Universal Staining System) using 3,3'-
diaminobenzidine (DAB) as the chromogen. Immunohistochemical
evaluation of neuropathology using antibodies to detect a phospho-tau
(pTau) epitope that labels early neuritic and NFT pathology, including
pretangles (CP13, mouse IgG1, 1:1000, generous gift from Peter Davies,
Albert Einstein College of Medicine, Bronx, NY), a conformational
epitope in NFTs (cNFT) labeling late-stage tangles (Ab39, monoclonal,
1:350, gift from Shu-Hui Yen, Mayo Clinic, Jacksonville, FL) (Yen et al.,
1987), amyloid-B (33.1.1, 1:1000, human A1-16 specific, gift from Pri-
tam Das, Mayo Clinic, Jacksonville, FL), microglia (CD68, mouse IgG1,
1:1000, Dako), astrocyte (glial fibrillary acidic protein [GFAP], mouse
IgG1, 1:5000; Biogenex). Synaptic vesicles were also immunohistochemi-
cally evaluated using an antibody to SV2A (mouse IgG1, Abcam). SV2A
is a synaptic vesicle protein that has been implicated as a target site for the
anti-epileptic drug levetiracetam (Lynch et al., 2004), and recently eval-
uated as a potential therapeutic target in mild cognitive impairment
(MCI) (Bakker et al., 2012). Afterward, the sections were counterstained
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with hematoxylin. In addition, a section was stained with hematoxylin
and eosin (H&E) to quantify the density of pyramidal neurons in the
posterior cingulate. Digital microscopy methods have been previously
described (Murray et al., 2011; Janocko et al., 2012), but briefly, slides
were analyzed using Aperio digital microscopy hardware and software
(Aperio Technologies, Vista, CA) and then analyzed using four custom-
designed positive-pixel count ImageScope algorithms (Ab39, SV2A,
33.1.1, and GFAP), two color deconvolution algorithms (CP13 and
CD68) and one nuclear algorithm for neuronal count (H&E). Therefore,
immunoreactivity will be referred to as “burden,” given the quantitative
approach using image analysis. The positive pixel count algorithm uses
the hue-saturation-intensity model that can be modified to stains of
interest. It is useful for stains that have light and intense staining prop-
erties of interest or for stains that label a large fraction of the annotated
area. The color deconvolution algorithm detects the positive pixels using
optical density as input parameters, converts these to a percentage bur-
den of the total area annotated. Figure 2 illustrates the intensity markup
images with red=positive pixels, yellow=background pixels (except for
amyloid-B), and blue=negative pixels. The percentage area of burden in
the amyloid- stain uses the tinctorial properties of the diffuse (yellow
pixels) and neuritic or cored amyloid (red pixels). The neuronal count
algorithm uses the optical density of the neuronal cytoplasm to identify
the cell of interest, but the optimum elongation parameter also detects
endothelial cells. To remove these, a second algorithm with the same
input parameters other than pixel size is used to subtract the endothelial
cells and other small cells that interfere with quantification. All neuro-
pathologic analyses were performed blinded to metabolite ratios.
Statistical analysis. We summarized patient characteristics using me-
dians and interquartile ranges along with the unadjusted p-values from
two-sided, two-sample Wilcoxon rank sum tests for the continuous vari-
ables. For categorical variables, we summarized the counts of subjects as
well as the percents and p-values from x? tests. We calculated partial
Spearman rank correlations between imaging and pathology variables,
after adjusting for time from MRI scan to death. The residual of the ranks
of the two variables are compared after linear regression on the ranks of
the controlled variable. As age is highly correlated with disease progres-
sion, age was excluded as a covariate in statistical analyses to prevent
collinearity masking significant correlations. This study was designed to
assess specific a priori selected biologically relevant hypotheses. Since
each was of individual interest, we did not want to inflate the individual
type IT errors, nor limit ourselves to a general null hypothesis that all null
hypotheses were simultaneously true. Accordingly, we did not adjust for
multiple comparisons (Rothman, 1990; Perneger, 1998). However, we
do report the results of all of the tests, allowing readers to reach their own
conclusions. A p-value <0.05 was considered statistically significant.

Results
The demographic and clinical aspects of patients are shown in
Table 1. The no-likelihood to low-likelihood AD group were clin-
ically diagnosed as normal or MCI at the time of MRI. The ma-
jority of the intermediate- to high-likelihood AD group was
diagnosed as MCI or probable AD dementia (79%). Two of the
intermediate-likelihood AD cases clinically diagnosed as cogni-
tively normal were found to have a Braak NFT stage IV and
moderate neuritic plaques at autopsy. Two high-likelihood AD
cases clinically diagnosed as dementia with Lewy bodies were
both found to have frequent plaques, one of which had a Braak
stage V with no coexisting pathology and the second had a Braak
stage V-VIwith amygdala predominant Lewy bodies. Three other
high-likelihood AD cases clinically diagnosed as probable AD
were found to have amygdala predominant Lewy bodies. It is
considered an isolated amygdala a-synucleinopathy and can be
found frequently in neuropathologically diagnosed AD brains
(Uchikado etal., 2006) and therefore was not used as an exclusion
criteria.

Neuronal density did not differ between the AD likelihood
groups stratified in Table 1, but synaptic vesicle immunoreac-
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Serial sections of the posterior cingulate were immunostained, scanned, traced, and analyzed to obtain neuronal density and neuropathologic burden across AD and normal brains. The

entirety of the posterior cingulate was traced in ImageScope and then analyzed using custom-designed algorithms. The photomicrographs are labeled with stain or antibody used with adjoining
markup images postanalysis. A, H&E slides, pictured top left, were used to assess neuronal density (B) where the yellow markup image positively assed the neurons and the blue markup identifies
glial cells. Using custom-designed color deconvolution algorithm to identify positive immunostain in red, background in yellow, and negative pixels in blue, the SV2A antibody was used to detect
immunoreactivity of synaptic vesicles (, F) and the CP13 antibody was used to detect hyperphosphorylated tau (/, /). The positive pixel count was customized to quantify brown immunoreactive
lesions (red markup), considering all other pixels negative (blue). C, D, The Ab39 antibody was used to detect conformational epitope to neurofibrillary tangles (cNFT). 33.1.1 was used as a pan-A 3

marker (G, H) and GFAP was used to detect astrogliosis (K, L). All are shown at 20X zoom.

tivity showed a trend of lower levels in the intermediate- to
high-likelihood AD group (Fig. 3). Quantitative measures of ac-
cumulated pTau, cNFT, and amyloid-B and markers of micro-
glial and astrocytic burden differed between the AD likelihood
groups. Neuropathologic pTau burden increased nearly 40-fold
from Braak NFT stage Il to IV (0.03% to 1.0%), increased nearly
9-fold from Braak NFT stage IV to V (1.0% to 9.2%) and nearly
tripled from Braak NFT stage V to VI (9.2% to 28%; p < 0.001).
Neuropathologic cNFT burden did not differ from Braak NFT
stage III to IV (0.09% to 0.08%), increased 2.5-fold from
Braak NFT stage IV to V (0.08% to 0.21%), and increased
6-fold from Braak NFT stage V to VI (0.20% to 1.2%; p <
0.001). Neuropathologic amyloid-B burden increased nearly
13-fold from Braak NFT stage III to IV (0.10% to 1.3%), in-
creased 1.4-fold from Braak NFT stage IV to V (1.3% to 1.9%),
and decreased 1.5-fold from Braak NFT stage V to VI (1.9% to
1.2%; p = 0.003).

NAA/Cr and NAA/mI metabolite ratios were lower in the
intermediate- to high-likelihood group compared with the no-
likelihood to low-likelihood group, whereas mI/Cr was higher
(Table 1). Cho/Cr ratios did not differ between groups. Figure 1B
shows an example of spectra obtained from the posterior cingu-
late voxel of a clinically probable AD patient with advanced AD
neuropathology and a cognitively normal subject found to have
no significant pathology at autopsy.

Table 2 displays the Spearman rank correlations performed
across the spectrum of no-likelihood to high-likelihood cases,
with significant correlations shown in Figure 4. The NAA/Cr and
NAA/mI ratios from the posterior cingulate voxel significantly
associated with synaptic vesicle immunoreactivity in the poste-
rior cingulate gyrus after adjusting for time from scan to death.
Therefore, the higher the NAA metabolite ratios (i.e., closer to
normal), the greater the percentage area of synaptic immunore-
activity (i.e., the more SV2A-immunoreactive synaptic vesicles
were intact). No association was found between synaptic vesicle
immunoreactivity and Cho/Cr and mI/Cr ratios. Reduced synaptic
vesicle immunoreactivity was associated with greater accumulation
of neuropathologic measures of pTau (r = —0.41, p = 0.009), cNFT
(r = —0.44, p = 0.004), but not with amyloid-3, microglia, or
astrocyte markers. pTau burden was inversely associated with
NAA/Cr and NAA/mI, but not with Cho/Cr. pTau burden also
showed a trend of association with mI/Cr, but this was not statis-
tically significant (p = 0.07). Interestingly, cNFT burden (a
marker of late extracellular NFT pathology) did not associate
with any of the metabolite ratios. Amyloid- 3 burden significantly
associated with mI/Cr and inversely with NAA/mI. CD68-
positive microglia did not associate with any of the metabolite
ratios. GFAP-positive astrocytic burden approached significance
with a trend of inverse association with NAA/Cr and NAA/ml,
but this was not statistically significant.
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Photomicrographs from representative cases classified as low and high likelihood of AD. 4, B, Using SV2A immunohistochemistry to detect synapticimmunoreactivity in the posterior

cingulate showed subtle differences between groups. €, D, (P13 antibody was used to detect “early” pTau pathology, immunolabeling neurites, pretangles, and mature tangles. pTau was rarely seen
in low-likelihood AD cases, but frequently observed in high-likelihood AD cases. E, F, Ab39 is a neurofibrillary tangle conformational specific antibody that detects “late” tau pathology (cNFT),
immunolabeling mature and extracellular tangles. ctNFT pathology was not seen in low-likelihood cases, but moderately to frequently observed in high-likelihood AD. G, H, Diffuse plaques were
more commonly found in low-likelihood AD cases using a pan-A 3 antibody compared with more frequent compact and cored plaquesin high-likelihood AD cases. 1, J, Microgliosis was detected with
a (D68 antibody revealing higher numbers of (D68-positive microglia in high-likelihood cases. K, L, GFAP immunoreactive astrocytes were observed in both low- and high-likelihood AD cases, but

in higher abundance in high-likelihood AD. All are shown at 20X zoom.

Table 2. Spearman rank correlations adjusted for time from scan to death across the entire cohort of neuropathologically diagnosed healthy and AD spectrum subjects

(n=41)

NAA/Cr Cho/Cr ml/Cr NAA/ml

Rho (95% Cl) p Rho (95% Cl) p Rho (95% CI) p Rho (95% Cl) p
Neurons/mm? 0.19(—0.14,0.47) 0.26 —0.05(—0.36, 0.27 0.76 —0.14(—0.43,0.19) 0.40 0.13(—0.19, 0.43) 0.42
Synaptic, % ir. 0.32(0.00, 0.57) 0.05 0.08 (—0.24,0.38 0.64 —0.26 (—0.53, 0.06) 0.10 0.31(—0.01, 0.56) 0.05
pTau, % burden —0.35(—0.60, —0.04) 0.02 0.04 (—0.28,0.34 0.83 0.29 (—0.03, 0.55) 0.07 —0.36 (—0.60, —0.05) 0.02
cNFT, % burden —0.23 (—0.50, 0.09) 0.15 0.04 (—0.27,0.35 0.80 0.17 (—0.15, 0.45) 0.30 —0.19 (—0.47,0.13) 0.25
Total AB, % burden —0.19 (—0.47,0.13) 0.23 0.22 (—0.10, 0.49 0.18 0.37(0.06, 0.61) 0.02 —0.36 (—0.60, —0.05) 0.02
“Diffuse” A3, % burden —0.25 (—0.52,0.07) 0.12 0.19(—0.14,0.47 0.25 0.32(0.01,0.58) 0.04 —0.34(—0.59, —0.03) 0.03
“Cored” A3, % burden —0.14 (—0.43,0.18) 0.38 0.22 (—0.10, 0.50 0.16 0.38(0.07,0.61) 0.02 —0.35(—0.59, —0.04) 0.03
Microglia, % burden —0.25(—0.52,0.07) 0.12 0.05(—0.27,0.35 0.77 0.15(—0.17, 0.44) 0.35 —0.26 (—0.52, 0.06) 0.1
Astrocyte, % burden —0.29 (—0.55, 0.02) 0.06 —0.11(—0.41,0.21 0.48 0.21(—0.11, 0.49) 0.19 —0.30 (—0.56, 0.01) 0.06
Discussion complementary relationship of these two metabolites as an in

MRS detected early biochemical changes associated with AD neu-
ropathology in the posterior cingulate gyrus. We demonstrated
an association between the NAA/Cr metabolite ratio and both
reduced synaptic vesicle immunoreactivity and accumulation of
early intracellular and neuritic pTau pathology. Conversely, the
ml/Cr ratio was found to associate with accumulation of
amyloid-B pathology. A relationship with both pTau and
amyloid-B pathology were observed when the two metabolite
ratios were combined to form the NAA/mlI ratio, emphasizing the

vivo diagnostic marker of AD-related pathology.

NAA content is mainly regulated by the mitochondrial syn-
thesis rate and less by the rate of neuronal release or NAA oxida-
tion (Bates et al., 1996; Petroff et al., 2003). Therefore, NAA is
considered to be a marker of neuronal viability and not necessar-
ily neuronal loss. The association we found between NAA/Cr and
synaptic vesicle immunoreactivity but not neuronal density fur-
ther indicates that NAA/Cr is a marker of synaptic integrity in
AD. The decrease of the NAA/Cr ratio reported in MCI and AD
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Figure 4.  Significant correlations between antemortem MR spectroscopy metabolite ratios from the posterior cingulate (x-axis) and corresponding neuropathologic measures ( y-axis) are
plotted as residuals. The highest value is ranked as 1, the next highest 2, etc. 4, B, A higher NAA/Cr ratio correlated with higher synapticimmunoreactivity (A) but inversely correlated with pTau (B)
showing minimal overlap between no likelihood to low likelihood and intermediate to high likelihood. A higher mI/Cr ratio correlated with higher total A3 burden (C), diffuse A burden (D), and
cored A3 burden (E). NAA/ml combines the two metabolites of interest, revealing significant correlations that were observed in both NAA/Cr (F, G) and ml/Cr (H-J).

dementia was significantly associated with early neuritic, pre-
tangle, and mature tangle pathology (pTau) and not with extra-
cellular tangle pathology (cNFT) that appears later. This finding
underlies early NAA/Cr metabolite changes on MRS before irre-

versible neuronal damage. Early-stage tau pathology is a dynamic
process involving the accumulation of hyperphosphorylated tau
species that form diffuse intracellular neuronal inclusions (i.e.,
pretangles labeled by pTau) (Goedert et al., 1989; Igbal and
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Grundke-Igbal, 1991) that accumulate in the dendrites and axons
and are considered to further perturb neuronal function. As the
neuronal tau protein continues to be hyperphosphorylated,
along with other posttranslational modifications, the inclusion
continues to mature before the eventual death of the neuron (i.e.,
extracellular NFT labeled by cNFT; Yen et al., 1987). The extra-
cellular NFT acts as a tombstone or remnant of a once-living
neuron that has succumbed to neurofibrillary degeneration and
is no longer a dynamic process as the neuronal death has oc-
curred. Our study demonstrates for the first time an observed
association of lower NAA/Cr with worsened synaptic integrity
and higher pTau, but not with neuronal loss or cNFT. Collec-
tively, these findings further support our hypothesis that NAA/Cr
is a marker of early tau-mediated dynamic processes in AD.

Although the NAA/Cr is decreased in AD dementia, mI/Cr is
found to be elevated (Miller et al., 1993). The ml metabolite is
considered to be a glial metabolite marker (Glanville et al., 1989;
Bitsch et al., 1999), thus prompting our investigation into its
relationship with neuropathologic burden of GFAP-positive as-
trocytes and CD68-positive microglia. We did not find an asso-
ciation with increasing ml even though both GFAP and CD68
burdens were higher in the intermediate- to high-likelihood AD
group. Bitsch et al. described a relationship between astroglial
pathology and mlI levels in a small sample with inflammatory
CNS demyelination (Bitsch et al., 1999). They described elevated
ml was more pronounced in areas with more severe gliosis. The
lack of association between GFAP and mI/Cr in the present study
could relate to technical differences in measurement of GFAP
burden or other factors arising during inflammatory demyelina-
tion (Oz et al., 2010). Further lack of an association with CD68-
positive microglia and ml, however, suggests that there is not a
relationship between ml elevation and gliosis in AD.

The results from the present study validate our previous find-
ings that showed an association of mI/Cr with the global staging
of amyloid- 3 plaque pathology (Kantarci et al., 2008) and with
amyloid-Bload on PET (Kantarci et al., 2011). These results fur-
ther emphasize that greater accumulation of amyloid associates
with abnormal elevations in mI/Cr, but not with lower NAA/Cr
metabolite ratios (Kantarcietal., 2011). In an effort to distinguish
whether diffuse plaques or cored/neuritic plaques drove this re-
lationship, we used the tinctorial staining properties to assess
lightly stained diffuse amyloid-B pathology versus the more in-
tensely stained cored/neuritic amyloid-@ pathology. We found a
significant relationship with mI/Cr for both types of plaques.
Diftuse plaques can be found in cognitively normal elderly and in
pathological aging brains upon microscopic inspection (Morris
et al., 1996; Murray and Dickson, 2014). Diffuse plaques highly
correlate with both cored and neuritic plaques, both of which
appear densely stained by the amyloid-f marker. One interpre-
tation of our findings is that increasing amyloid-B burden may
indiscriminately affect mI regardless of morphological classifica-
tion. Alternatively, more sophisticated double-staining tech-
niques may need to be performed to interpret the relevant
importance of the neuritic plaque burden because these are con-
sidered the more deleterious amyloid- plaque. A more recent
study investigating passive immunization with amyloid- anti-
bodies in the APP/PS1 mouse model found an attenuation of the
increased mI/Cr ratio in the treated mice compared with placebo
(Marjanska et al., 2014), supporting an mI/Cr association with
amyloid-B and its utility in therapeutic trials targeting amyloid-f3
pathology.

The Cho/Cr metabolite ratio is thought to represent mem-
brane turnover because the choline peak is considered to be the
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breakdown products of phosphatidylcholine— one of the princi-
ple components of the cell membrane’s phospholipid bilayer
(Klein, 2000). Changes in the Cho/Cr ratio in AD dementia have
inconsistently been reported to be elevated (Pfefferbaum et al.,
1999; Kantarci et al., 2004) or show no change (Moats et al., 1994;
Schuff et al., 1997; Rose et al., 1999; Krishnan et al., 2003). In the
present study, we did not find a difference in Cho/Cr when cases
were stratified by AD likelihood. We also found no association
with any of the neuropathologic measures.

Time to death from scans did not significantly differ among
the neuropathologic groups, but still varied across the patients.
Furthermore, our adjusted Spearman correlations using regres-
sion analysis did not allow us to take into account nonlinearity of
MRS between time of scan and death. For these reasons, we ac-
counted for this variability in all correlative data by adjusting for
time to death from scan. Quantitative analysis of 'H-MRS me-
tabolites were performed using the manufacturer’s PROBE soft-
ware, which is available on clinical scanners (Webb et al., 1994).
This automated software package has been shown to reliably re-
produce metabolite values, even when compared with more an-
alytically sophisticated LCModel software (Fayed et al., 2009).
Donepezil may also influence MRS metabolite measurements,
putatively influencing increased synaptic activity with an associ-
ated decrease in NAA/Cr (Krishnan et al., 2003). As expected, the
majority of the intermediate- to high-likelihood AD cases were
being treated with acetylcholinesterase inhibitors. Should the
treatment have had an effect, it would have only worked to min-
imize the associations that were observed.

This study provides quantitative evidence that MRS can detect
early changes differentially associated with both pTau and
amyloid-B pathologies of AD. MRS is a noninvasive, inexpensive
and efficient neuroimaging tool that does not require injection of
radiotracers to monitor metabolic changes in the brain. Given
these apparent benefits and data presented in this study, MRS
should be considered as imaging biomarker for the staging of
preclinical AD and as a surrogate marker in therapeutic trials
targeting AD-related protein deposits.
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