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Rapid Online Selection between Multiple Motor Plans
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Recent theories of voluntary control predict that multiple motor strategies can be precomputed and expressed throughout movement.
We examined online decisional processing in humans by asking them to make reaching movements with obstacles located just to the sides
of a direct path between start and end targets. On random trials, the limb was perturbed with one of four mechanical loads that varied in
direction and amplitude. Notably, we observed two different strategies when we applied a perturbation (left medium-sized) that deviated
the participants’ hand directly toward an obstacle. In some trials, subjects directed their hand between the obstacles and in other trials to
the left of the obstacles. Importantly, changes in the muscle stretch response between these two strategies were observed in �60 ms after
perturbation, during the R2 long-latency epoch (�45–75 ms). As predicted, the selected strategy depended on the estimated position of
the limb when it was perturbed. In our second experiment, we presented either one or three potential goal targets. Movements initially
directed to the closest target could be quickly redirected to other potential targets after a perturbation. Differences in muscle stretch
responses for redirected movements were observed �75 ms after perturbation during the R3 long-latency epoch (�75–105 ms). The
results show that decisional processes are rapidly implemented during movement execution. In addition, our data suggest a hierarchical
process with corrective responses on “how” to attain a behavioral goal expressed during the R2 epoch and responses on “what” goal to
attain during the R3 epoch.
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Introduction
Athletes often exemplify the ability to rapidly alter a motor action
when circumstances change. For example, physical contact in
sports, such as football or rugby, can push an athlete from their
selected course, resulting in a rapid decision to change his/her
running direction. This flexibility begs an important question:
How does feedback influence decision-making between compet-
ing movements or goals during an ongoing motor action. Recent
work highlights the motor system’s ability to consider multiple
potential targets before movement onset (Cisek and Kalaska,
2005; Chapman et al., 2010). Various factors influence move-
ment selection, such as the expected gain associated with move-
ment outcomes (Trommershäuser et al., 2003, 2008), limb
biomechanics (Cos et al., 2011), and the reliability of sensory
information (Roitman and Shadlen, 2002; Körding, 2007; Resulaj
et al., 2009). These decisions reflect a serial process of planning
followed by movement execution. However, our interest is to
understand how sensory feedback for online movement control
can influence how we choose to move in a complex environment.

Optimal feedback control (OFC) offers a theoretical frame-
work to address how motor actions should be updated according
to the task goal, taking movement variability and environmental
perturbations into account (Todorov and Jordan, 2002; Scott,
2004). Within this framework, motor commands are determined
by a cost function that reflects the objective of the motor action.
Importantly, these motor commands depend on the estimated
position of the limb at each point in time so that the expected
remaining cost to accumulate until attaining the movement goal,
called the cost-to-go, is minimized. The model makes an impor-
tant prediction when multiple ways or goals are available to
achieve task success. If a perturbation pushes the movement away
from the initial best option, another option may become more
desirable, inducing a change in movement trajectory or goal.
Hence, the model predicts that motor decisions to select new
trajectories or alternate goals may result from changes in the
position of the limb according to the cost-to-go. If this decisional
process is performed during movement, then we hypothesize that
rapid motor responses to perturbations (�50 –100 ms) may ex-
press distinct strategies depending on the position of the hand.
Alternatively, if decisional processes and motor execution are
dissociated, then changes in motor strategies during movement
should be associated with reaction times similar to voluntary
reaction times (EMG � 100 ms).

To test this hypothesis, we investigated how rapidly the motor
system can select how to navigate around obstacles after a me-
chanical perturbation (Experiment 1) or to a new target (Exper-
iment 2). We developed an optimal control model to characterize
how alternate movement trajectories could be selected and found
that human subjects generated qualitatively similar corrective re-
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sponses. Critically, task-specific changes in motor responses were
observed in as little as 60 ms. Furthermore, our simulations based
on OFC reproduced the dependency of the decision on the esti-
mated instantaneous position of the limb, suggesting that an on-
line monitoring of the state of the limb might be used to produce
a feedback response that selected the best out of multiple options.

Materials and Methods
Participants
A total of 34 subjects (23 males and 11 females, aged 21–36 years, all right
hand dominant) participated in one of 4 experiments. Experiment 1A
included 10 subjects, whereas all other experiments included 8 subjects.
All subjects were neurologically healthy and gave informed consent ac-
cording to a protocol approved by the Queen’s University Research Eth-
ics Board. Experiments lasted �2 h, and subjects were financially
compensated for their time.

Apparatus and experimental design
Experiments used a robotic device (KINARM Exoskeleton, BKIN Tech-
nologies) permitting elbow and shoulder movement in the horizontal
plane (Scott, 1999; Singh and Scott, 2003; Nashed et al., 2012). In addition
to recording flexion/extension movement of each joint, the KINARM robot
can displace the arm by applying mechanical loads. Projected target lights
and hand feedback were presented in the plane of the arm using a TV
monitor and a semitransparent mirror. The experiments were performed
with and without visual hand feedback during movement.

Muscle recordings
Surface electromyographic (EMG) recordings were obtained from the
lateral triceps, an elbow extensor. Full details of the procedures are de-
scribed in our earlier study (Nashed et al., 2012). One subject was ex-
cluded from the analysis because of excessive cocontraction (normalized
preperturbation muscle activity, �3 SD larger than baseline differences
observed across all subjects).

Experiment 1A: obstacle avoidance after mechanical perturbations
Calibration block: determining obstacle placement. This experiment ex-
amined how feedback influenced the decisional process to navigate
around obstacles in the environment following a variety of mechanical
perturbations. The experiments began with a preliminary test of each
subject’s corrective response to perturbations without the presence of
obstacles. Subjects (n � 10) performed reaching movements from a start
target (limb configuration: shoulder �5°; elbow 95°) to an end target
(radius � 1 cm) located 10 cm in front of the start target (Fig. 1A). All
trials began with the gradual onset (ramp up: 100 ms) of a 0.75 Nm elbow
torque flexion load, which excited the elbow extensors. This elbow ex-
tension background load was present throughout each trial. Subjects
were required to initially stabilize and hold (random time 1–2 s) their
hand within the start target (radius � 0.5 cm) before movement. After
the hold period, the end target appeared and visual hand feedback was
removed. Subjects were instructed to perform simple reaching move-
ments from the start to the end target. As subjects approached the end
target (within a 2 cm radius), visual feedback was restored so that they
could easily attain the spatial goal. Upon trial completion, subjects were
notified as to whether they attained predetermined speed and accuracy
criteria (successful; end target filled green, failures; too fast �500 ms; end
target filled red, too slow �800 ms; end target filled yellow).

On random trials, step torques were applied to the limb just after
movement onset when shoulder and elbow angles were �0° and �90°,
respectively (Fig. 1A). Either flexion/flexion (elbow: 1 Nm; shoulder: 1
Nm) or extension/extension (elbow: �1 Nm; shoulder: �1 Nm) torques
were applied, which deviated the hand to the left or right, respectively.
Furthermore, timing constraints were loosened on perturbation trials,
such that subjects had more time to attain the spatial goal (too slow
�1200 ms). After a short familiarization block, subjects performed 1
baseline block, which interleaved 30 unperturbed trials and 20 perturba-
tion trials (10 right and 10 left), for a total of 50 trials.

Main experiment: obstacle avoidance when reaching to a small
circular goal
After the preliminary test, subjects were asked to perform similar reach-
ing movements with the added constraint of virtual obstacles (radii � 1
cm) in the environment. Two circular virtual obstacles (mechanical feed-
back provided when contacted) were presented to subjects and located to
the right and left of the unperturbed hand trajectory (Fig. 1A). The loca-
tions of these obstacles were strategically positioned to block the correc-
tive responses elicited in the preliminary test (Fig. 1A). Intersubject
differences in obstacle placement did not exceed 1.4 cm in all experi-
ments. On selected trials, one of four possible joint torque perturbations
was applied (Fig. 1B): (1) rightward (elbow: 1 Nm; shoulder: 1 Nm); (2)
small leftward (elbow: �0.5 Nm; shoulder: �0.5 Nm); (3) medium left-
ward (elbow: 1 Nm; shoulder: 1 Nm); or (4) large leftward (elbow: 2 Nm;
shoulder: 2 Nm). Subjects readily countered the loads and avoided the
obstacles (�80% success). Subjects performed 3 blocks, which inter-
leaved 40 unperturbed trials and 28 leftward perturbation trials (6 large,
16 medium, and 6 small), and 12 rightward perturbations, for a total of
120 unperturbed trials and 120 perturbation trials.

Experiments 1B and 1C: obstacle avoidance and target selection
when reaching to three small circular goals or a rectangular bar
These experiments identified whether changes in the behavioral goal
altered the timing of corrective responses to avoid the obstacle. The start
position and obstacle placements were similar to Experiment 1A. Exper-
iment 1B examined whether subjects would select a new end target when
avoiding an obstacle during movement, following a mechanical pertur-
bation. After the preliminary test, subjects performed reaching move-
ments to one of three potential targets (radii � 1 cm, each). The central
end target was positioned exactly as in Experiment 1A. The additional
targets were located to the left and right of the central end target and were
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Figure 1. Experimental setup. A, Depiction of experimental setup in Experiment 1A with
circular obstacles within the workspace (filled circles) and one circular goal. Subjects made
reaching movements to a circular end target (open circles, radius � 1 cm); and occasionally, the
limb was perturbed rightward or leftward with applied joint torques. �e, Elbow torque; �s,
shoulder torque. Thick arrow indicates evoked motion. The black line indicates corrective re-
sponses of an exemplar subject without obstacles. B, Schematic of the torques applied to the
shoulder and elbow. The background load (Bkg load) was ramped up�100 ms, and step torque
perturbations (vertical second dashed line) were applied just after movement onset (vertical
solid line). C, Same as in A, depiction of experimental setups of Experiment 1B (top) and Exper-
iment 1C (bottom) with circular obstacles within the workspace (top; filled circles) and either
three circular goals (top; solid circles) or a bar target (bottom; dashed line). Similar to A, the limb
was occasionally perturbed rightward or leftward with applied joint torques. �e, Elbow torque;
�s, shoulder torque. Thick arrow indicates evoked motion. D, Depiction of Experiment 2 setup
with either one (solid circle) or three (solid and dashed circles) in the workspace. Subjects made
reaching movements in both target conditions (circles, radius � 1 cm); and occasionally, the
limb was perturbed rightward or leftward with applied joint torques. �e, Elbow torque; �s,
shoulder torque. Thick arrow indicates evoked motion.
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directly behind the obstacles (Fig. 1C, top). Experiment 1C extended our
previous work on corrective responses to a rectangular bar (Nashed et al.,
2012) by exploring how the placement of obstacles influenced this re-
sponse (Fig. 1C, bottom). The center of the rectangular bar was posi-
tioned in the same location as the end target from Experiment 1A (bar
length � 40 cm, width � 3 cm). All other aspects of these experimental
protocols were identical to the Experiment 1A.

Experiment 2: target selection after mechanical perturbations
This experiment examined how the presence of multiple potential goals
influenced corrective responses, but in this case, without any obstacles in
the environment. Similar to Experiment 1A, a preliminary test was com-
pleted in which subjects made reaching movements to a central end
target without obstacles and with perturbations applied on random tri-
als. This preliminary test did not influence the subsequent experiment
but allowed subjects to become familiar with the basic experiment and
provided consistency with the protocols in Experiment 1.

In the main experiment, subjects were asked to perform reaching move-
ments to either a single circular target (Fig. 1D; size and location same as in
Experiment 1A) or three circular targets (Fig. 1D; size and location same as in
Experiment 1A and two other identical targets located 5 cm to the left or
right). On selected trials, joint torque perturbations were applied to the limb
(Fig. 1B). The location, magnitude, and frequency of these perturbations
were the same as in the previous Experiment 1.

Model
Optimal control derives a control function that minimizes a cost func-
tion expressed in terms of state and control variables of a dynamical
system (Bryson and Ho 1975; Todorov and Jordan, 2002; Todorov,
2004). The solution is usually derived from the Hamilton-Jacobi-
Bellman equation that characterizes the cost-to-go, that is, the cost of the
remaining trajectory under the optimal control policy. In principle, this
approach provides an optimal state-dependent control policy, u*(x),
which can handle arbitrary constraints (x represents the system state, and
u represents the control variable). However, current numerical methods
for nonlinear systems are based on quadratic approximation of the cost-
function that cannot easily represent constraints of higher order, such as
the presence of an obstacle (Li and Todorov, 2007).

For the first experiment, we countered this difficulty by coupling two
simple optimal control problems as follows. Each control problem was
modeled as the translation of a point mass (m � 1) in the horizontal
plane, given by the following differential equations:

mp̈ � � Gṗ � F � Fext (1)

�Ḟ � u � F (2)

Ḟext � 0 (3)

where p(t) represents the 2D coordinate vector, G is the viscous constant,
F and Fext represent the controlled force and external force, respectively,
and u represents the 2D control vector. The dynamics of each system
were discretized to include stochastic noise and given as follows:

xk�1 � Axk � Buk � motor noise (4)

where xk represents the state vector, including position, velocity, and
controlled and external forces. The corresponding feedback signal at
each time step is as follows:

yk � xk�h � sensory noise (5)

The first controller is derived to pass through a via-point that is located
between the two obstacles, and the second controller is derived to pass
through a via-point that is located on the left side of both obstacles. The
task is to pass through a via-point p(tv), at a given time interval during
the reach (0.5 s � tv � 0.6 s) and to stop at the target ( p*), at the end of
the movement duration (tf � 1 s). The task error is defined as follows:

Cost � � p�tv	 � pv	
TQ1� p�tv	 � pv	 � � p�tf	 � p*	TQ2� p�tf	 � p*	

� ṗ�tf	
TQ3ṗ�tf	 (6)

where the first term enforces passing through the via-point, the second
and third terms enforce stopping at the end target. The cost matrices Qi

expressed that the coordinates of the mass in the plane were selectively
constrained. For the via-point (Q1), only the x-coordinate was con-
strained for the time interval 0.5 s � tv � 0.6 s. The endpoint cost (Q2)
expressed the shape of the target goal (dot, bar or multiple targets). The
endpoint velocity cost (Q3) always constrained the two dimensions of the
plane to enforce that the movement stopped in all cases of target shape or
configuration.

The full control system and model parameter were fully described in
our earlier study (Nashed et al., 2012). As our primary objective was to
simply characterize state-dependent changes in movement strategy, we
did not manipulate the model or noise parameters in an attempt to
reproduce the exact trajectory of the subjects’ limb. Regarding the obsta-
cle avoidance procedure, we define J1(xk, uk) and J2(xk, uk) as the cost-
to-go functions associated with the center and left via-points,
respectively (or target 1 and 2, respectively). We define a modified con-
trol problem where the cost-to-go is as follows:

J �xk, uk	 � min {J1 �xk, uk	, J2 �xk, uk	}, (7)

and the associated optimal control action is readily given by the
following:

uk � arg minu J �xk, u	, (8)

We now concentrate on the fact that the process is corrupted by
motor noise and state feedback is only available through delayed and
noisy sensors. We use standard techniques based on system augmen-
tation to handle time delays in the feedback loop. The feedback delay
was set to 50 ms. In theory, the cost-to-go functions are given by the
following:

Ji �xk, uk	 � xk
T Si, x �k	xk � ek

T Si,e �k	ek � si�k	, where i � 1, 2

(9)

where ek is the estimation error, Si,x and Si,e are known matrices, and si is
a given non-negative scalar quantity. These parameters (Si,e, Si,x, and si)
follow directly from the derivation of the optimal feedback gains and
optimal Kalman gains (Todorov, 2005; Crevecoeur et al., 2011). Because
the Kalman filter produces unbiased state estimation, the controller can
derive an unbiased estimate of the cost-to-go by ignoring the estimation
error and compute the following:

Ĵ i�x̂k	 � x̂k
T Si, x �k	x̂k � si�k	, where i � 1, 2 (10)

using the estimated state instead of the true state. The full control algo-
rithm was implemented as follows: (1) derive the optimal control policy
and linear state estimator associated with each via-point trajectory; and
(2) apply the control policy associated with the minimum cost-to-go
across the two possible trajectories (Eq. 8).

Finally, we should emphasize that our theoretical approach does not
make any prediction about the underlying neural implementation, and
the optimization formalism to this end may not be practically useful.
However, it is possible that a rather simple neural implementation gen-
erates state-dependent feedback control that approaches the prediction
formulated in the context of OFC. Indeed, it is reasonable to expect that
a rather simple sensorimotor map of response gains can be adjusted to
take the presence of obstacles into account. OFC is a formal model used
to describe behavior and does not make any predictions about the un-
derlying neural implementation.

Data analysis
Filtering and normalization. All data were aligned on perturbation onset.
EMG was normalized by its mean activity in the final end target of the
setup block where subjects maintained a constant posture against the
medium perturbation torques applied to the elbow. Full details of
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the filtering procedures are described in our earlier studies (Pruszynski et
al., 2008; Nashed et al., 2012).

Kinematics
For the obstacle conditions (Experiment 1), we were most interested in
comparing the distribution of trials where the hand passed between ver-
sus around the obstacles for the medium-sized perturbation. To pool all
subject data, we normalized all trials by subtracting the subject’s mean
from each individual trial and dividing the result by the respective sub-
ject’s SD. All means and SDs were calculated in Cartesian x,y space. Thus,
datasets were aligned on their means and with similar overall distribu-
tions. Kolmogorov-Smirnov (K-S) tests were then performed to deter-
mine significant differences between the distributions associated with
each “strategy”: hand passing between versus around the obstacles
(Massey, 1951). Distributions (all trials and separate populations for
each strategy) were fit with unimodal and bimodal distributions and used
Akaike Information Criterion to determine the goodness of fit (Ljung,
2001). Hand distributions were estimated using a kernel density esti-
mate, for illustration purposes (Bowman and Azzalini, 1997).

To address whether the trials preceding medium perturbations influ-
enced the decision to move around or between the obstacles, we quanti-
fied the effect of the lateral deviation of the previous trial on the
subsequent trial’s initial reach direction. We quantified the maximum
lateral deviation (x-position) caused by each perturbation and the effects
on the initial reach direction of the subsequent medium perturbation
trial. Ultimately, we compared the movement strategies of the medium
perturbation as a function of the previous trial and tested the difference
in distributions using a K-S test.

Muscle activity
Stretch response epochs of muscle activity were based on earlier reports:
Baseline (Pre) � �100 to 0; R1 � 20 – 45 ms; R2 � 45–75 ms; R3 �
75–105 ms; and early voluntary (EV) � 105–135 (Lee and Tatton, 1975;
Crago et al., 1976; Mortimer et al., 1981; Nakazawa et al., 1997; Pruszyn-
ski et al., 2008; Nashed et al., 2012). The EV epoch was chosen such that
it was similar in size (30 ms) to the preceding epochs.

We used a receiver-operator characteristic (ROC) technique to deter-
mine when the muscle activity was reliably different between the two
movement “strategies” following the medium perturbation (Green and
Swets, 1974). For each time step (1 ms), we generated an ROC curve
representing the probability of discrimination between the two responses
based on muscle activity for the same perturbation. Values of 0 and 1
indicate perfect discrimination, whereas a value of 0.5 indicates perfor-
mance at chance. We determined that muscle activity was reliably differ-
ent when the ROC curve surpassed a threshold of 0.75 for 5 consecutive
ms. We then calculated the point when the ROC curve began to deviate
from chance (Thompson et al., 1996; Pruszynski et al., 2008; Nashed et

al., 2012), termed the “knee,” by regressing the ROC values located 15 ms
before the discrimination point then calculating the time when this line
intersected the preperturbation ROC results.

Results
Experiment 1A: obstacle avoidance when reaching to a small
single goal
Model
We used an OFC model to conceptualize ideal performance in
each experiment. Before movement initiation, each control pol-
icy corresponding to a potential reach path is determined by its
own cost-to-go, which is the minimum cost expected to accumu-
late to reach the behavioral goal (Åström, 1970; Bryson and Ho,
1975; Todorov and Jordan, 2002; Todorov, 2004; and Aring).
During movement execution, the controller simply selects the
policy associated with the minimum estimated cost-to-go based
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Figure 2. Theoretical and empirical movement trajectories for Experiment 1A. A, Trajectories generated by the optimal feedback controller for each load condition. Red and blue trajectories
represent trials that went outside of both obstacles and between both obstacles, respectively. The black arrows indicate the relative perturbation magnitudes and spatial location where they were
applied. B, Hand trajectories from a representative subject for each perturbation magnitude.
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on the present estimated position of the hand. The simulations
shown in Figure 2A parallel the behavior of Experiment 1A. The
unperturbed reaching movements were relatively straight with
bell-shaped velocity profiles directed between the two obstacles
(Fig. 2A). For small perturbations, the load was quickly coun-
tered and the movement path continued between the obstacles to
reach the end target (Fig. 2A). The largest perturbations pro-
duced movements that navigated around both obstacles to the
end target (Fig. 2A). Medium perturbations, which were directed
toward the obstacles, produced a mixture of these two strategies,
with some trials navigating between the obstacles and others nav-
igating to the left of the obstacles (Fig. 2A). Which strategy was
selected on a given trial depended on the estimated position of the
hand, which combines internal predictions and sensory feedback
about the actual hand position. Thus, trials in which the hand was
to the right at perturbation onset tended to go between the ob-
stacles, whereas when it was to the left tended to go to the left of
the obstacles. Because sensory, prediction, and motor signals are
affected by noise, and sensory feedback is delayed, the estimated
hand location is uncertain, which explains why there is no strict
separation in distribution between the hand coordinate associ-
ated with the two strategies (Fig. 3A,B). However, these distribu-
tions are significantly different (K-S test, D � 0.21, p � 0.014) as
a consequence of the state-dependent control policy. Also, the
cost-to-go (and therefore the switch in motor strategy) depends
on other variables, such as the hand velocity. These consider-
ations explain why there is no strict separation of the hand coor-
dinate between strategies.

How estimates of the perturbation load interact with esti-
mates of the hand location is an interesting question for prospec-
tive studies. Simulations indicate that the state-dependent switch
in reaching path vanishes after increasing the variance about the

medium perturbation load. The reason is that the actual load mag-
nitude has a greater impact on the decision than the hand location.
Hence, future studies can use our paradigm to address how well the
brain estimates the hand location and the perturbation magnitude
by determining the amount of perturbation variance beyond which
the state-dependent switch is no longer observed.

Human behavior
In human subjects, the unperturbed reaches were straight with
bell-shaped velocity profile and unaffected by the presence of the
obstacles (Fig. 4). Figure 4 illustrates the mean kinematic behav-
ior of the unperturbed reaching movements for a representative
subject. Random perturbations applied just after movement on-
set resulted in distinct strategies to avoid the obstacle and reach
for the target. When small rightward or leftward perturbations
were applied, subjects easily corrected the deviation and contin-
ued to pass between the two obstacles as in the unperturbed case.
For large leftward perturbations, subjects switched their intended
trajectory and navigated a new path to the left of the obstacles.
With medium leftward perturbations, subjects used one of these two
strategies, with some movements passing between the two obstacles
and other movements passing left of both obstacles. Figure 2B illus-
trates the behavior for an exemplar subject, which qualitatively
matched the behavior produced by the model. Figure 5 illustrates the
percentage of trials that each subject navigated between the obstacles
for the small, medium, and large leftward perturbations. On average,
�45% of trials go between versus around the obstacles for these
medium-sized perturbations. These strategies were observed for
each subject with and without vision during the reaching move-
ments (data with vision not shown).

The overall distribution of hand x-positions at perturbation
onset for all the medium-sized perturbations was unremarkable
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as they paralleled the overall distributions observed for unper-
turbed trials (K-S test, D � 0.12, p � 0.101) and for the small (K-S
test, D � 0.10, p � 0.236) and large perturbations (K-S test, D �
0.12, p � 0.119), suggesting that, even for perturbed reaches,
subjects were planning to reach straight between the obstacles.

We were most interested in the two strategies observed after
the medium perturbation (Figs. 2B and 4) We found that the
strategy to avoid the obstacle for the medium-sized perturbations
depended on hand position at the beginning of the perturbation
(Fig. 3C). Trials in which the subject went left of both obstacles
tended to be more leftward 50 ms after perturbation when cor-
rective responses had not yet influenced the limb (Fig. 3D; K-S
test, p �� 0.001). This position-dependent selection was also
present even 1 ms before the perturbation compared with trials in
which the subject remained between the two obstacles (K-S test,
D � 0.20, p � 0.03). Although we focused our analysis on the
x-positions at perturbation onset, we should emphasize that the
decision to navigate around obstacles likely considers not only
position but velocity as well.

Finally, we quantified the maximum lateral displacement of
the previous trial to determine its effect on the initial reaching
direction on the subsequent trials. We determined that lateral
error on the previous trial did not significantly influence the ini-
tial reaching direction on the subsequent trial (K-S test, D � 0.17,
p � 0.084).

We recorded the activity of the muscle that was stretched by
the perturbation (triceps lateralis) to identify the time when the
motor system reflected each strategy. We were most interested in
comparing the perturbation-related activity between trials that
navigated between the obstacles versus around both obstacles
after the medium perturbation. The perturbation-related muscle
activity was quantified for each subject by taking the mean of the
perturbed trials for each strategy (between vs around) and sub-
tracting the mean of the unperturbed trials (Kurtzer et al., 2009).
Paired t tests were performed to compare changes in means of
corresponding epochs of muscle activity between movement
“strategies” (around vs between obstacles) after the medium per-
turbation. In triceps lateralis (Fig. 6A–C), the R1 response
(20 – 45 ms) was similar for the two strategies (paired t test, T(8) �
1.03, p � 0.331). Significant increases in EMG were observed in
the R2 (45–75 ms) and R3 (75–105 ms) long-latency time periods
(R2: T(8) � 4.13, p � 0.004; and R3: T(8) � 4.38, p � 0.003) and
EV epochs of time (T(8) � 4.11, p � 0.005; 105–130 ms) when the
subject generated a large corrective response to remain between
the obstacles. Analysis of individual subjects yielded similar re-
sults to the group (t test, p � 0.05), with 1, 7, 8, and 9 of 9 subjects

demonstrating modulation of R1, R2, R3, and EV epochs, respec-
tively. Preperturbation activity was statistically �8% higher (T(8)

� 2.90, p � 0.026) for trials navigated between the obstacles,
although the magnitude of this effect was very small. These
changes in preperturbation muscle activity are likely a reflection
of the state (i.e., position and velocity) of the limb. Specifically,
greater preperturbation activity in lateral triceps would result in
the hand being more to the right before the perturbation and this
position then leads to a higher likelihood to move between the
obstacles when perturbed.

Our previous work suggests that such a small load-related
change in preperturbation muscle activity could not produce
such large task-dependent changes in the long latency (Pruszyn-
ski et al., 2009; Nashed et al., 2012). The R1 response is known to
be most sensitive to changes in preperturbation muscle activity.
However, our data failed to demonstrate any significant differ-
ence in the R1 epochs. Furthermore, the long latency epoch has
shown reduced or little sensitivity to changes in preperturbation
muscle activity (Pruszynski et al., 2009), particularly during
reaching (Nashed et al., 2012). This suggests that the small but
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Figure 5. Movement strategies for each perturbation magnitude. Representation of the
percentage of trials that proceeded between the obstacles for each subject and flexion load size
in Experiment 1A.

A

B

C

−500 0 500 1000
0

1

2

3

E
M

G
 (

au
)

0 100 200

0

1

2

3

 E
M

G
 (

au
)

0 100 200
−0.5

0

0.5

1

1.5

2

 E
M

G
 (

au
)

Time (ms)

R1 R2 R3 EV

* ** *

D

E

F

−500 0 500 1000
0

2

4

6

0 100 200

0

2

4

6

Time (ms)

R1 R2 R3 EV

* **

Lateral Triceps Posterior Deltoid

0 100 200

0

2

4

6

Figure 6. Muscle activity for the medium-sized leftward perturbation. A, Mean activity of
lateral triceps across all subjects aligned to perturbation onset (vertical line). Red and blue
trajectories represent trials that went outside of both obstacles and between both obstacles,
respectively. The black line indicates muscle activity for the unperturbed reaches. B,
Perturbation-evoked response of lateral triceps obtained after subtracting the activity of unper-
turbed reaches for each individual subject. Black line indicates mean, and shaded color repre-
sents SE. C, Difference in muscle activity between the two responses in B (mean 
 SE). *p �
0.05. D, Mean activity of posterior deltoid across all subjects aligned to perturbation onset
(vertical line). E, Perturbation-evoked response of posterior deltoid obtained after subtracting
the activity of unperturbed reaches for each individual subject. F, Difference in muscle activity
between the two responses in E (mean 
 SE). *p � 0.05.

1774 • J. Neurosci., January 29, 2014 • 34(5):1769 –1780 Nashed et al. • Rapid Online Selection between Multiple Motor Plans



significant changes observed before perturbation could not ac-
count for the large task-dependent differences observed in the
long latency epochs.

To verify further that preperturbation activity did not influ-
ence postperturbation epochs, trials that showed increased mus-
cle activity just before perturbation onset were removed (�10%
of trials) from the analysis. After removing these trials, the prep-
erturbation muscle activity was effectively the same (paired t test,
T(8) � 1.84, p � 0.18). The R1 epoch was similar between the two
decisions (T(8) � 1.23, p � 0.24). However, we still observed a
consistent significant difference in the long latency epoch even
with the removal of some trials (R2: T(8) � 2.98, p � 0.02; R3: T(8)

� 3.76, p � 0.006). ROC analysis revealed differences in muscle
activity for the two types of strategies (between vs around obsta-
cles) that deviated from chance at 57 ms (knee).

We observed similar trends in the shoulder muscle, namely,
posterior deltoid (Fig. 6D–F). The R1 (T(8) � 1.43, p � 0.164)
was similar between the two strategies. In contrast, significant
increases were observed for the R2 (T(8) � 4.13, p � 0.004), R3
(T(8) � 4.13, p � 0.004), and EV epochs (T(8) � 4.38, p � 0.003)
for the strategy to navigate between obstacles compared with
movement around both obstacles.

Experiment 1B: obstacle avoidance when reaching to three
potentials goals
As in Experiment 1A, we found that small perturbations did not
deter subjects from continuing between the obstacles, whereas
the large perturbation caused subjects to navigate around both
obstacles most of the time (Fig. 7A). Medium perturbations re-
sulted in a mixture of strategies, including passing between and
around the obstacles (Fig. 7A,B). Movement strategies expressed
for the medium perturbation again appeared to depend on hand
position (Fig. 7C,D). Those trials that went around the obstacles
tended to be more leftward at 50 ms after perturbation, whereas
those that navigated between both obstacles tended to be more
right at 50 ms after perturbation (K-S test, D � 0.23, p � 0.002).

Furthermore, the overall distributions of hand positions of each
load magnitude (small, medium, and large) at perturbation onset
were similar to that of the unperturbed trials (K-S test, D � 0.01,
p �� 0.05). We determined that lateral error on the previous trial
did not significantly influence the initial reaching direction on
the subsequent trial (K-S test, D � 0.18, p � 0.062).

We observed differences in the selection of the end goal based on
whether subjects navigated their hand between or around the obsta-
cles. Subjects who went around both obstacles almost always (96%)
switched to a new target regardless of the perturbation magnitude.
Conversely, if subjects navigated their hand between the obstacles,
their terminal hand position was at the center target regardless of the
perturbation. However, on some trials, it appears that the selection
of the left end target may have occurred after avoiding the obstacle.
For example, Figure 7A (left) illustrates a rightward deflection just
after passing the obstacle in some hand trajectories for the largest
perturbation (small red arrow). This redirection suggests that the
decision to select an alternate target may have occurred after the
selection to avoid the obstacle.

We quantified perturbation-related muscle activity in the tri-
ceps lateral for the medium perturbation trials that navigated
around both obstacles compared with those trials that navigated
between both obstacles (Fig. 8). The difference in evoked muscle
activity is somewhat reduced compared with Experiment 1A,
which may be the result of the presence of the lateral target.
However, qualitatively, they follow the same trends. The R1
(20 – 45 ms) was similar for the two strategies (paired t test, T(7) �
1.47, p � 0.176). Significant increases in muscle activity were
observed in the R2 (45–75 ms) and R3 (75–105 ms) long-latency
time periods (R2: T(7) � 2.61, p � 0.029; and R3: T(7) � 4.50, p �
0.001) and EV epochs of time (T(7) � 7.91, p �� 0.001; 105–130
ms) when the subjects generated a larger corrective response to
remain between the obstacles (Fig. 8). Similar to the group re-
sults, individual subjects analysis revealed (t test, p � 0.05) that 1,
6, 7, and 8 of 8 subjects modulated the R1, R2, R3, and EV epochs,
respectively. Preperturbation activity was �14% higher and sta-
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tistically significant (T(7) � 2.58, p � 0.03) for trials that navi-
gated between the obstacles compared with around obstacles.
However, the magnitude of this effect was very small and cannot
account for the differences observed during the long-latency and
voluntary epochs. Similar to Experiment 1A, we verified that
preperturbation activity had no influence on the later response
epochs. When we removed trials (�10%) that showed increased
muscle activity just before perturbation onset from the analysis,
we observed significant differences only in the R2, R3, and the EV
epochs (p � 0.05). ROC analysis revealed differences in muscle
activity for the two types of strategies (between vs around obsta-
cles) that deviated from chance at 52 ms (knee).

The optimal control model produced qualitatively similar re-
sults (Fig. 9A,B). Trials in which the hand passed around the two

obstacles always selected the left end target. The small rightward
deviations toward the central target observed for human subjects
was not reproduced by the model. However, this simply reflects
that the model only considers two competing feedback control
policies to capture the state-dependent switch in movement path
or goal target. As such, and by design, the model predicts that
changes in movement path and changes in endpoint goal occur at
the same time. However, our data indicate that there may be
multiple stages in this process (see Discussion)

Experiment 1C: obstacle avoidance when reaching to a
bar goal
The use of a rectangular bar as an end goal highlighted qualita-
tively similar results to the previous experiments. Medium per-
turbation produced a mixture of behaviors, with some trials
going around and others between both obstacles (Fig. 10A). The
decision to navigate around or between both obstacles appeared
to be position dependent. Trials in which the hand navigated to
the left of both obstacles were associated with more leftward hand
positions 50 ms after perturbation (Fig. 10B). We observed dif-
ferences in the final hand position that appeared to be dependent
on whether subjects navigated their hand between or around the
obstacles. In trials when subjects navigated around the obstacles
they reached the end target significantly more leftward of the
center position (�3.6 
 1.5 cm) than those trials that reached the
end target (�0.7 
 0.8 cm) by navigating between the obstacles
(paired t test, T(7) � 3.36, p � 0.011). The overall distributions of
hand positions of each load magnitude (small, medium, and
large) at perturbation onset were similar to that of the unper-
turbed trials (K-S test, p �� 0.05). Again, we found little effect of
the previous trials displacement on the current trials in both vari-
ants just as in Experiment 1 (K-S test, D � 0.16, p � 0.071).

We quantified the perturbation-related muscle activity in tri-
ceps lateral for the movement strategies between and around
obstacles. The results are illustrated in Figure 10C. The R1
(20 – 45 ms) was similar for the two strategies (Fig. 10C; paired t
test, T(7) � 1.59, p � 0.155). Significant differences in muscle
activity remained in the R2 and R3 long-latency time periods (R2:
T(7) � 3.21, p � 0.015; and R3: T(7) � 5.46, p � 0.001) and EV
epochs of time (T(7) � 5.20, p � 0.005) when the subjects gener-
ated a larger corrective response to remain between the obstacles
(Fig. 10C). Analysis of individual subjects yielded similar results
to the group (t test, p � 0.05), with 2, 5, 7, and 7 of 8 subjects
demonstrating modulation of R1, R2, R3, and EV epochs, respec-
tively. Preperturbation activity was again statistically higher
(�18% larger; T(7) � 2.90, p � 0.026) for trials that navigated
between obstacles compared with around obstacles. However,
this difference is unlikely to account for the differences observed
during the long-latency and voluntary epochs. Similar to above,
we removed trials (�10%) with significantly higher preperturba-
tion muscle activity from the analysis to examine the effects on
the subsequent epochs of muscle activity. We found no differ-
ences in the R1 epoch (T(7) � 1.59, p � 0.155), but significance
differences remained in the R2, R3, and EV epochs (R2: T(7) �
3.21, p � 0.015; R3: T(7) � 5.46, p �� 0.01; EV: T(7) � 4.69, p ��
0.01). ROC analysis revealed differences in muscle activity for the
two types of strategies (between vs around obstacles) that devi-
ated from chance at 51 ms (knee).

The optimal control model produced qualitatively similar re-
sults (Fig. 9C,D). Trials in which the hand passed around the two
obstacles always selected positions on the bar to the left. The
dispersion of hand positions was larger than those observed for
movements to the circular targets reflecting the redundancy
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available with these larger spatial targets (Nashed et al., 2012).
Trials that navigated outside of both obstacles resulted in signif-
icantly different (K-S test, D � 0.31, p �� 0.01) terminal end
positions on the bar compared (�4.85 
 2.77 cm) to those that
navigated between obstacles (�0.08 
 2.34 cm).

Experiment 2: target selection after mechanical perturbations
The unperturbed reaches were straight and qualitatively similar
whether there were one or three end targets presented (Fig. 1D).
In the three-target condition, subjects could reach any of the
three end targets, but they always chose to reach to the central
target that was closest to the start position (Fig. 11A). In the
three-target condition, we observed that larger perturbations al-
ways resulted in switching from the central goal to the leftward
goal. Medium perturbations resulted in similar responses to the
larger perturbation with �85% of trials causing a switch to the
leftward goal in the three-target case (Fig. 11A). Small perturba-
tions resulted in an �60% switch rate between movement strat-
egies, with some trials being corrected back to the originally
intended central goal and others to the leftward goal. In contrast,
for the one-target condition, random perturbations applied just
after movement onset resulted in rapid corrective responses to-
ward the end target for all perturbation magnitudes (medium
perturbation illustrated in Fig. 11B).

We compared the rapid motor responses generated for the
medium perturbation for the one-target and three-target condi-
tion (Fig. 11C,D). Preperturbation activity was statistically
similar across the two conditions (Fig. 11C,D; paired t test, T(7) �
0.61, p � 0.569). The R1 and R2 were similar for the two strategies
(Fig. 11C,D; R1: T(7) � �0.41, p � 0.707; and R2: T(7) � 0.55, p �

0.608). Significant differences in muscle
activity were observed in the R3 and EV
epochs of time (R3: T(7) � 2.61, p � 0.03;
and Vol: T(7) � 2.93, p � 0.028; 105–130
ms) with greater EMG for trials when the
subjects corrected back to the single cen-
tral target (Fig. 11C,D). Analysis of indi-
vidual subjects yielded similar results to
the group (t test, p � 0.05), with 0, 2, 7,
and 8 of 8 subjects demonstrating modu-
lation of R1, R2, R3, and EV epochs,
respectively. ROC analysis revealed differ-
ences in muscle activity for the two types
of strategies (between vs around obsta-
cles) that deviated from chance at 71 ms
(knee). The presence of the initial devia-
tion occurring before the start of the R3
epoch (75 ms) may explain why a few in-
dividual subjects displayed a significant
change in the R2 epoch. The timing of
these ROC results is delayed by �15 ms
compared with the decision to avoid the
obstacle in Experiment 1.

Optimal control models generated
qualitatively similar results in that move-
ments were initially directed to the central
target and were redirected to the periph-
eral targets when perturbations were ap-
plied (Fig. 11E,F). However, the hand
was redirected for all perturbed trials as
the cost-to-go to attain the peripheral tar-
gets was always found to be smaller than
to correct back to the central target. For

smaller perturbations, a specific cost to switch end targets or
several other aspects of the model could result in the model to
reproduce the ability to switch or maintain the same end goal for
the same perturbation size.

Discussion
Our study highlights how rapid motor responses to mechanical
perturbations are modulated with the presence of obstacles and
multiple goals. Previous studies have shown that long-latency
responses possess considerable flexibility, including goal-directed cor-
rections (Hammond, 1956; Pruszynski et al., 2008; Dimitriou et
al., 2012; Nashed et al., 2012; Pruszynski and Scott, 2012; Creve-
coeur et al., 2013; Omrani et al., 2013), stability (Nichols and
Houk, 1976; Akazawa et al., 1982; Krutky et al., 2010), and knowl-
edge of limb mechanics (Lacquaniti and Soechting, 1984; Kurtzer
et al., 2008, 2009; Pruszynski et al., 2011). However, in each case,
there was only one nominal strategy expressed in the corrective
response. Here we show that two distinct motor patterns or strat-
egies can be expressed during the long-latency time period.

This ability to make corrective movements that avoid obsta-
cles in the environment or select among alternate behavioral
goals highlights the intimate link between decision making and
motor control (Cisek, 2012; Wolpert and Landy, 2012). For ex-
ample, recent work highlights how movements to a spatial goal
can be redirected by an ongoing perceptual decision (Resulaj et
al., 2009) and that long-latency motor responses are continu-
ously modulated during this decisional process (Selen et al.,
2012). As well, properties of the physics of the limb (Cos et al.,
2011), extrinsic constraints, such as obstacles or penalties in the
environment (Sabes et al., 1998; Trommershäuser et al., 2003),
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and the number and position of targets (Chapman et al., 2010)
also influence our decisions on how to move in the world. Our
work illustrates that factors that have been shown to influence
decisional processing before moving can also be taken into ac-
count during movement when certain conditions arise, such as
external disturbances to the motor system.

An important question is to what degree the rapid motor re-
sponses to avoid obstacles or move to alternate goals are pre-
planned. The ability to evoke long-latency responses based on
subject intent has a long, rich history since the seminal studies by
Hammond (1956) (for a review, see Pruszynski and Scott, 2012).
However, these previous studies typically involved the rapid ini-
tiation of movement from a stationary posture. Further, there
was only one nominal goal, verbal or spatial. In contrast, it seems
unlikely that either of the motor responses to avoid the obstacles
was entirely preplanned. First, we observed no difference in the
overall positional distributions (combined movement strategies)
for the medium perturbation condition, suggesting that there
was no systematic bias in the initial aiming direction. In Experi-
ment 1A, although hand positions at perturbation onset were
similar, when the medium perturbation was decomposed into
the two strategies (between vs around obstacles), it is clear that
the position of the hand influenced which strategy was expressed
(Fig. 3A,B). Second, subjects did not know the presence, size, or
direction of the perturbation applied (Fig. 1B). Therefore, the
actual perturbation direction and magnitude, unknown at move-
ment initiation, was clearly influencing the decision to navigate
between or around the obstacles.

At the same time, it is difficult to imagine that the entire deci-
sional process to avoid the obstacle or attain an alternate goal was
performed after the perturbation, given the speed of the motor
responses (�60 ms and �75 ms, respectively). OFC provides an
important didactic model to describe how multiple potential mo-
tor strategies during movement can be precomputed and how the
selection of the best motor command determined by the cost-
to-go is expressed in the feedback control policy. In the frame-

work of OFC, the initiation of movement toward a behavioral
goal is selected to minimize the expected remaining cost. This
cost-to-go also dictates how to select motor commands at each
point in time based on the estimated state of the system (e.g.,
position, velocity). In our optimal control models, corrective re-
sponses to the right or left of the obstacle were dictated by the
instantaneous estimated position of the hand. In other words,
both strategies to avoid the obstacle are computed and repre-
sented in the feedback control policy. Which strategy is evoked
on a given trial simply reflects the estimated instantaneous posi-
tion (and velocity and acceleration) of the hand following the
perturbation, an interplay between variability in the trajectory
generated by intrinsic noise in the motor system and internal
knowledge of the motion evoked by the perturbation likely avail-
able during the long-latency epoch (Crevecoeur and Scott, 2013).
Although our model used two competing cost-to-go functions, in
principle, a single (more complex) state-dependent control pol-
icy can capture such changes in movement strategy, including
rerouting around the obstacles or changes in movement goal
(Bryson and Ho, 1975).
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It is important to note that, although OFC provides a useful
normative model to describe these corrective responses, we do
not propose that the brain explicitly implements its mathematics
(Scott, 2012). Such models identify what good control ought to
look like; deviations from “optimal behavior,” such as timing
differences for corrections to avoid an obstacle versus attain an
alternate goal, provide important insight on the simplifying strat-
egies used by the brain to control motor actions (see below).

In the present case, optimal control highlights that voluntary
actions reflect an similar interplay between preplanning and on-
line feedback control. The preplanning phase requires not just
setting motor circuits to generate a spatiotemporal pattern of
muscle activities to generate movement to the desired goal.
Rather, the motor circuits must also provide appropriate correc-
tive responses that consider the features of the behavioral goal,
environmental conditions, and properties of the limb. A small
disturbance or noise in the motor system leads to a small correc-
tive response (Crevecoeur et al., 2012). However, a large distur-
bance may require a more complex response such as to avoid an
object in the environment or to choose an alternate goal, as in the
present study. This preselection process permits rapid “deci-
sional” processes to be generated simply based on estimates of the
present state of the limb.

Thus, we propose that the motor system calculates many po-
tential responses to attain a behavioral goal with the specific pat-
tern that is actually expressed being dependent on the estimated
state of the limb during movement. Given the nonlinear com-
plexities of the motor system and environment, it is clearly not
possible to calculate all possible solutions, so there must be sim-
plifying approaches and limits both spatial and temporal to the
amount of alternate strategies that can be considered in a control
policy. For example, the motor system may only prepare online
corrective actions for a short time period (e.g., �100 ms in ad-
vance) much like model-predictive control generates locally OFC
over a finite time horizon (Lee, 2011). Further, there may be
limits as to the number of obstacles or alternate paths that can be
preplanned in the control policy. Previous work has shown that
we can plan multiple potential actions before movement initia-
tion (Cisek and Kalaska, 2005), and we suggest that similar pro-
cesses can be maintained and used during online control. Thus,
an aspect of elite motor performance may be the ability to prepare
multiple ways to perform a task so that alternate strategies can be
rapidly selected based on sensory feedback during movement.

Differences in the timing of corrective responses associated
with avoiding obstacles (Experiment 1) versus correcting to al-
ternate goals (Experiment 2) suggests that, unlike a single-stage
optimal feedback controller, the brain has a hierarchical structure
for processing different aspects of motor corrections. The long-
latency stretch response has traditionally been divided into two
separate time periods, consisting of the R2 epoch (�50 –75 ms)
and the R3 epoch (�75–105 ms). A distinction between R2 and
R3 was first proposed by Lee and Tatton (1975) and subsequent
work connected R2 with transcortical feedback through primary
somatosensory and motor cortex, whereas R3 with cerebellocor-
tical feedback involving the dentate nucleus (Meyer-Lohmann et
al., 1975; Thach, 1975; Evarts and Tanji, 1976; Strick, 1976, 1983;
Vilis et al., 1976). Studies on the sophistication of rapid motor
responses for the proximal arm have generally found that task-
dependent changes occur during the R2 epoch, including knowl-
edge of limb dynamics, stability, and intended movement
(Hammond, 1956; Nichols and Houk, 1976; Akazawa et al., 1982;
Lacquaniti and Soechting, 1984; Kurtzer et al., 2008, 2009;
Pruszynski et al., 2008, 2011; Krutky et al., 2010; Dimitriou et al.,

2012; Nashed et al., 2012; Pruszynski and Scott, 2012; Omrani et
al., 2013). The avoidance of obstacles observed in the present
study also led to changes in rapid motor responses in the R2
epoch. In contrast, the selection of alternate goals in Experiment
2 of the present study is later and appears to elicit a response only
during the R3 epoch. These new features of R2 and R3 processing
may reflect primary somatosensory and dentate input, respec-
tively, to primary motor cortex, although many other pathways
may also be involved (Scott, 2012). From a behavioral perspec-
tive, R2 appears to reflect corrections for a specific behavioral
goal, including whether this goal has been prepared and simply
needs to be launched following a mechanical perturbation (e.g.,
Hammond, 1956; Evarts and Tanji, 1976; Pruszynski et al., 2008).
In contrast, the R3 epoch may provide a higher-level corrective
process to elicit rapid motor responses to select new or alternate
behavioral goals not presently selected. Thus, R2 reflects correc-
tive responses on “how” to attain a behavioral goal, whereas R3
reflects responses on “what” goal to attain. Whether these pro-
cesses reflect different feedback pathways and/or brain regions
remains to be elucidated.

References
Akazawa K, Aldridge JW, Steeves JD, Stein RB (1982) Modulation of stretch

reflexes during locomotion in the mesencephalic cat. J Physiol 329:553–
567. Medline

Åström KJ (1970) Introduction to stochastic control theory. New York: Ac-
ademic.

Bowman AW, Azzalini A (1997) Applied smoothing techniques for data
analysis: the Kernel Approach with S-Plus Illustrations. Oxford: Oxford
UP.

Bryson AE, Ho YC (1975) Applied optimal control: optimization, estima-
tion, and control. New York: Taylor & Francis.

Chapman CS, Gallivan JP, Wood DK, Milne JL, Culham JC, Goodale MA
(2010) Reaching for the unknown: Multiple target encoding and real-
time decision-making in a rapid reach task. Cognition 116:168 –176.
CrossRef Medline

Cisek P (2012) Making decisions through a distributed consensus. Curr
Opin Neurobiol 22:927–936. CrossRef Medline

Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal
premotor cortex: specification of multiple direction choices and final
selection of action. Neuron 45:801– 814. CrossRef Medline

Cos I, Bélanger N, Cisek P (2011) The influence of predicted arm biome-
chanics on decision making. J Neurophysiol 105:3022–3033. CrossRef
Medline

Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch
reflex. J Neurophysiol 39:925–935. Medline

Crevecoeur F, Scott SH (2013) Priors engaged in long-latency responses to
mechanical perturbations suggest a rapid update in state estimation. PLoS
Comput Biol 9:e100177. CrossRef Medline

Crevecoeur F, Sepulchre RJ, Thonnard JL, Lefèvre P (2011) Improving the
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Trommershäuser J, Maloney LT, Landy MS (2008) Decision making, move-
ment planning and statistical decision theory. Trends Cogn Sci 12:291–
297. CrossRef Medline

Vilis T, Hore J, Meyer-Lohmann J, Brooks VB (1976) Dual nature of the
precentral responses to limb perturbations revealed by cerebellar cooling.
Brain Res 117:336 –340. CrossRef Medline

Wolpert DM, Landy MS (2012) Motor control is decision-making. Curr
Opin Neurobiol 22:996 –1003. CrossRef Medline

1780 • J. Neurosci., January 29, 2014 • 34(5):1769 –1780 Nashed et al. • Rapid Online Selection between Multiple Motor Plans

http://www.ncbi.nlm.nih.gov/pubmed/17962554
http://dx.doi.org/10.1152/jn.00679.2009
http://www.ncbi.nlm.nih.gov/pubmed/19906880
http://dx.doi.org/10.1016/j.cub.2008.02.053
http://www.ncbi.nlm.nih.gov/pubmed/18356051
http://dx.doi.org/10.1152/jn.00453.2009
http://www.ncbi.nlm.nih.gov/pubmed/19710379
http://dx.doi.org/10.1016/0006-8993(84)91411-2
http://www.ncbi.nlm.nih.gov/pubmed/6488038
http://www.ncbi.nlm.nih.gov/pubmed/809129
http://dx.doi.org/10.1016/0006-8993(75)90059-1
http://www.ncbi.nlm.nih.gov/pubmed/807298
http://dx.doi.org/10.1016/0006-8993(81)90998-7
http://www.ncbi.nlm.nih.gov/pubmed/7306817
http://www.ncbi.nlm.nih.gov/pubmed/9305811
http://dx.doi.org/10.1152/jn.01089.2011
http://www.ncbi.nlm.nih.gov/pubmed/22623483
http://www.ncbi.nlm.nih.gov/pubmed/1249597
http://dx.doi.org/10.1152/jn.00669.2011
http://www.ncbi.nlm.nih.gov/pubmed/23054604
http://dx.doi.org/10.1007/s00221-012-3041-8
http://www.ncbi.nlm.nih.gov/pubmed/22370742
http://dx.doi.org/10.1152/jn.90262.2008
http://www.ncbi.nlm.nih.gov/pubmed/18463184
http://dx.doi.org/10.1152/jn.00085.2009
http://www.ncbi.nlm.nih.gov/pubmed/19439680
http://dx.doi.org/10.1038/nature10436
http://www.ncbi.nlm.nih.gov/pubmed/21964335
http://dx.doi.org/10.1038/nature08275
http://www.ncbi.nlm.nih.gov/pubmed/19693010
http://www.ncbi.nlm.nih.gov/pubmed/12417672
http://www.ncbi.nlm.nih.gov/pubmed/9671681
http://dx.doi.org/<zbap><:pdfs%3B12%3Bhttp://10.1016/S0165-0270%3B/Border [0 0 0]>http://10.1016/S0165-0270<:pdfe%3B12><zbapx>(99)00053-9
http://www.ncbi.nlm.nih.gov/pubmed/10491942
http://dx.doi.org/10.1038/nrn1427
http://www.ncbi.nlm.nih.gov/pubmed/15208695
http://dx.doi.org/10.1016/j.tics.2012.09.008
http://www.ncbi.nlm.nih.gov/pubmed/23031541
http://dx.doi.org/10.1523/JNEUROSCI.5273-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22396403
http://dx.doi.org/10.1038/nn1026
http://www.ncbi.nlm.nih.gov/pubmed/12627165
http://www.ncbi.nlm.nih.gov/pubmed/824408
http://www.ncbi.nlm.nih.gov/pubmed/6619921
http://dx.doi.org/10.1016/0006-8993(75)90387-X
http://www.ncbi.nlm.nih.gov/pubmed/1148824
http://www.ncbi.nlm.nih.gov/pubmed/8985899
http://dx.doi.org/10.1038/nn1309
http://www.ncbi.nlm.nih.gov/pubmed/15332089
http://dx.doi.org/10.1162/0899766053491887
http://www.ncbi.nlm.nih.gov/pubmed/15829101
http://dx.doi.org/10.1038/nn963
http://www.ncbi.nlm.nih.gov/pubmed/12404008
http://dx.doi.org/10.1163/156856803322467527
http://www.ncbi.nlm.nih.gov/pubmed/12858951
http://dx.doi.org/10.1016/j.tics.2008.04.010
http://www.ncbi.nlm.nih.gov/pubmed/18614390
http://dx.doi.org/10.1016/0006-8993(76)90743-5
http://www.ncbi.nlm.nih.gov/pubmed/825192
http://dx.doi.org/10.1016/j.conb.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22647641

	Rapid Online Selection between Multiple Motor Plans
	Introduction
	Materials and Methods
	Results
	Experiment 1C: obstacle avoidance when reaching to a bar goal
	Experiment 2: target selection after mechanical perturbations
	Discussion
	References


