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Innervation by a GABAergic Neuron Depresses Spontaneous
Release in Glutamatergic Neurons and Unveils the Clamping
Phenotype of Synaptotagmin-1
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The role of spontaneously occurring release events in glutamatergic and GABAergic neurons and their regulation is intensely debated. To
study the interdependence of glutamatergic and GABAergic spontaneous release, we compared reciprocally connected “mixed” gluta-
matergic/GABAergic neuronal pairs from mice cultured on astrocyte islands with “homotypic” glutamatergic or GABAergic pairs and
autaptic neurons. We measured mEPSC and mIPSC frequencies simultaneously from both neurons. Neuronal pairs formed both in-
terneuronal synaptic and autaptic connections indiscriminately. We find that whereas mEPSC and mIPSC frequencies did not deviate
between autaptic and synaptic connections, the frequency of mEPSCs in mixed pairs was strongly depressed compared with either
autaptic neurons or glutamatergic pairs. Simultaneous imaging of synapses, or comparison to evoked release amplitudes, showed that
this decrease was not caused by fewer active synapses. The mEPSC frequency was negatively correlated with the mIPSC frequency,
indicating interdependence. Moreover, the reduction in mEPSC frequency was abolished when established pairs were exposed to bicuc-
ulline for 3 d, but not by long-term incubation with tetrodotoxin, indicating that spontaneous GABA release downregulates mEPSC
frequency. Further investigations showed that knockout of synaptotagmin-1 did not affect mEPSC frequencies in either glutamatergic
autaptic neurons or in glutamatergic pairs. However, in mixed glutamatergic/GABAergic pairs, mEPSC frequencies were increased by a
factor of four in the synaptotagmin-1-null neurons, which is in line with data obtained from mixed cultures. The effect persisted after
incubation with BAPTA-AM. We conclude that spontaneous GABA release exerts control over mEPSC release, and GABAergic innerva-
tion of glutamatergic neurons unveils the unclamping phenotype of the synaptotagmin-1-null neurons.
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Introduction
Whereas action potential-evoked synaptic vesicle release is char-
acterized by high temporal fidelity and speed, allowing reliable
information transfer, spontaneous release by its very nature is
unable to convey such time-locked information (Sutton and
Schuman, 2009; Ramirez and Kavalali, 2011). Thus, the function
of spontaneous release has been obscure, as such events might
also result from random activation of the evoked release machin-
ery. However, spontaneous release rates can be regulated inde-
pendently of evoked release by activation of metabotropic
glutamate receptors (Glitsch, 2006), and by transcriptional fac-
tors (Nelson et al., 2008), indicating that miniature release events

are sufficiently important to warrant separate regulation path-
ways. Indeed, specific functions for the spontaneous release of
glutamate in regulating protein synthesis and stabilizing synapses
have been described (Sutton et al., 2006, 2007). Furthermore,
spontaneous release of single glutamate or GABA quanta suffice
to affect postsynaptic firing in cerebellar stellate cells (Carter and
Regehr, 2002). Finally, spontaneous release plays a role in rein-
forcing homeostatic plasticity mechanisms (Sutton et al., 2006,
2007; Aoto et al., 2008) and therefore might be important for
setting overall network activity.

There is evidence that the properties of spontaneous gluta-
mate release events deviate between autaptic neurons grown in
isolation on astrocyte islands and neurons in mixed culture, or in
brain slices. The most striking difference is the finding that dele-
tion of synaptotagmin-1—the canonical calcium sensor for
neurotransmitter release—is without consequence for mEPSC
frequencies in autaptic neurons (Geppert et al., 1994; Liu et al.,
2009), but leads to strong increases in mEPSC frequency in larger
cultures or in brain slices (Broadie et al., 1994; Littleton et al.,
1994; Pang et al., 2006; Chicka et al., 2008; Kerr et al., 2008;
Kochubey and Schneggenburger, 2011). One reason for the dis-
crepancy between systems might conceivably be the lack of
GABAergic input experienced by glutamatergic neurons grown
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alone. Investigating astrocyte islands harboring more than one
neuron makes it possible to systematically study how properties
of synaptic transmission depend on the size of the network (Liu et
al., 2009, 2013). Here, we investigated the hypothesis that recip-
rocal glutamatergic/GABAergic innervation plays a specific role
in setting properties of synaptic transmission by comparing glu-
tamatergic neurons, which were (1) alone (i.e., autaptic) on an
astrocyte island, (2) in a pair with another glutamatergic neuron,
or (3) in a pair with a GABAergic neuron. All three configurations
formed spontaneously when hippocampal neurons were seeded
at low density on astrocyte islands and could therefore be studied
within the same neuronal cultures. Strikingly, we find that when
comparing hippocampal neurons to autaptic neurons the fre-
quency of mEPSCs was reduced in glutamatergic/GABAergic
pairs, but not in homotypic glutamatergic pairs, and this decrease
depended on GABAA receptor signaling, but not on electrical
activity, indicating a role for spontaneous GABA release in down-
regulating mEPSC rates. Furthermore, only in such reciprocally
connected glutamatergic/GABAergic pairs did deletion of
synaptotagmin-1 lead to unclamping of mEPSCs, indicating that
GABAergic innervation affects the operation of the glutamatergic
release machinery.

Materials and Methods
Hippocampal cultures. For electrophysiology, isolated hippocampal neu-
rons were plated on astrocyte microislands (Bekkers and Stevens, 1991).
In short, hippocampi were dissected from postnatal day 1 (P1) NMRI
pups or embryonic day 18 (E18) synaptotagmin-1-null mutant (�/�)
mice and control littermates (�/�) of either sex, and collected in HBSS
(Sigma), buffered with 7 mM HEPES. After removal of the meninges,
hippocampi were minced and incubated for 20 min in 0.25% trypsin in
HBSS at 37°C. After washing, the neurons were triturated with fire-
polished Pasteur pipettes, counted, and plated in Neurobasal (E18
neurons) or Neurobasal-A (P1 neurons) medium (Invitrogen) supple-
mented with 2% B-27 (Invitrogen), 1.8% HEPES, 1% glutamax (Invit-
rogen), 1% Pen/Strep (Invitrogen), and 0.2% �-mercaptoethanol.
Neurons were plated at 2500/cm 2 on microislands of mouse glia. Glial
islands were obtained by first coating glass coverslips with 0.15% agarose.
After drying and UV sterilization, custom-made rubber stamps were
used to print dots (islands; diameter, 200 –250 �m) using a substrate
mixture containing 0.25 mg/ml rat tail collagen and 0.4 mg/ml poly-D-
lysine dissolved in 17 mM acetic acid; glial cells were plated at 4800/cm 2.
For active synapse quantification experiments, Synaptophysin-pHluorin
(SypHy) cDNAs was subcloned into a pLenti vector, and viral particles
were produced as described previously (Naldini et al., 1996). Neurons
were transduced at 1 d in vitro (DIV1).

Electrophysiological recordings. Isolated and pairs of hippocampal neu-
rons from postnatal NMRI pups, synaptotagmin-1-null mutant embryos
and their wild-type (WT) littermates were recorded on DIV12–15. The
patch-pipette solution contained the following (in mM): 136 KCl, 18
HEPES, 4 Na-ATP, 4.6 MgCl2, 4 K2-ATP, 15 creatine phosphate, 1
EGTA, and 50 U/ml phospocreatine kinase (300 mOsm), pH 7.30. The
external medium used contained the following components (in mM): 140
NaCl, 2.4 KCl, 4 CaCl2, 4 MgCl2, 10 HEPES, 10 glucose (300 mOsm), pH
7.30. Cells were whole-cell voltage clamped at �70 mV with a double
EPC-10 amplifier (HEKA Elektronik) under control of Patchmaster ver-
sion 2x32 software (HEKA Elektronik). Currents were low-pass filtered
at 3 kHz and sampled at 20 kHz. Pipette resistance ranged from 3 to 5
M�. The series resistance was compensated to 85%. Only cells with series
resistances below 15 M� were included for analysis. All recordings were
made at room temperature. Brief depolarization steps of the cell soma
(from �70 to 0 mV for 2 ms) were used to initiate action potential-
dependent (evoked) GABA and glutamate release [resulting in the mea-
surements of evoked IPSCs (eIPSCs) and evoked EPSCs (eEPSCs),
respectively]. The identity of recorded neurons could be confidently es-
tablished by comparing decay time kinetics of recorded evoked and
spontaneous release (see Results). Fitmaster version 2x43 was used for

off-line analysis of evoked recordings. Spontaneous events were detected
using the Mini Analysis program (Synaptosoft).

Islands containing one or two neurons were initially identified by
visual inspection. Following successful whole-cell patch-clamp, the pres-
ence of visually undetected, and thus unclamped, neurons were ruled out
based on the absence of multicomponent postsynaptic currents upon
stimulation of action potentials in the patched cells. Multicomponent
postsynaptic currents typically result from the excitation of an un-
clamped neuron, leading to a recurrent postsynaptic current in the
patched cell. This criterion can thus be used to test for undetected neu-
rons, provided that one of the patched neurons is glutamatergic and the
synaptic strength between the interconnected neurons is sufficient to
elicit action potentials. The latter can be assumed due to the indiscrimi-
nate formation of synapses between neurons on islands (see Results). In
the case of isolated autaptic GABAergic neurons or GABAergic pairs, the
absence of mEPSC events was used to rule out the presence of an unde-
tected glutamatergic neuron.

Synapse counting. Neurons used for imaging were transduced with
SypHy (Granseth et al., 2006) expressing lentiviral particles on DIV1.
Isolated and pairs of hippocampal neurons from postnatal NMRI pups
were recorded on DIV8 –9. Either MPTS (8-methoxypyrene-1,3,6-
trisulfonic acid; 10 �M) or Alexa Fluor-568 (5 �M) was added to the
patch-pipette solution (see above) and infused into the neurons during
whole-cell patch-clamp recordings. Spontaneous release was measured
from both neurons, and they were stimulated to record evoked currents
and identify their identity as glutamtergic or GABAergic. Train stimula-
tion (300 action potentials (AP) at 40 Hz) of either neuron was combined
with imaging of SypHy to identify the population of active glutamatergic
or GABAergic synapses. Imaging was performed using a dual-band filter
(DA/FI-A-000, Semrock; excitation, 490 nm). After the recording, the
whole-cell patch pipettes were carefully retracted, thus exposing the total
dendritic arborization, which could now be visualized using excitation of
either MPTS (395 nm) or Alexa Fluor-568 (560 nm) residing inside the
neurons (DA/FI/TR-A-000 triple-band filter, Semrock). The total num-
ber of synaptic connections was identified using superfusion of NH4Cl,
equilibrating the pH across all membranes to 7.4, thereby unquenching
all SypHy-positive synaptic contacts. The NH4Cl medium used con-
tained the following components (in mM): 90 NaCl, 50 mM NH4Cl, 24
KCl, 4 CaCl2, 4 MgCl2, 10 HEPES, and 10 glucose, pH 7.20. Background
correction was used to identify specific SypHy fluorescence by acquiring
and subtracting a SypHy image before NH4Cl application, or train stim-
ulation, with the same exposure time. Synapses were detected using au-
tomated synapse recognition software (Schmitz et al., 2011). First, the
dendritic arborization of an isolated neuron or of each neuron within a
pair, as revealed by MPTS or Alexa Fluor-568 imaging, was manually
traced. SypHy fluorescent spots were automatically detected and in-
cluded as representing synapses if they fulfilled the following three crite-
ria: first, the NH4Cl-induced increase in fluorescence intensity should be
at least two times the SD above noise level. Second, the spot size should be
at least 0.6 �m 2 to exclude spots representing smaller intracellular com-
partments or noise. Third, only spots appearing on the dendritic mask
were included. The latter criterion prevents including SypHy fluorescent
spots that are not colocalized with neuronal extensions (e.g., from ex-
pression in glial cells forming the microdot island). Synapses contacting
each individual neuron were counted, and the total synapse number in
pairs was found by summing the synapse number of both neurons. A
small fraction (�10% of total) of synaptic contacts overlapped signifi-
cantly with both dendritic masks. Experiments were conducted at room
temperature on an inverted Zeiss Axiovert 200 microscope equipped
with an LD LCI Plan-Apo 25�/0.8 numerical aperture oil-immersion
objective (Carl Zeiss Microscopy). Fluorophores were excited by a
monochromator (Polychrome V, TILL Photonics) controlled by
TILLVision, and images (1376 � 1040 pixels) were acquired with a
cooled digital 12-bit CCD camera (SensiCam, PCO-Tech).

Statistics. The results are shown as the average � SEM, with n referring
to the number of recorded isolated or paired neurons for each group,
unless otherwise indicated. For analysis, datasets were first tested for
normal distribution. If data were normally distributed (or attained nor-
mal distributions using log transformation; normality was tested with an
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equal variance test), we used one-way ANOVA
to test differences between the different groups.
If a statistical difference was found within the
population of groups using ANOVA, we tested
the difference between individual group means
using Tukey’s test. Datasets that did not show
normal distribution were tested using the
Kruskal–Wallis test. If a statistical difference
was found within the population of these
groups, we tested the differences between indi-
vidual group medians using Dunn’s method.
Two-tailed t tests were used to compare two
groups. Significance was assumed when p �
0.05. Statistical testing was performed using
SigmaPlot 11 (SYSTAT). In figures, the signif-
icance levels are indicated by asterisks, as fol-
lows: *p � 0.05; **p � 0.01; and ***p � 0.001.

Results
Functional autaptic and interneuronal
synaptic connections form without
preference within reciprocally
connected neuronal pairs
To study the interdependence of glutama-
tergic and GABAergic synaptic transmis-
sion in minimal neuronal networks, we
here compared microdot glial islands con-
taining isolated (autaptic) glutamatergic
or GABAergic neurons from NMRI mice
(Fig. 1A,C) with glial islands containing
two reciprocally connected neurons (Fig.
1B). The minimal networks formed by
two neurons were either homotypic pairs
(i.e., two glutamatergic or two GABAergic
neurons) or “mixed pairs” containing one
glutamatergic and one GABAergic neuron
(Fig. 1C). All configurations formed
spontaneously when hippocampal neu-
rons were seeded at low density on astro-
cyte islands, and they could therefore be
studied and compared within the same
neuronal
cultures. The identity of cultured hippocampal neurons (either
GABAergic or glutamatergic) is difficult to recognize based on
morphology only; therefore, their classification could only be
determined with certainty during whole-cell recordings. To as-
sess synaptic connectivity within a minimal network, both cells
were measured simultaneously using whole-cell patch-clamp of
the cell soma, and subsequent brief depolarizations were used to
elicit an action potential in either of the connected neurons (Fig.
1D). Since we used high internal chloride concentration during
whole-cell recordings, both glutamatergic and GABAergic release
events were detected as inward currents. However, the identity of
recorded neurons could be easily established by comparing decay
time kinetics of recorded evoked and spontaneous release events;
GABAergic postsynaptic currents decay much slower (Fig. 1H)
compared with glutamatergic postsynaptic currents (Figs. 1G,
2B,C, spontaneous events; Wilcox et al., 1994; Toonen et al.,
2006). Acute block of GABAergic and glutamatergic neurotrans-
mission by bicuculline and CNQX in mixed pairs confirmed ac-
curate identification of glutamatergic and GABAergic neurons
based on those criteria (Fig. 2F). Furthermore, in each recording
the absence of multicomponent postsynaptic responses after
stimulation was used to rule out the presence of an undetected,

unclamped (third) neuron, so that only pairs of neurons were
studied (see also Materials and Methods).

Stimulating isolated glutamatergic or GABAergic neurons
during whole-cell patch-clamp resulted in autaptic eEPSCs (Fig.
1D, isolated green neuron) or eIPSCs (Fig. 1D, isolated magenta
neuron), respectively. Excitation of either neuron within a pair
resulted in autaptic and interneuronal synaptic evoked responses
in the stimulated and unstimulated neuron, respectively (Fig. 1D,
mixed pairs with stimulation of glutamatergic or GABAergic
neuron shown separately; left and right pair). Glutamatergic neu-
rons in either homotypic pairs (i.e., with another glutamatergic
neuron) or mixed pairs (with a GABAergic neuron) showed com-
parable autaptic and synaptic eEPSC amplitudes, which were also
indistinguishable from eEPSCs in purely autaptic neurons (Fig.
1E). The same was found for GABAergic neurons (Fig. 1F), indi-
cating that both neuronal types form functional autaptic and
synaptic connections without preference. Furthermore, no dif-
ferences were found in the decay time kinetics of eEPSCs and
eIPSCs, suggesting postsynaptic receptor composition and asyn-
chronous release were comparable between all groups (Fig.
1G,H). These data deviate somewhat from previous reports from
the Chapman laboratory, where interneuronal synaptic EPSCs
were reported to be on average smaller than autaptic EPSCs
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Figure 1. Reciprocal connectivity within minimal neuronal networks. A, B, Bright-field and fluorescence images of an isolated
neuron (A) and a pair consisting of two connected neurons (B, DIV14). Alexa Fluor-467 (red) or lucifer yellow (yellow) was used to
demonstrate neurite arborization (A2, B2; scale bars, 25 �m). C, Illustrations summarizing the different experimental groups. D,
Whole-cell recording of isolated neuron and pairs containing two reciprocally connected cells. An action potential induced evoked
autaptic release in isolated glutamatergic (eEPSC; left, green) and GABAergic (eIPSC; middle, magenta) neurons. An action poten-
tial induced both autaptic and synaptic eEPSCs (left illustration of mixed pair, green traces) and eIPSCs (right illustration of mixed
pair, magenta traces) in mixed pairs. E, F, Evoked amplitudes were comparable between autaptic and synaptic connections in
glutamatergic (E) and GABAergic (F ) isolated neurons and minimal networks. G, H, No differences were found in decay time
(90 –10%) between autaptic and synaptic connections in glutamatergic (G) and GABAergic (H ) isolated neurons and pairs. Also,
evoked charge was comparable between the different groups (glutamatergic evoked charge: isolated, 0.042 � 0.0085 pC; homo-
typic autaptic, 0.029�0.0067 pC; homotypic synaptic, 0.0399�0.010 pC; mixed autaptic, 0.028�0.0071 pC; mixed synaptic	
0.033 � 0.0066 pC; GABAergic evoked charge: isolated, 0.27 � 0.032 pC; homotypic autaptic, 0.36 � 0.085 pC; homotypic
synaptic, 0.26 � 0.089 pC; mixed autaptic, 0.28 � 0.049 pC; mixed synaptic, 0.38 � 0.058 pC). Differences in amplitude and
decay time of eEPSCs and eIPSCs between different groups were tested using one-way ANOVA ( p 
 0.05).
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within neuronal pairs (Liu et al., 2009, 2013). The reason for this
difference is unknown, but it probably results from differences in
the protocols used. For instance, the previous reports made use of
poly-lysine spraying, which creates astrocyte islands of varying
size (100 –1000 �m; Liu et al., 2013), whereas we used poly-lysine
stamping, which results in islands of more constant size (200 –
250 �m). Since it was hypothesized that the larger autaptic EPSCs
are caused by proximity, not by a preference for the autaptic

connection type (Liu et al., 2013), the use
of larger islands might favor autaptic over
synaptic EPSCs. Whatever the reason for
this difference, in our experiments two neu-
rons forming a pair were as strongly coupled
to the other neuron as they were to
themselves.

GABAergic input attenuates mEPSC
frequency in mixed pairs
To study the effect—if any— of the recip-
rocally connected neuron within a mini-
mal network on spontaneous release, we
recorded from unstimulated isolated and
reciprocally connected neurons. Sponta-
neously occurring miniature GABAergic
(mIPSCs) and glutamatergic (mEPSC) re-
lease events recorded from isolated (au-
taptic) neurons could be clearly separated
based on their decay time kinetics (Fig.
2A,B). In mixed pairs, where mIPSCs and
mEPSCs were measured simultaneously,
we therefore used a threshold of 5 ms to
segregate mEPSCs and mIPSCs (tolerat-
ing a mis-sorting error of 6.5% for
mEPSCs and 3.5% for mIPSCs). Decay
time and amplitude of mEPSCs were com-
parable between all groups (Fig. 2C,D), sug-
gesting that the presence or identity of the
reciprocally connected neuron did not lead
to major postsynaptic changes. The same
was found for GABAergic neurons (Fig.
2C,D). No difference was found in sponta-
neous release frequency between isolated
and homotypic pairs of glutamatergic neu-
rons (Fig. 2E). However, a pronounced de-
crease in both autaptic and interneuronal
synaptic mEPSC frequency was found in
mixed (glutamate/GABA) pairs, indicating
that the presence of a reciprocally connected
GABAergic neuron resulted in the attenua-
tion of spontaneous release events from
the excitatory neuron (Fig. 2E, right).
This contrasts with the finding that the
evoked EPSCs had similar amplitudes in
mixed pairs, autaptic neurons, and ho-
motypic glutamatergic pairs (Fig. 1E),
indicating that, specifically, the sponta-
neous glutamate release was changed in
mixed pairs. In fact, mIPSC and mEPSC
frequencies were inversely correlated
within mixed pairs (NMRI mice: Spear-
man’s rank correlation, r 	 �0.455, p 	
0.0001; C57BL/6 mice: Spearman’s cor-
relation coefficient 	 �0.405, p 	

0.001; see Fig. 5C,D), indicating that the extent to which
mEPSC frequency is downregulated depends on the strength
of spontaneous GABAergic neurotransmission, which varies
between mixed pairs. In contrast, mIPSC frequency was un-
changed among autaptic GABAergic neurons, GABAergic ho-
motypic pairs, and mixed pairs (Fig. 2E), showing that the
regulation is only on the glutamatergic, not on the GABAergic,
neuron within mixed pairs.

B

A

Decay time (msec)
0 5 10 15 20 25 30N

or
m

al
iz

ed
 e

ve
nt

 n
um

be
r (

%
)

Th
re

sh
ol

d

Threshold

0

20

40

60

80

100

120

(12)

(15)

S
po

nt
an

eo
us

 fr
eq

ue
nc

y 
(H

z)

0

2

4

6

8

(12) (11) (11) (15) (10) (10) (23) (23) (23) (23)

C

D

F

E

10 ms
25 pA

5 ms
20 pA

S
po

nt
an

eo
us

 d
ec

ay
 ti

m
e 

(m
s)

0

2

4

6

8

10

(12) (11) (11) (15) (10) (10) (23) (23) (23) (23)

S
po

nt
an

eo
us

 a
m

pl
itu

de
 (p

A
)

0

20

40

60

(12) (11) (11) (15) (10) (10) (23) (23) (23) (23)

+ Bicuculline (40 μM) + Bicuculline (40 μM)
+ CNQX (10 μM)

4 nA
30 ms

4 nA
30 ms

(12)

(12)

m
IP

S
C

 fr
eq

ue
nc

y
(n

or
m

al
zi

ed
)

m
IP

S
C

 fr
eq

ue
nc

y
(n

or
m

al
zi

ed
)

**

0

0

0.4

0.8

1.2

1.6

2.0

0.2

0.6

1.0

1.4

1.8

Time (sec)
0 20 40 60 80 100 120 140 160 180
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To determine whether the attenuation
of mEPSC release is due to ongoing, cur-
rent GABAergic inhibition, we used acute
application of the competitive GABAA re-
ceptor blocker bicuculline while record-
ing mixed pairs. Acute bicuculline
application blocked both evoked and
spontaneous IPSCs, but did not affect
mEPSC frequency (Fig. 2F, insets are
evoked currents), establishing the validity
of our identification of mEPSCs and mIP-
SCs, and ruling out an acute role of
GABAA receptor signaling in negatively
regulating mEPSC release in mixed pairs.
Successive application of bicuculline and
CNQX blocked all spontaneous events,
indicating that the recorded mEPSCs are
AMPA/kainate receptor-dependent re-
lease events. Note that the remaining
mIPSCs during bicuculline application rep-
resent mis-sorted mEPSCs, which are
blocked during bicuculline/CNQX applica-
tion (Fig. 2F).

Long-term spontaneous GABAergic
inhibition is necessary and sufficient to
control spontaneous glutamatergic
release in mixed pairs
Since attenuation of acute GABAergic sig-
naling does not affect mEPSC release in
mixed pairs (Fig. 2F), we investigated
whether the reduction of mEPSC fre-
quency in mixed pairs depends on long-
term GABAA receptor signaling. To test
this, we again used bicuculline, but now
studied the effects of prolonged inhibition
of GABAergic signaling on mEPSC release
in established pairs. Bicuculline was
added to the cultures at DIV10 –11 (i.e.,
when synapses had already been established), and after 3 d paired
neurons were recorded in normal external solution (without bi-
cuculline). Bicuculline stayed active in the culture medium dur-
ing the 3 d of incubation, since local application of this medium
completely blocked eIPSC amplitude (Fig. 3A). Inhibition of
GABAA receptor signaling for 3 d completely reversed the inhi-
bition of mEPSC frequency in mixed pairs (Fig. 3B; average
mEPSC in mixed pairs pretreated with bicuculline compared
with untreated pairs: p � 0.001, t test; see Fig. 6A1 for similar
effect in C57BL/6 mixed pairs).

Since bicuculline blocks GABAA receptors, either evoked or
spontaneous GABA release might regulate mEPSC release. To
segregate between these two possibilities, we used long-term te-
trodotoxin (TTX) application to block action potential-
dependent release. Also, TTX was still active after 3 d of
incubation, since local application of TTX-containing medium
blocked both action potential-dependent eEPSCs and eIPSCs
(Fig. 3C). However, long-term TTX treatment did not reverse the
inhibition of mEPSC frequency in mixed pairs (Fig. 3D). There-
fore, spontaneous GABA release acts to confine mEPSC release
rates. It should be borne in mind that TTX also blocks action
potentials in the glutamatergic neuron, which might affect
mEPSC frequencies in older cultures, but in that case an increase
should be seen (Wierenga et al., 2006), so this is unlikely to con-

found our conclusion. This experiment further rules out that the
effect of bicuculline could be mediated by a changed firing pat-
tern in the glutamatergic neuron (Fig. 3E).

Strikingly, the presence of a GABAergic neuron affected
mEPSC release rates equally in autaptic and interneuronal synaptic
connections (Figs. 2E, 3B). This shows that the changes to the gluta-
matergic neuron are global and not caused by any inherent differ-
ences between autaptic and interneuronal synaptic connections.
This finding further rules out the scenario of a very local retrograde
inhibitor from the GABAergic neuron affecting mEPSC frequencies
in a synapse-specific manner.

In sum, we find that, in mixed pairs, the GABAergic neuron
reduces the mEPSC rate in both autaptic and interneuronal syn-
aptic connections in the reciprocally connected glutamatergic
neuron via a mechanism that requires long-term (3 d) GABAA

activation. This result—and the negative correlation between
mIPSC and mEPSC frequencies—indicates that miniature events
are interdependent within neuronal networks.

Spontaneous release rates are not proportional to the number
of active synapses
A reduced mEPSC frequency in mixed pairs compared with a
homotypic glutamatergic pair might be expected based on the
fact that, as a first approximation, half of the incoming connec-
tions into any of the neurons are expected to be glutamatergic,
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whereas the rest are GABAergic. Yet, the mIPSC frequency was
unchanged in mixed pairs compared with either homotypic
GABAergic pairs or autaptic neurons, which, together with the
effect of long-term bicuculline application, indicates that a spe-
cific process acts to control mEPSC frequencies in mixed pairs.
To scrutinize the relationship between miniature rate and syn-
apse number, we combined patch-clamp with quantification of
the synapse population.

We quantified connections in autaptic neurons and in neuro-
nal pairs using expression of the pH-sensitive fluorescent marker
SypHy. In this construct, the pH-sensitive variant of GFP
(pHluorin) is coupled to the luminal domain of Synaptophysin
(Granseth et al., 2006), allowing us to identify synaptic connec-
tions by imaging. Following patch-clamp, we measured sponta-
neous events from both neurons and then stimulated either
neuron to identify their identity as glutamatergic or GABAergic.
To identify synapses formed by each neuron, we stimulated the
two neurons sequentially by trains of action potentials (300 AP at
40 Hz) while imaging. Afterward, an ammonium solution at pH
7.2 was superfused to identify the total synapse number. Finally,
we withdrew both pipettes and identified the branch pattern of
each neuron by imaging two different fluid phase markers that
were infused into the neurons during patch-clamp recording.
This pattern was used to create a dendritic mask, which was used
to ensure that identified spots were bona fide synapses and not
SypHy expressed in the underlying glial cells (see Materials and
Methods). Synapses were identified as distinct spots in back-
ground corrected images (Fig. 4A2,B2; images in the presence of
ammonium were subtracted by prestimulation images; similarly,
images obtained before the 300 AP train were subtracted from
images obtained during the train) using published software
(Schmitz et al., 2011). Figure 4, A3 and B3, shows the mask and
identified synapses in an autaptic neuron and a pair, respectively,
following ammonium superfusion. Figure 4, A4 and B4, shows
the mask and synapses obtained by train stimulation of one neu-
ron in the same pair (indicated by asterisk).

In neuronal pairs—whether homotypic, glutamatergic, or
mixed—we found that the total number of synapses (identified
by ammonium) was approximately doubled compared with au-
taptic neurons (Fig. 4C). When evaluating these data, the detec-
tion limit of pHluorin imaging should always be kept in mind, as
well as the fact that some synapses might be postsynaptically
(Shen et al., 2006) or presynaptically (Crawford et al., 2012) si-
lent. Our numbers overall agree with—and are even a bit higher
than—previously reported data using immunostaining against
VGLUT (Liu et al., 2009, 2013), indicating sufficient detection.

To compare the number of glutamatergic synapses to the
spontaneous release frequencies, we summed the total number of
glutamatergic synapses on an island (i.e., from both neurons, in
case of a glutamatergic pair) using the synapse numbers identi-
fied during the 40 Hz train (since those synapses could be un-
equivocally identified as glutamatergic, based on the identity of
the patched cell). Likewise, we summed up the mEPSC frequen-
cies from both neurons, in case of a pair, and plotted the summed
mEPSC frequencies as a function of the number of glutamatergic
synapses (Fig. 4F). The same was done for mIPSCs and
GABAergic synapses (Fig. 4G). When connecting the points rep-
resenting autaptic neurons with those representing homotypic
pairs, it can be appreciated that miniature frequencies tended to
saturate (Fig. 4F,G). This effect was stronger for GABAergic neu-
rons. The point from the mixed pairs falls nicely on the same
curve as far as the mIPSC frequency is concerned (Fig. 4G),
whereas it falls below the curve in the case of mEPSCs (Fig. 4F). Thus,

the reduction of mEPSC frequency in mixed pairs is more severe than
expected due to the decrease in the number of synapses.

The neurons used for imaging were younger (DIV8 –9) than
those used previously for purely electrophysiological measure-
ments (DIV12–15), because the branch pattern of older neurons
was difficult to identify. To investigate the relationship between
spontaneous and evoked release in the older neurons, we
summed up all evoked currents (trans-synaptic and autaptic,
from both neurons in the case of pairs) on an island and plotted
the sum of spontaneous frequencies against the sum of evoked
currents for the data presented in Figure 2. This resulted in very
similar plots (Fig. 4H, I), but with overall higher spontaneous
release rates because of the age of the neurons. Also in this set of
data, the mEPSC frequency in mixed pairs fell below the curve
between the autaptic and glutamatergic pair (Fig. 4H), whereas
the mIPSC frequency in mixed pairs was above the curve (Fig.
4I). This plot makes a similar point as the synapse-counting ex-
periment and indicates that the mEPSC depression is stronger in
the older neurons. Note that if the mEPSC frequency from the
mixed pairs was recalculated according to the effect of bicuculline
(Fig. 3), the mEPSC release frequency in mixed pairs would be
close to the curve connecting autaptic neurons and homotypic
glutamatergic pairs (Fig. 4H, gray arrow and square).

Overall, the lower mEPSC frequency in mixed pairs cannot be
explained only by a lower number of glutamatergic synapses in
mixed neuronal pairs compared with glutamatergic pairs, indi-
cating a specific action of GABA on glutamatergic miniature re-
lease probability.

Enhanced spontaneous release typical for synaptotagmin-1-
null mutants depends on mixed connectivity
Several reports found that elimination of synaptotagmin-1
caused disinhibition of spontaneous release in neuronal net-
works, but not in isolated neurons (for references, see Introduc-
tion). Here, we scrutinized the minimal requirements to unveil
the characteristic disinhibition of spontaneous release in the
synaptotagmin-1-null mutant. Again, we found a strong reduc-
tion in mEPSC frequency in mixed pairs from control wild-type
littermates (Syt-1�/�; C57BL/6 mouse strain; Fig. 5B1), which is
in agreement with our previous observations in NMRI mice (Fig.
2E). Upon deletion of synaptotagmin-1, no disinhibition of
mEPSC frequencies was observed in isolated synaptotagmin-1-
null mutant (Syt-1�/�) glutamatergic neurons or in homotypic
pairs (Fig. 5B1,B2, compare left and right panels; for example
traces from homotypic pairs, see Fig. 5A1,A2, top traces), which is
in line with previous reports. However, a striking increase in the
frequency of both mIPSCs and mEPSCs was unveiled in mixed
pairs (Fig. 5B1,B2, compare left and right mixed pair data; for
example traces from Syt-1�/� mixed pairs, see Fig. 5A1,A2, bot-
tom traces), showing that reciprocal connectivity between at least
one GABAergic and one glutamatergic neuron is sufficient to
instigate this Syt-1�/� phenotype in glutamatergic neurons. In ad-
dition, the inverse relationship between mIPSC and mEPSC fre-
quencies found in wild-type mixed pairs from NMRI (Fig. 5C) and
C57BL/6 (Fig. 5D) mice was lost in Syt-1�/� mixed pairs (Fig. 5E;
Spearman’s correlation coefficient 	 0.228, p 	 0.145), suggesting
lack of GABAergic-induced control over mEPSC release.

Since mixed connectivity (1) induces disinhibition of spontane-
ous release in Syt-1�/� neurons (Fig. 5A,B) and (2) attenuates
mEPSC release using GABAA receptor signaling (Fig. 3B), the ques-
tion arises of whether a common mechanism is involved. We hy-
pothesized that after bicuculline treatment of Syt-1�/� mixed pairs,

Wierda and Sørensen • Regulation of Miniature Release in Neuronal Pairs J. Neurosci., February 5, 2014 • 34(6):2100 –2110 • 2105



a shared underlying mechanism would exclude further enhance-
ment of mEPSC release. Long-term bicuculline treatment (3 d) con-
firmed the involvement of GABAA receptor signaling in regulating
mEPSC release in mixed pairs from wild-type C57BL/6 littermates
(Syt-1�/�; Fig. 6A1). Furthermore, long-term bicuculline treatment

induced an additional increase of mEPSC release in Syt-1�/� mixed
pairs (Fig. 6A2). Thus, GABAA receptor-dependent attenuation and
the typical Syt-1�/� disinhibition apparently comprise two inde-
pendent pathways affecting spontaneous glutamatergic release in
mixed pairs (Fig. 6B).
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functional autaptic or synaptic glutamatergic connections (Kruskal–Wallis test, p 
 0.05). E, Similarly, evoked amplitude is comparable between autaptic and synaptic connections in GABAergic
neurons in isolation and minimal networks (Kruskal–Wallis test, p 
 0.05). F, G, Correlation plot between the total number of active synapses (assessed using 40 Hz trains) and the total
mEPSC/mIPSC release frequency in all groups (frequencies summed up from both neurons in the case of a pair). F, G, The total mIPSC frequency and GABAergic synapse number correlate in mixed
pairs, but the total mEPSC frequency in mixed pairs was lower than expected based on number of glutamatergic synapses. H, I, Correlation plot between the summed eEPSC/eIPSC amplitudes and
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eEPSC amplitude in mixed pairs, while the mIPSC frequency was more consistent with the eIPSC amplitude found in mixed pairs. Long-term treatment with bicuculline blocks the GABAergic
inhibition of mEPSC frequency (Fig. 3B), herewith shifting the mEPSC frequency toward the predicted value (H, gray arrow marked ‘Bic’ and square).
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Spontaneous release depends on intracellular calcium levels,
though with a lower apparent Ca 2� cooperativity compared with
evoked synaptic release (Lou et al., 2005). Therefore, an increase
in basal calcium concentration could explain the increased spon-
taneous release frequency found in Syt-1�/� mutant mixed pairs.
To test the role of basal calcium in regulating spontaneous release
in homotypic and mixed hippocampal pairs, we preincubated
cells with BAPTA-AM (a high-affinity, membrane-permeant
calcium chelator) and subsequently recorded spontaneous re-
lease. The absence of evoked release confirmed the efficiency
of the treatment. The mEPSC frequency in homotypic gluta-
matergic pairs pretreated with BAPTA-AM was strongly de-
creased compared with untreated neurons (compare Figs. 6C1,
5A1,B1,B2), showing that a significant portion of spontaneous re-
lease events in homotypic pairs are calcium dependent. This de-
crease in mEPSC and mIPSC frequency upon BAPTA-AM
treatment agrees with several previous reports (Xu et al., 2009; Grof-
fen et al., 2010; Nosyreva and Kavalali, 2010; Yang et al., 2010; Wil-
liams et al., 2012), but appears to contradict the findings of Vyleta

and Smith (2011), who reported no effect of
BAPTA-AM on mEPSC frequency and
concluded that mEPSCs are stimulated by
activation of the calcium-sensing recep-
tor. The reason for this discrepancy re-
mains unknown, but it is possible that
different culture or measurement condi-
tions might result in different proportions
of calcium-dependent and calcium-inde-
pendent miniature events.

In mixed pairs, a decrease in both
mEPSC and mIPSC release to similar fre-
quencies was found. Since BAPTA-AM
eliminated the difference in spontaneous re-
lease rate between homotypic glutamatergic
and mixed pairs, a difference in calcium ho-
meostasis might be involved in setting the
different miniature rates. Importantly, the
typical Syt-1�/� disinhibition of spontane-
ous release found in mixed pairs persisted
after pretreatment with BAPTA-AM (Fig.
6C2), indicating that this phenotype de-
pends on an increased spontaneous release
willingness of synaptic vesicles.

Overall, we show that a minimal neuro-
nal network consisting of a pair of recipro-
cally connected glutamatergic/GABAergic
neurons is sufficient to reveal the Syt-1�/�

unclamping phenotype, which is absent
both in glutamatergic pairs and glutamater-
gic autaptic neurons. This might be caused
partly by the occlusion of the synap-
totagmin-1 phenotype due to the higher
overall mEPSC rate in glutamatergic pairs
and glutamatergic autaptic neurons, partly
by a different operation of the release
machinery.

Discussion
We investigated the interdependence of
spontaneously occurring glutamatergic
and GABAergic release events in pairs of
hippocampal neurons growing on astro-
cyte islands. We found a marked decrease
in mEPSC frequency in mixed glutama-

tergic/GABAergic interconnected pairs growing on astrocyte is-
lands, and a negative correlation between mEPSC and mIPSC
frequency. Interdependence of mEPSC and mIPSC frequency
might be expected when neurons grow in a limited environment,
because of competition for space during synaptogenesis. How-
ever, the counting of synapses using synaptophysin-pHluo-
rin— or comparing them to the evoked release amplitude—
showed that the mEPSC rate does not follow in a simple way from
the number of active synapses in mixed neuronal pairs (Fig.
4F,H). Whereas a somewhat lower mEPSC rate in mixed pairs
compared with homotypic glutamatergic pairs was expected due
the lower number of glutamatergic synapses, this could not ex-
plain the reduction when compared with autaptic glutamatergic
neurons, or the fact that long-term (from DIV10) bicuculline
application increased the mEPSC frequency without any signifi-
cant changes to evoked release. Strikingly, long-term bicuculline
treatment restored the mEPSC frequency to expected values
when considering the evoked release amplitude (Fig. 4H). The
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specificity of the interdependence of
mEPSC and mIPSC frequencies is indi-
cated by the fact that the frequency of
mIPSCs was unchanged, regardless of
whether the GABAergic neuron was in
an autaptic situation, in a homotypic
(GABAergic) pair, or in a mixed pair.
Moreover, the total mIPSC rate seemed to
follow from the number of GABAergic
synapses (Fig. 4G), indicating that
whereas the GABAergic neuron affects
spontaneous release from the glutamater-
gic neuron, the opposite is not true.

Thus, our results appear inconsistent
with a scenario where the spontaneous
release frequency follows from simple
competition between the formation of
GABAergic and glutamatergic synapses,
even though it also does not rule out that
such a competition could exist. Our find-
ings point to a specific downregulation of
mEPSC events by the presence of a recip-
rocally connected GABAergic neuron.

No significant differences were found
in the amplitude, charge, or decay time of
the evoked EPSCs between homotypic
glutamatergic and mixed pairs (Fig. 1), in-
dicating specific regulation of glutamater-
gic spontaneous release by reciprocal
GABAergic innervation. This form of
plasticity is therefore different from the
downregulation of both evoked and spon-
taneous glutamate release induced by pro-
longed cell depolarization (Moulder et al.,
2004, 2006). Specific regulation of spon-
taneous release has been widely studied in
recent years (for review, see Sutton and
Schuman, 2009; Ramirez and Kavalali,
2011), but here we tie this to reciprocal
innervation between GABAergic and glu-
tamatergic neurons, an arrangement re-
sembling the feedback inhibition loops
between pyramidal neurons and various
types of basket cells in the hippocampus (Kullmann, 2011). Spe-
cific regulation of spontaneous release might be realized using
synapses supporting spontaneous release more than evoked re-
lease (Atasoy et al., 2008); changes in basal [Ca 2�]i, which will
affect spontaneous more than evoked release (Lou et al., 2005;
Sun et al., 2007); separate vesicle pools for spontaneous release
(Sara et al., 2005; Fredj and Burrone, 2009), which is controver-
sial (Hua et al., 2010); or by changing the expression level of
proteins specifically promoting spontaneous release, such as
Doc2 (Groffen et al., 2010; Pang et al., 2011) and vti1a (Ramirez
et al., 2012).

Interestingly, the change in mEPSC frequency was not re-
stricted to interneuronal synaptic contacts, but was extended to
autaptic connections formed by the glutamatergic neuron onto
itself, indicating global changes to the glutamatergic neuron.
Such global changes could come about developmentally as a re-
sult of the different expression of transcriptional regulators, such
as methyl-CpG-binding proteins, which are known to specifically
regulate spontaneous release (Nelson et al., 2008). Reciprocal
innervation might change the firing pattern of the neuron, which

could lead to global changes. However, long-term application of
TTX did not prevent the decrease in mEPSC frequency (Fig. 3D),
arguing against this explanation. Therefore, the reduction in
mEPSC frequency probably results from spontaneous GABA re-
lease and GABAA activation, consistent with the negative corre-
lation between mEPSC and mIPSC frequency within mixed pairs
(Fig. 5C,D). The mechanism might involve a different basal cal-
cium homeostasis, since incubation with BAPTA-AM removed
the difference in mEPSC frequencies between homotypic and
mixed pairs (Fig. 6C, control mixed pairs). A possible mechanism
is that stabilization of the membrane potential by spontaneous
GABA release will reduce calcium influx and lead to a lower rest-
ing [Ca 2�]i. Since acute application of bicuculline did not change
mEPSC frequency, and because the disinhibition of mEPSC in
the synaptotagmin-1-null neurons was not found in homo-
typic glutamatergic pairs even after BAPTA-AM treatment,
the difference between homotypic and mixed pairs must be
consolidated developmentally through a differently organized
release machinery.
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Our finding might be relevant for the previously reported
lower mEPSC rate in organotypic or acute hippocampal slices
compared with dissociated cultures (Cingolani and Goda, 2008;
Pozo and Goda, 2010). In situ, most or all glutamatergic neurons
partake in organized feedback loops with GABAergic neurons,
whereas in dissociated cultures connections are random and sur-
vival of GABAergic neurons variable. Using astrocyte islands with
exactly two reciprocally connected neurons, we create a situation
where every glutamatergic neuron experiences a similar and sup-
posedly strong GABAergic innervation. This preparation might
prove useful for studying the developmental and molecular
changes happening specifically as a function of feedback
inhibition.

Knock-out studies established synaptotagmin-1 as the es-
sential Ca 2� sensor for fast synchronous release (Geppert et
al., 1994; Voets et al., 2001; Yoshihara and Littleton, 2002;
Nishiki and Augustine, 2004), but controversies persist as to
whether and how synaptotagmin-1 affects spontaneous re-
lease. Synaptotagmin-1 or -2 clamps spontaneous release in
slices and mixed cultures (Broadie et al., 1994; Littleton et al.,
1994; Pang et al., 2006; Chicka et al., 2008; Kerr et al., 2008;
Kochubey and Schneggenburger, 2011), but not in autaptic
neurons (Geppert et al., 1994; Liu et al., 2009) or in glutama-
tergic pairs (Fig. 5). Liu et al. (2009) observed unclamping of
spontaneous release in synaptotagmin-1-null mutant micro-
networks containing three or more neurons. Those experi-
ments were probably performed on cultures containing
mostly glutamatergic neurons. An increased number of gluta-
matergic neurons—and therefore synapses—might make it
progressively easier to detect small increases in mEPSC fre-
quencies upon synaptotagmin-1 deletion, which might al-
ready be present in autaptic neurons or glutamatergic pairs
without reaching significance. In addition, with an increased
number of neurons, the probability of including a GABAergic
neuron in the network increases; whether this played a role in
the study by Liu et al. (2009) remains unknown. Our data
show that within neuronal pairs the unclamping of spontane-
ous release can already be dominant, but only in glutamatergic
neurons forming reciprocal connections with a GABAergic
neuron (Fig. 5B2). Thus, the presence of a GABAergic neuron
plays a distinct role in setting the mEPSC frequency in wild-
type and synaptotagmin-1-null neurons.

The majority of miniature release events are driven by [Ca 2�]i

(Xu et al., 2009; Yang et al., 2010; Williams et al., 2012), implying
that differences in [Ca 2�]i homeostasis, Ca 2� influx or Ca 2�

release from intracellular stores (Emptage et al., 2001) might
cause differences in miniature frequency (for a different view
regarding mEPSCs, see Vyleta and Smith, 2011). However, the
difference in mEPSC frequency between WT and synaptotagmin-
1-null mixed pairs was preserved in the presence of BAPTA,
whereas in glutamatergic pairs the frequency in BAPTA was no
different after elimination of synaptotagmin-1. This points to a
different organization of the basal release machinery, such that
spontaneous release is driven by machinery that is partly inde-
pendent of synaptotagmin-1 in glutamatergic pairs and autaptic
neurons. In contrast, in mixed cultures the majority of miniature
release is driven by calcium binding to synaptotagmin-1 (Xu et
al., 2009), indicating that synaptotagmin-1 exerts a strong clamp
on miniature release. Overall, our data on the synaptotagmin-1-
null neurons demonstrate that a phenotype similar to that found
in mixed cultures can be obtained using only two reciprocally
connected neurons in vitro, verifying that such minimal networks
reproduce an important feature of larger mixed cultures.

In conclusion, using neuronal pairs we have identified a role
for reciprocal GABAergic/glutamatergic innervation in down-
regulating mEPSC frequency. It remains to be seen whether such
a mechanism is involved in organizing the much more complex
network of the intact brain. It appears likely that the effect is
mediated by mIPSCs and translated by the membrane potential
into a difference in calcium homeostasis, which in turn changes
the organization of the release machinery. We note that glutama-
tergic neurons in situ initially develop in isolation until the for-
mation of functional contacts leading to feedforward and
feedback innervation, and that synapses pass through a develop-
mental phase characterized by spontaneous, but no evoked re-
lease (Mozhayeva et al., 2002). Thus, the higher mEPSC rate in
isolated glutamatergic neurons might be a hallmark of an imma-
ture glutamatergic neuron (Liu et al., 2013) and serve as a signal
that a developing glutamatergic neuron is not yet under GABAe-
rgic feedback control.
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