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In the early stages of image analysis, visual cortex represents scenes as spatially organized maps of locally defined features (e.g., edge
orientation). As image reconstruction unfolds and features are assembled into larger constructs, cortex attempts to recover semantic
content for object recognition. It is conceivable that higher level representations may feed back onto early processes and retune their
properties to align with the semantic structure projected by the scene; however, there is no clear evidence to either support or discard the
applicability of this notion to the human visual system. Obtaining such evidence is challenging because low and higher level processes
must be probed simultaneously within the same experimental paradigm. We developed a methodology that targets both levels of analysis
by embedding low-level probes within natural scenes. Human observers were required to discriminate probe orientation while semantic
interpretation of the scene was selectively disrupted via stimulus inversion or reversed playback. We characterized the orientation tuning
properties of the perceptual process supporting probe discrimination; tuning was substantially reshaped by semantic manipulation,
demonstrating that low-level feature detectors operate under partial control from higher level modules. The manner in which such
control was exerted may be interpreted as a top-down predictive strategy whereby global semantic content guides and refines local image
reconstruction. We exploit the novel information gained from data to develop mechanistic accounts of unexplained phenomena such as
the classic face inversion effect.
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Introduction
Early electrophysiological recordings from primary visual cortex
have established that individual neurons can be remarkably se-
lective for fundamental image features such as texture orientation
(Hubel, 1963); subsequent studies have demonstrated that this
selectivity can be altered in systematic ways by presenting stimuli
outside the local region associated with measurable spiking out-
put from the cell (Bolz and Gilbert, 1986). There are well known
perceptual counterparts to this class of contextual effects
(Schwartz et al., 2007), which can be demonstrated using syn-
thetic laboratory stimuli not necessarily relevant to natural vision
(Rust and Movshon, 2005).

Subsequent research shifted emphasis from the question of
whether the functional properties of local feature detectors are
altered by presenting a stimulus outside the overtly responsive
region, to the question of how such well established alterations
depend on the specific characteristics of the surrounding stimu-
lation (Allman et al., 1985). An issue of topical interest in recent
years has been to what extent it matters whether contextual stim-
uli resemble those encountered during natural vision (Simoncelli
and Olshausen, 2001; Felsen and Dan, 2005; Geisler, 2008). This

question can be asked at two conceptually distinct levels of
analysis.

At the more basic level, the issue is whether image statistics not
necessarily associated with semantic content may be relevant. For
example, it is known that finer detail in natural scenes typically
carries less contrast than coarser detail according to a systematic
relationship between detail and image power (Ruderman and
Bialek, 1994; 1/f 2). Existing evidence indicates that this charac-
teristic may impact perceptual (Párraga et al., 2000) and neural
(Simoncelli and Olshausen, 2001) processing. This class of stud-
ies does not pertain to semantic content: an image may possess
naturalistic power characteristics but no recognizable objects/
landscapes (Piotrowski and Campbell, 1982; Felsen et al., 2005).

At a higher level of image analysis, the issue is whether the
meaning of the scene may be relevant. This issue is distinct from
the one outlined in the previous paragraph: two images may both
conform to various statistical properties of natural scenes (Ger-
hard et al., 2013), yet one and not the other may deliver content
that is meaningful to a human observer (Torralba and Oliva,
2003). The question is whether image representation at this ad-
vanced level may impact the properties of the feature detectors it
relies upon for image reconstruction in the first place (Rao and
Ballard, 1999; Bar, 2004). The present study is concerned with
this specific and important question, for which there is no avail-
able evidence from human vision.

Our results demonstrate that, contrary to widely adopted
assumptions about the static nature of early visual function
(Carandini et al., 2005; Morgan, 2011), higher level semantic
representations affect local processing of elementary image fea-
tures. In doing so, these results offer a compelling example of the
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integrated nature of human vision whereby different hierarchical
levels interact in both feedforward and feedback fashion (Lamme
and Roelfsema, 2000; Bullier, 2001), from the earliest and most
elementary stage (feature extraction; Morgan, 2011) to the fur-
thest and most advanced one (image interpretation; Ullman,
1996).

Materials and Methods
Natural image database
We initially obtained eight image databases from http://cvcl.mit.
edu/database.htm (at the time of downloading they contained 335 im-
ages per database on average); the category labels assigned by the creators
(Oliva and Torralba, 2001) were “coast and beach,” “open country,”
“forest,” “mountain,” “highway,” “street,” “city center,” and “tall build-
ing.” We therefore started with a total of �2.7 K images (resolution
256 � 256 pixels). Of these we selected 320 (approximately 1 of 8) using
an entirely automated software procedure (no pick-and-choose human
intervention). We first acquired each image as grayscale, rescaled inten-
sity to range between 0 and 1 and applied a smooth circular window so
that the outer edge of the image (5% of diameter) was tapered to back-
ground gray (Fig. 1A). We subsequently applied a Sobel filter of dimen-
sion equal to �15% image size to identify the location of peak edge
content. Subsequent to edge detection we applied a broad low-pass
Gaussian filter (SD equal to half image size), rescaled intensity to range
between 0 and 1, and set all image values above 1/2 to bright, all those
below to dark; we refer to this image as the “thresholded” image. We then
created an image of size equal to the Sobel filter containing an oriented
sharp edge, centered it on the previously determined location of peak
edge content, and matched its orientation to the local structure of the
thresholded image by minimizing square error (MSE); the resulting MSE
value was used as a primary index of how well that particular image was
suited to the purpose of our experiments. We focused on peak edge
content rather than selecting arbitrary edge locations to maximize the
quality of edge insertion and therefore increase the viability of the as-
signed congruent/incongruent discrimination; task viability is a pressing
issue when testing naive observers (as was done in this study). We ana-
lyzed all images using the procedure just described and only retained the
top 40 for each database (those with smallest MSE value within their
database). All images were rescaled to have the same contrast energy;
when projected onto the monitor, they spanned a range between 4 and 60
cd/m 2 on a gray background of 32 cd/m 2 and occupied 12° at the ad-
opted viewing distance of 57 cm.

Natural movie database
We initially extracted 60 sequences, each 5 min long, from a random
selection of recent ( post 2000) mainstream movies spanning a wide
range of material (e.g., Inside Man, The Assassination of Jesse James, 3:10
to Yuma, Batman, Lord of the Rings, Spiderman, Casino Royale). At the
original sampling rate of 25 Hz this resulted in 450 K images of 256 � 256
pixels (cropped central region). Each sequence was processed by a
motion-opponent energy detector via convolution (in x-y-t) with a mov-
ing dark– bright edge in stage 1, convolution with an edge moving in the
opposite direction in stage 2, and subtraction of squared stage 2 output
from squared stage 1 output. This procedure was performed separately
for 24 different directions around the clock and for local patches mea-
suring �10% of image size. The moving edge lasted eight frames (equiv-
alent to 320 ms in movie time) and moved by three pixels on each frame
(traversing a distance of �1° in actual stimulus space, equivalent to a
speed of �0.3°/s). Each point in time throughout the movie dataset was
associated with the spatial coordinates and motion direction of the local
patch that returned the largest output from the motion detector applied
over the immediately following 320 ms segment. We then ranked seg-
ments according to the associated output, and iteratively retained those
with largest outputs under the constraint that each newly retained seg-
ment should not fall within a 3 s window of previously retained segments
(to avoid selecting segments from almost identical parts of the movie).
The outcome of this automated selection process returned �4000 can-
didate segments for probe insertion (approximately 1 every 4.5 s of foot-

age). Further selection was performed via visual inspection of each
segment to ensure that inserted probes did not span scene changes or
similar artifactual motion signals; the outcome of this additional selec-
tion process returned 1000 segments, which were used for the experi-
ments. Each extracted segment lasted 880 ms (we retained 280 ms before
and after the 320 ms segment analyzed by the motion detector) to allow
for smooth temporal insertion of the probe (see below).

Probe design and insertion into natural scenes
Probe parameters. Probes (indicated by magenta dashed circles in Fig.
1 A, B) consisted of superimposed pseudo-Gabor wavelets at 16 different
orientations uniformly spanning the 0 –� range, each taking one of four
random phases (0, �/2, �, 3/2 � Fig. 1 E, F ). Carrier spatial frequency was
fixed at �1 cycle/degree. The envelope was constant over a circular re-
gion spanning �1.4° (diameter) and smoothly decreasing to 0 around
the edge following a Gaussian profile with SD of 9 arcmin. The 16 con-
trast values assigned to the different wavelets on trial i are denoted by
vector si

�q� (q � 0 for congruent probe, q � 1 for incongruent probe),
where the first entry into the vector corresponds to the congruent orien-
tation. In image space, the congruent orientation was that associated with
smallest MSE (see above), i.e., the orientation of the best-fit edge to the
local structure of the natural scene.

Injection of orientation noise. On each trial si
�q� � t�q� � ni

�q�: the
contrast distribution across orientation consisted of a fixed (independent
of trial i) target signal t�q�, summed onto a noise sample ni that varied
from trial to trial. The target signal vector t�q� consisted of 0s everywhere
except the first entry when q � 0 (congruent probe) or the ninth entry
when q � 1 (incongruent probe), which was assigned a value denoted by
� (target intensity). Each entry of the noise vector n followed a Gaussian
distribution with mean 2.7% and SD 0.9% (contrast units) clipped to �3
SD. We adjusted � individually for each subject to target threshold per-
formance (d� �1; Fig. 3B) following preliminary estimation of threshold
point via a two-down one-up staircase procedure; when expressed as
multiple of noise mean, � was �4 (mean across observers).

Probe insertion and sampling along vertical meridian. The probe was
smoothly inserted (by using wavelet envelope to control probe/image
ratio contribution to image) into the local region of the natural scene
identified by the automated edge-detection procedure detailed above; see
examples in Figure 1, C and D, for incongruent and congruent probes,
respectively. Because the above-detailed algorithm did not select a ran-
dom location for probe insertion, probe distribution across images may
have been biased along some retinotopically specified coordinate, most
relevant here is the vertical meridian. If, for example, there was a ten-
dency on the part of the algorithm to preferentially insert edges within
the upper part of images in our dataset as opposed to the lower part,
inverting images upside down would affect the probability that probes
appear on the upper versus lower part of the visual field; the effects on
orientation tuning we observed for inversion (Figs. 1G, 3A) may then
simply reflect differential orientation tuning for the upper versus lower
visual fields. Probe distribution along the vertical meridian across our
image database is plotted in Figure 1B (histogram to the right of image),
where it can be seen that it is symmetric around the midpoint (fixation).
We can therefore exclude the possibility that the effects observed for
inversion may reflect asymmetric probing of upper versus lower visual
fields.

Probe design and insertion into natural movies
Probes (Fig. 5 A, B, magenta dashed circles) consisted of superimposed
pseudo-Gabor moving wavelets at 16 different directions uniformly
spanning the 0 –2� range (Fig. 5C,D) each taking a random phase be-
tween 0 and 2�. Carrier spatial frequency and envelope were identical to
those used in the orientation tuning experiments. The temporal envelope
smoothly ramped up (following a Gaussian profile with SD of 100 ms)
over 300 ms, was constant for the following 280 ms, and ramped down
over the remaining 300 ms. We can use the same notation and logic
adopted for orientation tuning experiments in describing the 16 contrast
values assigned to the different moving wavelets. Each entry of the noise
vector n followed the same Gaussian distribution detailed above for ori-
ented static probes; � was �5 on average (units of noise mean). The
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probe was smoothly inserted (by using wavelet spatial and temporal
envelopes to control probe/image ratio contribution to the movie) into
the local region of the natural movie identified by the automated motion-
energy edge-detection procedure; see examples in Figure 5, A and B, for
incongruent and congruent probes, respectively.

Stimulus presentation of static scenes and orientation
discrimination task
Stimulus presentation and inversion. The overall stimulus consisted of two
simultaneously presented images (duration 300 ms except for 2 observers
[indicated by circle and square symbols in Figure 3] at 200 ms), one to the
left and one to the right of fixation (Fig. 1 A, B; see supplemental Movie
1). On every trial we randomly selected an image from the database and
created both congruent and incongruent stimuli from the same image,
but using independent noise samples for the two (randomly generated on
every trial; Fig. 1 E, F ). We then presented the incongruent on the left and
the congruent on the right (each centered at 7.3° from fixation; Fig.
1 A, B), or vice versa (randomly selected on every trial). Whichever was
presented to the right was mirror imaged around vertical, so that the
probes were symmetrically placed with respect to fixation. On “inverted”
trials, both images were flipped symmetrically around the horizontal
meridian (upside down).

Spatial cueing. On “precue” trials the main stimulus just described was
preceded by a spatial cue (duration 100 ms) consisting of two Gaussian
blobs (matched to probe size) that colocalized with the two probes; the
interval between cue and main stimulus was uniformly distributed be-
tween 150 and 300 ms. On “postcue” trials the same cue was presented
but it followed the main stimulus (after the same interval detailed for
precue). Observers were clearly instructed to maintain fixation at all
times and stimulus duration was below typical eye-movement rate (1/3 Hz),
thus minimizing any potential role of eye movements. If eye movements
were occurring at all, eye movement strategy would be greatly affected by
the cueing manipulation: on precue trials, observers would be tempted to
foveate the two probes sequentially at the positions indicated by the cues,
while no such strategy would be prompted by the scene-first-cue-second
sequence of postcue trials. Had sharpening of the orientation tuning
function been due to differential deployment of eye movements, this
effect would be largest for the precue/postcue comparison; contrary to
this prediction, there was no effect of cueing on orientation tuning (Fig.
3A, black symbols) excluding a potential role for eye movements in re-
shaping the orientation tuning function.

Response acquisition and feedback. Observers were required to select
the incongruent stimulus by pressing one of two buttons to indicate
either left or right of fixation. They were explicitly informed that both
congruent and incongruent stimuli were presented on every trial, so by
selecting the side where they thought the incongruent stimulus had ap-
peared they also implicitly selected the side where they perceived the
congruent stimulus. The task “select the incongruent stimulus” is there-
fore entirely equivalent to the task “select the congruent stimulus”: there
is no logical distinction between the two and one can be easily converted
into the other by switching response keys. Our instructions and analysis
were structured around the option select the incongruent stimulus, be-
cause in pilot experiments (Neri, 2011b) using similar tasks observers

found it more natural to look out for features that do not fit and “stick
out” (i.e., are incongruent). When instructed to select the congruent
stimulus, they all reported that they had perceptually converted this task
into one of looking for the incongruent stimulus. In other words, no
matter how task instructions are worded, observers look out for the
incongruent stimulus. Their response was followed by trial-by-trial feed-
back (correct/incorrect) and initiated the next trial after a random delay
uniformly distributed between 200 and 400 ms. Feedback was introduced
for three reasons: (1) to prompt alertness on the part of observers and
discourage prolonged phases of disengagement from the task, two perti-
nent issues when collecting large numbers of trials as in the present
experiments; (2) to minimize response bias, which we have found to be
more pronounced in the absence of feedback, possibly due to observer
disengagement and associated choice of the same response button as a
fast strategy to ignore/skip trials; and (3) to push observers into their
optimal performance regime, so that interpretation of sensitivity (d�)
measurements would not be confounded by extraneous factors such as
lack of motivation. It is conceivable that observers experienced percep-
tual learning, particularly in the presence of trial-by-trial feedback. We
examined this possibility by comparing performance between first and
second halves of data collection across each participant and found no
statistically significant difference ( p � 0.64 for upright, 0.94 for in-
verted). We further split data collection into 10 epochs; there was no
evident trend of either increase or decrease, as quantified by computing
correlation coefficients between performance and epoch number across
participants with no statistically significant trend for these to be either
positive or negative ( p � 0.54 for upright, p � 0.74 for inverted). If
learning took place, its effect was too small/inconsistent to measure given
the power of our dataset. At the end of each block (100 trials) observers
were provided with a summary of their overall performance (percentage
of correct responses on the last block as well as across all blocks) and the
total number of trials collected to that point. We tested eight naive ob-
servers (four females and four males) with different levels of experience
in performing psychophysical tasks; they were paid 7 GBP/h for data
collection. All conditions (upright/inverted, precue/postcue) were mixed
within the same block. We collected �11 K trials on average per observer.

Upright/inverted discrimination. Stimulus parameters for the upright
versus inverted experiments (Fig. 3F ) were identical to those detailed
above, except: 1) both upright and inverted images of the same unma-
nipulated scene (without inserted probes) were presented on each trial
but on opposite sides of fixation (see supplemental Movie 2), and observ-
ers were asked to select the upright image and (2) no feedback was pro-
vided to avoid the possibility that observers may not report the perceived
orientation of the scenes, but rather the association between specific
image details and the response re-enforced by feedback. We tested all
eight observers that participated in the main experiment except one (Fig.
3F, downward-pointing triangle) who was no longer available at the time
of performing these additional experiments. We collected �2250 trials
on average per observer. Because the amount of data collected by any
given observer was insufficient to generate accurate estimates of upright/
inverted discriminability (values on y-axis in Fig. 3F ) across the 320
images we used in the experiments (the amount of trials allocated to each

Movie 1. Orientation discrimination in natural scenes. Eleven sample trials from the orien-
tation discrimination experiments demonstrating upside-down inversion (trials 2, 3, 6, 9, 10)
and precue versus postcue (precue trials are 1, 4, 5, 8).

Movie 2. Upright versus inverted discrimination. Eleven sample trials from the upright ver-
sus inverted discrimination experiments used to define the unambiguous/ambiguous orienta-
tion split in Figure 3F.
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image by each observer was only �7 on average), we performed the
database split into ambiguous and unambiguous images by relying on the
aggregate (across observers) curve shown in Figure 3F (average number
of allocated trials was �50/image).

Stimulus presentation of moving pictures and direction
discrimination task
We presented congruent and incongruent stimuli (for a randomly se-
lected movie from the database) in temporal succession (random order)
on every trial, separated by a 500 ms gap. Whichever was presented
second was mirror imaged around vertical to avoid repetition of identical
features. We initially piloted a peripheral configuration similar to that
adopted in the orientation discrimination experiments, where the two
movies were presented on opposite sides of fixation; this configuration
made the task impossible to perform. Having opted for the two-interval
foveal configuration, spatial cueing became inapplicable/meaningless
(due both to the relatively long stimulus duration and to the differential
impact/meaning of the cue for first and second intervals), so no spatial
cueing manipulation was adopted in these experiments. On inverted
trials, both stimuli were flipped symmetrically around the horizontal
meridian (upside down); on “reversed” trials, the frame order of both
stimuli was reversed immediately before display. Reversed clips alter the
acceleration profile (accelerations become decelerations and vice versa),
but the algorithm that performed probe insertion prioritized insertion
points with uniform velocity and the directional signal within the probe
drifted at constant speed (see above), making it unlikely that acceleration
per se would play an important role in these experiments (except for its
potential impact on higher level representation). Observers were re-
quired to select the incongruent stimulus; feedback, block structure, and
payment were identical to the orientation discrimination experiments.
We initially tested the same eight naive observers that participated in the
orientation discrimination experiments; four of them were unable to
perform the direction discrimination task above chance in the absence of
noise (which was the primary criterion for inclusion) and were therefore
excluded from participating in the study (symbols refer to same individ-
uals in Figs. 3, 6). All three conditions (upright, inverted, and reversed)
were mixed within the same block. We collected 9.6 � 2 K trials per
observer.

Derivation of tuning functions
Orientation tuning. Each noise sample can be denoted by ni

�q,z�: the sam-
ple added to congruent (q � 0) or incongruent (q � 1) probe on trial i to
which the observer responded correctly (z � 1) or incorrectly (z � 0).
The corresponding orientation tuning function p was derived via appli-
cation of the standard formula for combining averages from the four
stimulus-response classes into a perceptual filter (Ahumada, 2002):
p � 	n�1,1�
 � 	n�0,0�
 � 	n�1,0�
 � 	n�0,1�
 where 	
 is average across
trials of the indexed type. Examples are shown in Figure 1G. The analysis
in Figure 3, D–E, was performed on folded orientation tuning functions
to compensate for the loss of measurement signal-to-noise ratio (SNR)
associated with halving the dataset: we adopted the assumption that tun-
ing functions are symmetric around their midpoint (i.e., observers are
assumed to show no bias either clockwise or anticlockwise of incongru-
ent/congruent) and averaged values on opposite sides of the midpoint (0
on x-axis in Fig. 1G). The results in Figure 3, D–E, remain qualitatively
similar (albeit noisier) without folding.

Directional tuning. Directional tuning functions (Fig. 5F ) were com-
puted using the same combination rule, but were also subjected to sub-
sequent smoothing and symmetry assumptions due to poorer SNR than
the orientation tuning functions. We smoothed p using a simple moving
average of immediate neighboring values (box-shaped pulse of three
values); we then folded it using the symmetry assumption above (no
clockwise/anticlockwise bias), and further folded it under the assump-
tion that tuning at incongruent and congruent directions is mirror
symmetric (identical peaks of opposite sign). The latter symmetry as-
sumption was clearly violated by the orientation tuning data (Fig. 1G),
but we found no indication of asymmetry between incongruent and
congruent directions for directional tuning [consistent with balanced
motion opponency (Heeger et al., 1999) and previous measurements of
similar descriptors (Neri and Levi, 2009)].

Quantitative characterization of tuning functions
Spectral centroid. The primary index of tuning sharpness adopted in this
study is the spectral centroid from previous investigations (Neri, 2009,
2011a); this metric does not involve fitting and is therefore relatively
stable when applied to noisy measurements. For each orientation tuning
function p we derived (via discrete Fourier transform; DFT) the associ-
ated power spectrum P (normalized to unit sum) defined along the vec-
tor x of orientation frequencies. We then computed the spectral centroid
	P,x
 where 	,
 is the inner product. This index may be affected by nois-
iness of the measured orientation tuning function: a smooth orientation
tuning function would return power in the lower frequency range (small
sharpness values), while a tuning function with sharp intensity transi-
tions would return power in the higher frequency range. Measurement
noise may introduce such sharp amplitude transitions, and may there-
fore mediate the inversion effect in Figure 3A. To check for this possibil-
ity we computed SNR as SNR � log(RMS/RMS *), which evaluates the
root-mean-square (RMS) of the tuning function p against the expected
RMS * for a tuning function consisting of noise alone, i.e., originating

from a decoupled input– output process. RMS* � � 2N

N�1�N�0� �n where

N is the total number of collected trials, N�1� and N�0� are the number of
correct and incorrect trials, respectively, and �n is the SD of the external
noise source (Neri, 2013). For a decoupled process (output response is
not a function of input stimuli) the expected value of SNR is 0; further-
more, this metric scales inversely with measurement noise: the noisier the
measurement, the lower the associated SNR. If measurement noise un-
derlies the effect of inversion, we expect SNR to be lower for inverted
versus upright tuning functions. Contrary to this prediction SNR was on
average (across observers) twice as large for inverted functions (0.45 for
inverted, 0.24 for upright). We can therefore exclude the possibility that
the effect of inversion exposed by the sharpness metric was a byproduct
of measurement noise; instead, it was driven by genuine structure of
orientation selectivity as also corroborated by the tuning estimates re-
turned by the fitting procedure detailed below.

Raised Gaussian fit of orientation tuning. Based on our earlier charac-
terization of similar descriptors (Paltoglou and Neri, 2012) and on visual
inspection of the data (Fig. 1G), orientation tuning functions were fitted
using a raised Gaussian profile ���
� � 	 where ���
 is a Gaussian
function of SD � centered at the incongruent orientation, � is a positive
exponent, 	 is a baseline shift, and the final fitting function was con-
strained to take as maximum value the peak value in the data (this last
constraint was introduced to avoid an additional free parameter accom-
modating overall scaling across the y-axis). All three parameters (�, �, 	)
were optimized to minimize mean square error between data and fit (see
smooth traces in Fig. 1G for examples). Tuning sharpness is controlled by
both � and �; these were combined via log-ratio (�/�) to obtain a com-
posite sharpness index (Paltoglou and Neri, 2012; plotted in inset to Fig.
3A). The above log-ratio combination rule ensures that both parameters
contribute equally to the sharpness estimate regardless of the units in
which they are expressed. Virtually identical results for the composite
sharpness index were obtained when the baseline shift parameter (	) was
omitted from fitting (i.e., set to 0).

Metrics/fits for directional tuning functions. Smooth traces in Figure 5F
were solely for visualization purposes and consisted of a sinusoid with
fixed 0 phase, i.e., constrained to take a value of 0 halfway between
congruent and incongruent orientations (the data were also effectively
constrained to do so by symmetry averaging as detailed above), but ad-
justable frequency and amplitude. The latter two parameters were opti-
mized to minimize mean square error. The metrics plotted in Figure 6 do
not rely on the above-detailed fitting. The metric plotted on the x-axis in
Figure 6A is normalized RMS difference: we subtracted either inverted or
reversed tuning function from the corresponding upright tuning func-
tion, we computed RMS of the resulting difference, we estimated the
expected value of this quantity due to measurement noise via the stan-
dard error associated with the RMS difference between the upright tun-
ing function and its own bootstrap sample replicas, and we divided RMS
by this error. The metric plotted on the y-axis in Figure 6B is the standard
Pearson product-moment correlation coefficient between either in-
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verted or reversed tuning function and the corresponding upright tuning
function.

Computational model for orientation discrimination
The model operates directly on si

�q� (orientation energy distribution
within probe q on trial i), not on the actual stimulus image (we used
� � 2/3 to target threshold performance; this value is smaller than the
human value because the model, differently from human observers, does
not suffer from internal noise). It is therefore defined in orientation space
and does not account for idiosyncratic features of individual images. The
front-end stage involves convolution (�taking into account the axial na-
ture of orientation) of the input stimulus (Fig. 4D) with a bank of
orientation-selective units (Fig. 4E) defined by orientation tuning func-
tion y (Gaussian profile with SD of 10 degrees): oi

�q� � si
�q� � y. We then

applied a static nonlinearity � to simulate neuronal conversion to firing
rate (Heeger et al., 1996): ti

�q� � ��oi
�q�
. � was defined by a Gaussian

cumulative distribution function with mean and SD equal to the mean
and 1/16 � the SD of o, the vector listing all values of the convolution
output across orientation (dimension of convolution), trials (i), and
stimulus identity (q). This parameterization was chosen to ensure that
the operating range of � would effectively span the relevant output of the
front-end layer. It should be noted that this nonlinear stage is necessary
to simulate the lack of performance change for the model; in the absence
of this nonlinearity, the residual model predicts different d� values for
upright and inverted conditions. The thresholded vector was integrated
using a weighting function w � 1 � wfill where 1 corresponds to the
flat prior (Fig. 4F ) and wfill defines the predicted orientation range from
the top-down filling-in process (Fig. 4G). wfill was constrained to have
equal RMS for upright and inverted conditions, but different boxcar
widths around the congruent orientation; the corresponding shapes for
upright (black) and inverted (red) are shown in Figure 4G. The final
scalar output produced by the model in response to each stimulus (deci-
sion variable) can therefore be written as ri

�q� � 	��si
�q� � y
, w
 (we omit

indexing into upright and inverted to simplify notation). The model
responded correctly (i.e., selected the incongruent stimulus) on trial i
when ri

�1� � ri
�0� (difference between response to incongruent and con-

gruent stimulus) was �0, incorrectly otherwise.

Computational model for direction discrimination
The input stimulus (defined across direction of motion with � � 2/3) was
initially convolved with a bank of direction-selective units defined by tuning
function y (Gaussian profile with SD of 20 degrees): oi

�q� � si
�q� � y. We then

applied a weighting function w � wbottom up � bwtopdown. Both bottom-up
and top-down direction-selective priors were defined by the interaction
between a directionally selective “motion” filter m, consisting of one
cycle of a sinusoidal modulation peaking at the incongruent direction,
and a direction-insensitive “form” filter f (Fig. 7A), modeled around the
top-down filling-in process developed in the previous section. More spe-
cifically, f weighted positively the orientation range aligned with the local
region occupied by the probe (the “congruent” orientation in the previ-
ous model); because both congruent and incongruent motion directions
correspond to the same congruent orientation for the moving edge, f
weighted the two in the same way (Fig. 7A, double-headed arrow); in
other words f was insensitive to motion direction, consistent with its
being a form-only module. On upright and reversed trials, its shape was
two cycles of a triangular function ranging between 0 (at directions or-
thogonal to congruent/incongruent axis) and 1 (at congruent/incongru-
ent directions). On inverted trials, the region of maximum weighting (1)
was extended by �45 degrees, effectively implementing similar broaden-
ing of predicted orientation range to that adopted for the orientation
discrimination model (see black vs red traces in Figs. 7A, 4G). The
bottom-up direction-selective weighting function was wbottom up � m � f
where � is the Frobenius (element-by-element) product; it only changed
under inversion insofar as f did so as detailed above, but remained oth-
erwise unchanged. The top-down direction-selective weighting function,
which implemented the action of a higher level motion module (Fig. 7D),
was wtopdown � m � �1 � f
, i.e., the form signal delivered by f facilitated
the bottom-up directional signal and concurrently inhibited the top-
down signal (Fig. 7, red plus and minus symbols). Under inversion, the

form signal not only became less precise (broader f ) but also less intense;
this effect of inversion was implemented by increasing b from a value of
3 for upright/reversed to 10 for inverted (more weight to the top-down
motion module). Under movie reversal (Fig. 7C), the top-down motion
module sends a weighting signal that is opposite in direction to the
bottom-up module (Fig. 7F ); this effect of reversal was implemented by
shifting the sinusoid in m by � (or equivalently inverting its sign) in the
expression for wtopdown. The final scalar output produced by the model
was ri

�q� � 	si
�q� � y, w
 and the same rules detailed above for the orien-

tation processing model were adopted for the motion processing model
to generate a binary psychophysical response (correct/incorrect).

Coarse metrics of scene structure
To understand whether orientation ambiguity of individual scenes as
assessed by human observers (Fig. 3F ) was driven by relatively coarse
image features, we extracted six scalar measures of overall image
structure. The “vertical asymmetry” index (Fig. 3F, orange trace) was

computed from image A as log�RMS(Aodd)

RMS(Aeven)� where Aodd � A � A*,

Aeven � A � A* and A* is A flipped upside down. The “edge richness”
index (Fig. 3F, cyan trace) was obtained by applying a Sobel filter of
dimension equal to �15% image size and taking the mean of the filter
output across the image. We plot these two indices in Figure 3 because
they returned the best correlation with the image sorting returned by
human observers (correlations of 0.2 ( p � 0.001) and �0.24 ( p � 10 �4),
respectively). We also derived four more measures, none of which
showed substantial correlation with the human classification of orienta-
tion ambiguity. One involved taking the max (as opposed to the mean) of
the Sobel filter output across the image (correlation of �0.05, p � 0.34).
Two more measures coarsely assessed the shape of the image 2D power
spectrum: one was the log-ratio of cardinal (vertical � horizontal) ori-
entation energy to off-cardinal energy, the other one was the log-ratio of
vertical to horizontal energy (correlations of �0 ( p � 0.97) and �0.17
( p � 0.01), respectively). The last measure we attempted was the MSE
value for probe insertion (correlation of 0.14, p � 0.01).

Results
Observers saw two mirror images of a natural scene on opposite
sides of fixation (Fig. 1A,B). The “congruent” scene (Fig. 1B)
contained an oriented probe that was aligned with the local struc-
ture of the image, while the probe in the “incongruent” scene
(Fig. 1A) was orthogonal to it. Observers were required to select
the incongruent stimulus. This task can only be performed by
integrating probe with context: if the probe is removed, observers
see two identical mirror images and cannot perform above
chance; similarly, if the context (i.e., natural scene) is removed,
observers see two oriented gratings with no indication of which
one is incongruent.

We injected orientation noise into each probe by assigning
random contrast to a set of oriented gratings (Fig. 1E,F) and by
adding those gratings to the probe; as a result of this stimulus
manipulation, signal orientation within the resulting probes (Fig.
1C,D) was difficult to extract and observers’ responses were
largely driven by fluctuations in the injected noise, allowing us to
deploy established reverse correlation techniques (Ahumada,
2002; Murray, 2011) for the purpose of retrieving the orientation
tuning function used by observers in performing the assigned
task (Paltoglou and Neri, 2012). An example is shown by the
black curve in Figure 1G: this curve peaks at the incongruent
orientation (orange vertical dashed line) indicating that, as ex-
pected, observers classified orientation energy within this region
as target for selection.

Orientation tuning is altered by inverting the scene
upside down
We then inverted both images upside down. This manipulation is
known to interfere with the semantic interpretation of the scene
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while leaving all other image properties unaffected (Yin, 1969; Val-
entine, 1988). For example, the upside-down image allocates con-
trast to detail in a manner identical to the upright image; it also
contains the same set of contours/objects/edges, and probes sam-
pled the vertical meridian symmetrically across the image dataset
(Fig. 1B, histogram on the right; see also Materials and Methods).
For this reason, inversion represents a powerful tool for selec-
tively targeting the higher level representation of the image while
sidestepping its low-level characteristics (Walther et al., 2009).
This phenomenon is convincingly demonstrated by the Thatcher
illusion (Thompson, 1980), where gross distortions of eye and
mouth regions go perceptually unregistered when the face is
upside down (Fig. 2A) but are readily available in the upright
configuration (Fig. 2B). Similar effects can be demonstrated for

natural scenes such as those used here
(Fig. 2C,D; Kelley et al., 2003; Rieger et al.,
2008; Walther et al., 2009). It is especially
important that the inverted manipulation
has no effect on the amount of useful in-
formation delivered by the stimulus: from
the viewpoint of a machine that strives to
optimize performance in the assigned probe
discrimination task (Geisler, 2011), upright
and inverted stimuli are identical. Any dif-
ference we measure must therefore be at-
tributed to idiosyncrasies of how the human
brain operates (Valentine, 1988; Maurer et
al., 2002).

Under inversion, we observed sub-
stantial changes in the associated orienta-
tion tuning function (Fig. 1G, red curve)
whereby the peak at the incongruent ori-
entation becomes sharper (Fig. 1G, com-
pare black and red peaks aligned with
orange vertical dashed line). To confirm
this result using statistical tests that
probed data structure at the level of indi-
vidual observers, we applied to each curve
a scalar metric borrowed from existing lit-
erature (Neri, 2009, 2011a) that quanti-
fied tuning sharpness via the associated
spectral centroid (Bracewell, 1965) (Fig.
1H). This index of tuning sharpness was
larger for the inverted as opposed to the
upright configuration (Fig. 1H, compare
red and black arrows), consistent with
qualitative inspection of Figure 1G.

Figure 3A plots sharpness across ob-
servers and confirms the result that tuning
functions from inverted scenes ( y-axis)
are sharper around the incongruent ori-
entation than their counterparts from up-
right scenes: all red data points (one point
per observer) fall above the diagonal line
of equality (p � 0.01; all p values reported
in this study are generated by paired
two-tailed Wilcoxon signed rank tests,
except for p values associated with cor-
relation coefficients, which refer to a t
statistic). On average across observers, the
sharpness index increased by 48% with
inversion (this effect does not reflect mea-
surement noise, see Materials and Meth-

ods). Red data points in Figure 3B plot sensitivity (d�) for
performing the task; there was no measurable difference between
inverted and upright conditions with respect to this metric (red
data points scatter around equality line): observers performed the
assigned task equally well in upright and inverted conditions;
however, the properties of the mechanisms they used to deliver
such performance differed. Both features are accounted for by the
same model, which we discuss later in the article (Fig. 4).

We confirmed the above-detailed effect of image inversion on
tuning via a different metric of sharpness derived from a raised-
Gaussian fit to the orientation tuning function (see Materials and
Methods), which we have extensively validated in a previous
large-scale study of similar descriptors (Paltoglou and Neri,
2012); examples of such fits are shown by smooth lines in Figure
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Figure 1. Orientation tuning is altered by image inversion. Congruent and incongruent images were generated by grafting an
oriented probe (indicated by magenta dashed circle) that was either orthogonal to (A) or aligned with (B) the local orientation
structure defined by the natural scene (histogram to the right of B shows probe location distribution along the vertical meridian
across image database). Orientation noise (E, F ) was added to both probes thus degrading their orientation signal (C, D). The
injected orientation noise was reverse correlated with the responses generated by observers (Ahumada, 2002; Murray, 2011) to
yield orientation tuning functions (G) for performing the task of identifying the incongruent stimulus (filter amplitude is expressed
in units of noise SD �N). Black traces refer to trials on which the two scenes were in upright configuration (as shown in A and B), red
traces to inverted (flipped upside down) configuration. Tuning sharpness of individual traces was estimated by the centroid (H,
arrows) of the associated spectrum (Bracewell, 1965; Neri, 2011a; traces in H ). Fits (smooth traces) rely on a three-parameter
raised Gaussian profile (Paltoglou and Neri, 2012) in G (see Materials and Methods), and on a Gaussian profile (constrained to peak
at DC on the frequency axis) with optimized amplitude and SD in H. G, H, Show aggregate data across observers (�87 K trials).
Error bars indicate � 1 SEM.

Neri • Semantic Control of Feature Extraction from Natural Scenes J. Neurosci., February 5, 2014 • 34(6):2374 –2388 • 2379



1G. Tuning sharpness derived from fits to individual observer
data is plotted in the inset to Figure 3A; this metric was signifi-
cantly larger on inverted trials (red data points fall above equality
line at p � 0.04), confirming the results obtained from spectral
centroid estimates. Further indication that the two metrics cap-
tured the same quantity (i.e., tuning sharpness) comes from the
strong correlation (coefficient of 0.68 at p � 0.005) between spec-
tral estimates and those returned by fitting. When estimated via
fitting the inversion effect returned a twofold increase in sharp-
ness and was therefore larger than indicated by the spectral cen-
troid measurements; however, we choose to rely on the latter
metric in further analysis because it does not suffer from the
many pitfalls associated with fitting algorithms (Seber and Wild,
2003; see Materials and Methods).

An intuitive interpretation of the potential significance asso-
ciated with the tuning changes reported in Figure 1G may be
gained by considering those functions as descriptors of the prob-
ability that the observer may report a given energy profile across
orientation as being incongruent (Murray, 2011). A relatively
small image distortion of approximately �40 degrees away from
the aligned (i.e., congruent) undistorted edges (Fig. 1G, magenta
double-headed arrow) will not elicit much differential response
from either upright or inverted filters: the associated response
will be similar to that obtained in the presence of an aligned
congruent feature, prompting observers to classify it as congru-
ent. On the other hand, a more pronounced image distortion that
introduces energy beyond �60 degrees away from the original
image structure (horizontal cyan double-headed arrow) would
generate substantial response on the part of the upright filter (Fig.
1G; vertical cyan double-headed arrow); such a distortion would

lead observers to report it as incongruent, yet it would go unno-
ticed by the inverted filter. For the latter to prompt an incongru-
ent classification on the part of observers, the distortion would
need to be nearly orthogonal to image structure (i.e., fully incon-
gruent). In other words, the retuning effect reported in Figure 1G
is consistent with the notion that observers apply a tighter margin
of tolerance around image structure to retain/exclude distortions
as being congruent/incongruent; this margin is less stringent in
the case of inverted images. The above notion, expressed here in
qualitative terms, is implemented via computational modeling
in later sections (Figs. 4, 8); it is intended as an intuitively useful
(albeit inaccurate) tool for conceptualizing the main properties
of the perceptual representation, and should not be confounded
with response bias or confidence [we adopted two-alternative
forced-choice protocols throughout (Green and Swets, 1966),
making these issues largely inapplicable/irrelevant].

Effect of spatial attention is orthogonal to inversion
For clarity of exposition we have so far omitted an important
detail of stimulus design: two spatial cues appeared at probe lo-
cations either before or after the stimulus (precue vs postcue
configurations). Observers were thus afforded the opportunity to
deploy attention to the probes on precue trials, but not on post-
cue trials. The question of what role (if any) is played by attention
in processing natural scenes is regarded as critically relevant (Bie-
derman, 1972; Li et al., 2002; Rousselet et al., 2002), prompting us
to adopt the cueing manipulation in this study.

Consistent with existing electrophysiological and psycho-
physical measurements using both simple (McAdams and Maun-
sell, 1999; Paltoglou and Neri, 2012) and complex laboratory
stimuli (Biederman, 1972; Rolls et al., 2003), spatial cueing had
no significant effect on tuning sharpness (black symbols in Fig.
3A scatter around equality line at p � 0.65) as also confirmed by
the fitted metric (Fig. 3A, black symbols in inset; p � 0.74); how-
ever, it affected performance in the direction of increased sensi-
tivity on precue trials (black symbols fall below diagonal equality
line in Fig. 3B). The latter result demonstrates that observers did
exploit the cues (which they may have potentially ignored alto-
gether), while the former result demonstrates that the change in
tuning associated with inversion (Fig. 3A, red symbols) is specific
to this manipulation.

Figure 3C combines data from Figure 3, A and B, to emphasize
the orthogonal effects of inversion and spatial cueing on tuning
and sensitivity (x- and y-axes, respectively): inversion causes a
change in tuning but no change in sensitivity (red data points fall
to the right of vertical dashed line and scatter around horizontal
dashed line), while the complementary pattern is associated with
spatial cueing (black data points). The observed orthogonality is
consistent with an earlier exploratory study from our laboratory
(Neri, 2011b), despite using substantially different stimuli/mea-
surements and probing less relevant properties of the sensory
process (the earlier study reported small (marginally significant)
effects with tangential relevance to sensory tuning (no character-
ization of feature tuning was afforded), failing to enable mean-
ingful specification of informative computational models).
Incidentally, the pattern in Figure 3C excludes any potential role
for eye movements in driving the tuning changes (see Materials
and Methods).

Differential analysis based on image content
Our database of natural scenes spanned a large range of image
content, from mountain landscapes to skyscrapers (see Materials
and Methods). For some images the effect of inversion is percep-

Figure 2. The face/scene inversion effect. Except for being flipped upside down, the image in
A is identical to the image in B (turn this page upside down to check); it was obtained by
inverting the orientation of eyes and mouth and smoothly inserting them into the original face
(Thompson, 1980). The gross distortions introduced by this manipulation are clearly visible in B,
but are perceptually inaccessible in A. A similar (albeit weaker) effect is demonstrated in C and
D for a natural scene from our database. A local distortion of orientation has been introduced at
the location of probe insertion in the experiments. The content of the image in C is not clearly
interpretable, possibly encompassing a satellite picture; the scene in D is immediately recog-
nized as depicting a mountain landscape, and the whirling pattern along the dark ridge in the
bottom-right quadrant is easily interpreted as the product of image distortion.
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tually evident: when the image is presented in upright configura-
tion, it is easily recognized as upright; when in an upside-down
configuration, its inversion is equally obvious. Other images,
however, depict scenes that cannot be readily oriented; for these
images the effect of inversion is not perceptually conspicuous. It
seems reasonable to expect that the effects of inversion reported
in Figure 3A should be limited to the former class of images, and
not apply to the latter. We wished to test this prediction by re-
stricting our dataset to either class and repeating the analysis
separately.

To classify individual images as belonging to either category,
in additional experiments we presented observers with both up-
right and inverted images of the same scene and asked them to
select the upright configuration (see Materials and Methods). It

was necessary to rely on human observers to carry out this
classification because there is no established algorithm/metric
for assessing this type of complex image property; the metrics
we attempted only correlated mildly with human classification
(top two performers are plotted in Fig. 3F; see Materials and
Methods).

Figure 3F plots the percentage of correct upright/inverted
classifications for each image in the dataset; we split the database
into equal halves below and above the median percentage correct
value (respectively to the left and right of the vertical green line).
Consistent with the above-detailed prediction, the effects re-
ported in Figure 3A survived when the dataset was restricted to
images with unambiguous orientation but disappeared when re-
stricted to the ambiguous class (Fig. 3D,E; the inversion effect for

1 5

1

5

Tuning sharpness (cycles/π)

In
ve

rt
ed

Precue

P
ostcue

p<.01, p=.65

A

0.4 1.2

0.4

1.2

Performance (d’)

Upright

In
ve

rt
ed

Precue

P
ostcue

p=.75, p<.01

B

1 5

1

5

In
ve

rt
ed

P
ostcue

p<.02, p=.25

D

1 5

1

5

Upright

In
ve

rt
ed

P
ostcue

p=.39, p=.95

E

−.5 0 .5

−.1

0

.1

Δ with Inversion/Cue

Model

Δ tuning sharpness (log−ratio)

Δ
 perform

ance (log−
ratio)

C

1 10 100

.3

.5

.7

.9

1

Vertical asymmetry index

Edge richness index

M
ed

ia
n 

sp
lit

Image number (sorted)

P
ercent correct (upright vs inverted)

F .5 1 1.5

.5

1

1.5

AmbiguousU
na

m
bi

gu
ou

s

d’

A
m

bi
gu

ou
s 

or
ie

nt
at

io
n

U
na

m
bi

gu
ou

s 
or

ie
nt

at
io

n

Cueing
Inversion

Figure 3. Tuning sharpness is affected by image inversion. Red symbols in A plot sharpness (Fig. 1H ) for inverted (y-axis) versus upright (x-axis) trials, black symbols for postcue ( y-axis) versus
precue (x-axis) trials. A, Inset plots sharpness as estimated via fitting (smooth traces in Fig. 1G; see Materials and Methods for details). B, Plots sensitivity using similar conventions. C, Plots the
log-ratio change in sensitivity (y-axis) versus the change in tuning sharpness (x-axis) for both inversion (red) and spatial cueing (black). Ovals are centered on mean values with radius matched to
SD along the corresponding dimension; arrows point from origin to mean coordinates. Orange shading shows range spanned by top-down predictive model (Fig. 4, see Materials and Methods). D,
E, Plot same as A, but after splitting the dataset into images with unambiguous versus ambiguous orientation (respectively). Images were assigned to either category based on the associated
aggregate performance for discriminating upright versus inverted configuration (y-axis in F ) of individual images (x-axis): those above the median performance value (vertical green line) were
assigned to the unambiguous category, those below to the ambiguous one (see Materials and Methods for experimental details). Orange/cyan traces plot two image-based metrics (arbitrarily
rescaled along y-axis) quantifying vertical asymmetry and edge richness of individual images (see Materials and Methods). Inset plots sensitivity for performing the probe discrimination task with
unambiguous versus ambiguous scenes. F, Left, Examples of images from the two categories. Different symbols refer to different observers. Error bars indicate � 1 SEM (not visible when smaller
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red data points in D remains significant
after Bonferroni correction for multiple
(2�) comparison). These results high-
light not only the internal consistency of
the dataset, but also the suitability of tun-
ing sharpness as an appropriate metric for
gauging the effect of image inversion.

Further evidence for the selective ability
of our protocols to expose semantic effects
comes from the observation that perfor-
mance in the primary probe discrimination
task differed for ambiguously and unambig-
uously classified images (points lie above the
equality line in inset to Fig. 3F at p � 0.01),
even though it did not differ (p � 0.46) be-
tween upright and inverted for either class
(confirming the overall result reported in
Fig. 3B): images that could be reliably ori-
ented by observers, i.e., presumably those
with more readily accessible semantic
content, are associated with superior perfor-
mance in the local orientation discrimina-
tion task. The performance metric of
sensitivity (d�) is therefore able to expose a
robust effect of semantics across different
scenes, even though as shown in Figure 3C it
is unaffected by within-scene semantic ma-
nipulations (i.e., inversion).

Top-down predictive model of
orientation tuning
To aid in data interpretation, we con-
structed a simple top-down predictive
model (Rao and Ballard, 1999; Rauss et al.,
2011; Sohoglu et al., 2012) that simulates
the empirical effects reported so far. Fig-
ure 4, A–C, offers an intuitive view of how
the model operates. We assume that the
model exploits image structure around
the probe to infer its expected orientation
range if consistent (i.e., congruent) with
surrounding context; this operation may
be thought of as a filling-in process (Ram-
achandran and Gregory, 1991) where im-
age structure is exploited to fill in the
ambiguous region (the probe). It is also
assumed that the predicted orientation
range is more tightly arranged around the
congruent orientation for the upright
than the inverted case (Fig. 4, compare
spread of light-colored lines in A and C and orientation ranges in
B), i.e., it is assumed that the filling-in process is driven to a
non-negligible extent by the higher level representation of the
scene so that it is more precise in the upright configuration. This
specific feature of the model is motivated by the following three
concepts/findings from existing literature: (1) top-down seman-
tic information about the “gist” of the scene may be used by the
visual system to aid in local object/feature identification (Lee and
Mumford, 2003; Torralba et al., 2010), possibly via a coarse-to-
fine strategy associated with enhanced orientation precision
(Kveraga et al., 2007); (2) single-unit recordings from primary
visual cortex have demonstrated that optimally oriented gratings
sharpen neuronal orientation tuning when extended outside the

classical receptive field (Chen et al., 2005), indicating that con-
textual information is exploited by cortical circuitry to refine the
orientation range spanned by congruent local edges; and (3) re-
cent computational models successfully account for these neuro-
nal effects via implicit encoding of statistical properties exhibited
by natural scenes (Coen-Cagli et al., 2012). Those properties, in
turn, are connected with semantic segmentation of the scene and
object attribution of local edges (Arbelaez et al., 2012).

Under the above-detailed assumptions, software implemen-
tation of the model involves filtering the input stimulus (Fig. 4D)
using a bank of oriented units (Fig. 4E); the output from the filter
bank is then converted to firing rate (Heeger et al., 1996) and
weighted by a read-out rule that starts out with an unoriented
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Software implementation involved filtering of the input stimulus (D) via a bank of oriented units (E); the output from this layer was
subjected to a sigmoidal nonlinearity ( symbols in E) and weighted by an isotropic prior (F ) minus the predicted orientation
range (G), thus returning the degree of incongruency associated with the stimulus. The model was challenged with the same
stimuli used with human observers and on each trial selected the stimulus associated with largest incongruency as returned by the
read-out rule in F and G. The associated orientation tuning functions (H ) capture most features observed in the human data
(compare with Fig. 1G; smooth traces were obtained via the same fitting procedure). J, Plots sensitivity for upright versus inverted
configurations (each point refers to 1 of 100 model iterations, 10 K trials per iteration).
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isotropic assumption for the probe (Fig. 4F) and subtracts from it
the orientation range predicted by the top-down filling-in pro-
cess (Fig. 4G). The output of this subtraction returns the degree of
incongruency of the stimulus, i.e., the amount of residual energy
after the congruent prediction has been subtracted out. The
model selects the stimulus with larger degree of incongruency as
a target, thus simulating binary choices by the human observers
(see Materials and Methods for details).

We challenged this model with the same stimuli and analysis
used with human observers; the resulting simulations captured
all main features of the human data (compare Fig. 4H with Fig.
1G). More specifically, the sharper peak for the inverted tuning
function is a consequence of the broader predicted orientation
range associated with inversion: by extending this orientation
range around the congruent orientation (Fig. 4G) the process is
effectively squeezing the tuning function around the incongruent
orientation (Fig. 4H, orange vertical dashed line). The model also
replicates the lack of inversion effect on performance (Figs. 4J,
3C, orange-shaded region), fulfilling the primary purpose of the
present modeling exercise, which is to demonstrate that the mea-
sured tuning functions are compatible with the observed lack of
changes in performance (i.e., the two results can be simultane-
ously accounted for by the same simple model). Its purpose is not
to provide a detailed account of the mechanisms underlying sen-
sory retuning: the latter effect is simply inserted into the model as
given.

Although it is tempting to further specify the model to pro-
duce sensory retuning via explicit circuitry and potentially direct
links to the contextual structure exhibited by the scenes in our
dataset, an effort of this kind would be largely speculative: the
empirical results presented here support the notion of orienta-
tion retuning, but they do not provide sufficient information to
determine the exact nature of the mechanisms involved, e.g.,
whether actual retuning of individual units in the front-end fil-
tering stage, differential read-out of those units between upright
and inverted images, or selective modulation of gain-control cir-
cuits in the absence of unit and/or read-out retuning. The latter
possibility in particular would be supported by recent experi-
mental and theoretical work (Chen et al., 2005; Coen-Cagli et al.,
2012; see also Bonds, 1989; Spratling 2010); under this view, se-
mantic control as demonstrated here would tap onto general-
purpose cortical machinery and modulate it in concomitance
with nonsemantic flanker effects (e.g., via control of divisive nor-
malization networks). Further experimental characterization will
be necessary to pinpoint the relevant circuitry and guide more
detailed computational efforts.

Directional tuning is altered by reversing, but not inverting,
the movie
Although scenes like Figure 1A represent a closer approximation
to natural stimuli than simpler laboratory images, they differ
substantially from real-life vision in several respects, most nota-
bly the lack of movement. We wished to ask similar questions to
those asked with static images but in the context of moving
meaningful sequences such as those seen in films; there is no
existing data that speak to this issue. For this purpose we
grafted a moving probe into a film clip in either incongruent
(moving in the opposite direction, Fig. 5A) or congruent con-
figuration (moving along the direction defined locally by the
movie, Fig. 5B), and asked observers to select the incongruent
movie (see Materials and Methods). Similar to the orientation
discrimination experiments, this task can only be performed
by comparing probe and context: if either one is removed,

congruent and incongruent stimuli become indiscriminable.
Furthermore, the directional task requires observers to engage
motion-selective mechanisms: if the movie is stopped, the two
probes can no longer be labeled as congruent/incongruent and
the task becomes unspecified.

We injected directional noise into each probe by assigning
random contrast values to a set of moving gratings (Fig. 5C,D)
and by adding those gratings to the probe. We then retrieved the
directional tuning function used by observers (Fig. 5F, black
curve); as expected it allocates positive weight to the incongruent
direction (Fig. 5F, orange vertical dashed line) indicating that
observers classified directional energy within this region as target
for selection. We then applied two higher level manipulations: on
some trials we inverted both clips upside down (Fig. 5E) and on
other trials we played them backward (Fig. 5G). Both manipula-
tions degrade semantic interpretation but leave other image
properties unaffected (Blake and Shiffrar, 2007).

Under inversion, we observed little change in the associated
directional tuning function (Fig. 5F, red curve). This result is
perhaps unexpected given that inversion affected orientation
tuning (Fig. 1G); later in the article we discuss an extended ver-
sion of the orientation-discrimination model that accommodates
this observation. When the movies were played backward, there
was a substantial change in the associated directional tuning
functions: no change was observed at the target (incongruent)
direction (compare data points aligned with orange vertical
dashed line in Fig. 5F), but there was a reversal of the directional
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Figure 5. Directional tuning of feature detectors in natural movies. Experimental design was
similar to that adopted with static pictures (Fig. 1) except probes consisted of moving gratings
(arrows in A and B) embedded within movie segments in either congruent (moving along with
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respectively). Observers were asked to select the incongruent stimulus. Directional noise (C and
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tuning function away from the incongruent direction (see region
near � �/4).

To confirm this result across observers, we applied a scalar
metric to inverted and reversed curves (Fig. 5F, red/blue traces)
aimed at quantifying their departure from the upright curve
(black trace). This metric (normalized RMS difference between
two tuning functions) is plotted on the x-axis in Figure 6A; it is
substantially different from measurement noise when it is greater
than the value indicated by the vertical dashed line (see Materials
and Methods). As expected from qualitative inspection of Figure
5F, all observers presented a substantial change in the tuning
function associated with playing the movies backward, but there
was no such effect under inversion (blue data points in Fig. 6A fall
to the right of the vertical dashed line, red data points fall to the
left).

Directional discrimination is reduced by inverting, but not
reversing, the movie
There was no measurable change in sensitivity associated with the
reversed configuration (blue data points in Fig. 6A scatter around
the horizontal dashed line), i.e., observers were equally good at
performing the probe discrimination task when movies were
played backward as opposed to forward; however, there was a
substantial drop in sensitivity under inversion (red data points in
Fig. 6A fall below the horizontal dashed line). Disruption of se-
mantic information may therefore impact both sensory tuning
and sensitivity, depending on the probed perceptual attribute
and on the applied semantic manipulation.

On two separate instances across our dataset and in two sub-
stantially different contexts, the metrics of sensitivity and sensory
tuning exposed different manipulations in an orthogonal man-
ner: inversion/reversal caused a change in orientation/direction
tuning but not sensitivity, while cueing/inversion caused a
change in sensitivity but not orientation/direction tuning (Figs.
3C, 6A). This result has important methodological consequences
in that it indicates that the two metrics considered above are
complementary tools (Nagai et al., 2008; Dobres and Seitz, 2010;
Neri, 2011b) and should therefore be used in conjunction with
each other if the experimenter is to obtain a fuller picture of the

underlying sensory process. It is potentially relevant in this con-
text that some studies of natural scene discrimination have re-
ported measurable inversion effects with relation to reaction
times, without any concomitant change in performance (Rieger
et al., 2008).

Tuning function for directional discrimination changes
shape, not amplitude
The metric plotted on the x-axis in Figure 6A provides an indication
of how much overall change occurred between the baseline upright
tuning function and the tuning function under inverted/reversed
configuration, but it provides no information about the specific way
in which the tuning function changed. For example, a change in
overall amplitude (rescaling along y-axis) would result in large val-
ues for this metric, even though there may be no associated change in
shape. To capture specific shape changes we considered the point-
by-point correlation between tuning functions (this metric is com-
plementary to the metric plotted in Fig. 6A because it does not
explicitly carry information about overall amplitude changes).

Correlation values were all positive for the inverted manipu-
lation (red data points in Fig. 6B fall above horizontal dashed
line), confirming that there was little change in shape under
inversion. In contrast, the values associated with the reversed
manipulation were all negative (blue data points in Fig. 6B fall
below horizontal dashed line), demonstrating that the way in
which the tuning function changed shape specifically involved
a reversal of its tuning profile, consistent with qualitative in-
spection of Figure 5F.

Top-down predictive model of directional tuning
To aid in the interpretation of the directional data, we extended
the model used to simulate orientation tuning functions (Fig. 4).
The orientation tuning model was used to construct the form-
specific higher level module within the new model (Fig. 7A); this
module exploits image structure to infer the expected orientation
range within the probe (Fig. 7A, red vs black dashed lines) and
controls the competition between bottom-up and top-down
motion-selective signals (Fig. 7B,D, respectively). More specifi-
cally, the higher level form module defines a nondirectional axis
(Fig. 7A, double-headed arrow) orthogonal to the expected ori-
entation structure within the probe (Fig. 7A, dashed lines). For
directional signals along this axis, the higher level module
prioritizes bottom-up input (Fig. 7B, � sign) and silences the
top-down signal (Fig. 7B, � sign). This facilitatory/inhibitory
connectivity was motivated by the notion that input directional
signals consistent with locally expected edge structure would be
more reliable than those away from it; for the latter, the form
module gradually allows the higher level motion module to “take
over” and deploy its own feedback to the local motion sensor
within the probe (see Materials and Methods).

When the movie is played in its original configuration (Fig.
7B), the directional structure expected by the higher level motion
module is consistent with the signal delivered by the stimulus: the
resulting tuning function therefore matches the directional tun-
ing function of both top-down and bottom-up modules (Fig.
7E). When the movie is played backward (Fig. 7C), however, a
conflict arises between the two modules: the higher level module
is still signaling that the train conductor in Figure 5A must be
walking forward as expected from prior experience during natu-
ral vision, but the bottom-up signal goes in the opposite direc-
tion. The resulting tuning function is again a mixture of top-
down and bottom-up signals; because they no longer match, the
shape of the tuning function is distorted away from its original
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Figure 6. Inverting the movie changes performance, playing it backward changes direc-
tional tuning. Values on y-axis in A plot log-ratio sensitivity (similar to Fig. 3C) for inverted (red)
or reversed (blue) d� values versus corresponding upright values; x-axis plots RMS of the tuning
function obtained by subtracting either inverted or reversed directional tuning function from its
upright counterpart (red/blue vs black traces in Fig. 5F ) in units of expected deviation from
measurement noise (see Materials and Methods). B, Plots point-by-point correlation between
inverted/reversed (red/blue) and upright tuning functions across observers (x-axis). Different
symbols refer to different observers preserving the same symbol-to-observer labeling adopted
in Figure 3. Error bars indicate � 1 SEM. Shaded orange and green areas show ranges (mean �
SD across simulations) spanned by the model outlined in Figure 7; x scaling in A has been
stretched by one order of magnitude (�10) for model to accommodate the inevitably higher
precision afforded by the simulations (model has no intrinsic noise).
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configuration (Fig. 7F). We challenged a software implementa-
tion of this model with the same stimuli and analysis used with
the human observers; the model is able to capture all main fea-
tures in the human data (compare Figs. 7G, 5F), including rele-
vant effects on performance (Fig. 6A, shaded regions).

The interaction between form and motion as implemented here
is reminiscent of existing models where form detectors bias the pro-
cessing performed by motion detectors (Burr and Ross, 2002). In
those models, motion detection is facilitated along the direction of
form streaks (Geisler, 1999); similarly here, bottom-up motion pro-
cessing is facilitated along the edge structure represented by the
higher level form module. However, it is critically important that the
distinction between low-level detection and higher level interpreta-
tion is preserved in juxtaposing the two frameworks, because the
bottom-up low-level motion detector in our module is facilitated
along the direction orthogonal, not parallel (Geisler, 1999), to the
edge structure retrieved by the form module. The similarities be-
tween these two modeling architectures end where they begin; it is
therefore more cautious to view them as largely independent.

Discussion
Mainstream models of early sensory processing do not incorpo-
rate semantic control (Heeger et al., 1996): they assume that fea-
ture detectors are relatively static in relaying stimulus-driven
signals to later processing stages (Carandini et al., 2005). This
state of affairs should not be interpreted to mean that current
thinking is oblivious to the notion that early sensors may be
shaped by feedback from higher level modules; on the contrary,
several theoretical accounts of early vision have postulated the

existence of top-down instruction onto
front-end feature detectors (Lamme and
Roelfsema, 2000; Bullier, 2001), alongside
electrophysiological evidence that the
properties of neurons in early sensory cor-
tex are affected by higher level cognitive
factors (Lamme and Roelfsema, 2000;
McAdams and Reid, 2005). The difficulty
stems from the limitation that, when
such recurrent processing is hypothe-
sized, it cannot be incorporated into ac-
tual computational models of the
perceptual process because it is simply
not known how top-down modulatory
effects may manifest themselves at the
level of early sensory tuning for elemen-
tary image features (e.g., orientation;
Lee and Mumford, 2003 for specifically
relevant theoretical proposals).

The results reported in this study pro-
vide clear evidence that feature detectors
for processing orientation (Fig. 1) and
motion direction (Fig. 5) do not operate
in isolation. Rather they are affected by
natural context at its highest level of rep-
resentation; the associated behavioral ef-
fects have measurable impact on both
sensory tuning (Figs. 1G, 5F) and dis-
crimination performance (Figs. 3F, inset;
6A). Most importantly, these results af-
ford a sufficient level of specification to
allow for explicit implementation of
higher level effects in the form of phe-
nomenological and computational mod-
els (see below). At the same time, our

conclusion that semantic interpretation of natural scenes con-
trols sensory tuning of feature detectors is based on empirical
observation, independent of whether the models proposed in
Figures 4 and 7 are applicable or not. If we accept the widely held
notion that the inverted/reversed manipulations selectively dis-
rupt higher level representations (Valentine, 1988; Blake and
Shiffrar, 2007), we must conclude that higher level representa-
tions control the shape of the tuning functions to a measurable
extent.

It is important to emphasize that observers were never asked
to carry out higher level object recognition: the task involved
orientation discrimination of Gabor wavelets and their immedi-
ately adjacent image context, without any requirement for ex-
plicit attribution of semantic content. Although we show that this
early visual process is shaped by higher level image representation
(see above), our results cannot be used to draw conclusions in the
opposite direction: we do not provide evidence that the observed
changes in the low-level process have a measurable impact on the
operation of the higher level process. The latter is manipulated
via inversion/time reversal; it remains to be verified whether this
experimental manipulation, artificially imposed by the experi-
menter, is also coupled with modifications controlled by the low-
level process as characterized here.

To illustrate the general significance of our results without
committing to specific modeling schemes, we refer back to the
phenomenological inversion effects illustrated in Figure 2. We
can compute the energy distribution introduced by local distor-
tions across the dimension of orientation (Fig. 8E,F, blue traces)
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Figure 7. Top-down predictive model of directional tuning. This model incorporates the orientation tuning model (Fig. 4) as its
form module (A): the projected orientation range (dashed lines in A) is less precise under inversion (red dashed lines) and is aligned
with the local edge content. This module sends a facilitatory signal to the bottom-up motion module (B) and an inhibitory signal
to the top-down motion module (D), thus controlling the balance between bottom-up and top-down directional processing within
the system. The form module itself is not directionally selective in that its modulation is symmetric with respect to the motion
directions defined by the edge (double-headed arrow in A). The relative contribution of bottom-up and top-down directional
filtering to the final percept at different directions is indicated by different colors: green/orange for bottom-up, cyan/magenta for
top-down. Green bottom-up units respond to the congruent direction (i.e., the one defined by the low-level properties of the
stimulus) and they are coupled with the top-down cyan units, which respond to the direction congruent with the semantic content
of the scene (i.e., the one defined by the higher level properties of the stimulus); orange bottom-up units are similarly coupled with
magenta top-down units (coupling is represented by multicolored double-headed arrows). When the movie is played in its normal
configuration (forward), bottom-up (B) and top-down (D) representations of congruent and incongruent directions agree with
each other, so that the final percept (E) matches both. When the movie is played backward (reversed), the two representations are
opposite to each other (C vs D) and the final percept (F ) presents distortions from the veridical direction in the stimulus (C)
introduced by the top-down motion module; the distortions are more pronounced away from congruent/incongruent directions
because the form module (A) allows progressively more input from the top-down motion module within that region of directional
space. When the model is challenged with the same stimuli and analysis used with human observers it is able to capture most
features of the human data (compare G with Fig. 5F; see also shaded regions in Fig. 6). Quantitatively simulated distortions in G are
linked to those diagramed in F using asterisks. G shows average across 100 iterations (9 K trials each).
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and filter this energy using the two tuned
operators derived from human data for
upright and inverted configurations (Fig.
8E,F, black and red traces); the amount of
distortion energy returned by these oper-
ators for the natural images in Figure 8,
A–D, is indicated by red tint. Because the
upright operator matches the energy dis-
tribution introduced by the distortion
more closely than the inverted operator
(compare match of black/red traces with
blue trace in Fig. 8E,F), distortion energy
is more visible in the upright images (Fig.
8, compare red tint in B, D vs A, C), which
may explain why it is more readily avail-
able to our perceptual system (Thomp-
son, 1980). The above-detailed account of
the Margaret Thatcher illusion (and in-
version effects more generally) is substan-
tially different from, and more detailed
than, current explanations of this phe-
nomenon (Bartlett and Searcy, 1993).
More specifically, current theories postu-
late that inversion disrupts the ability to
integrate local features (Valentine, 1988;
Maurer et al., 2002); our results indicate
that, instead, inversion disrupts the ability
to fine-tune local processing of those fea-
tures (see also Sekuler et al., 2004; Gold et
al., 2012).

Although more speculative, further in-
terpretation of our results may be guided
by the computational models and associ-
ated simulations presented in Figures 4
and 7. Both models adopt a top-down
predictive architecture (Rao and Ballard,
1999; Rauss et al., 2011) whereby image
semantics modulate low-level sensory
tuning. These models are not intended as
veritable representations of the sensory
process, nor as exclusive accounts of this
process. Their purpose is to offer a dem-
onstration, among many other potential
candidates, that the notion of predictive
coding (Rao and Ballard, 1999; Rauss et
al., 2011; Sohoglu et al., 2012) is consistent
with our measurements, also in connec-
tion with recent electrophysiological
(Chen et al., 2005) and computational
work (Coen-Cagli et al., 2012). In line
with their illustrative nature, these relatively simple models do
not incorporate full-scale image interpretation in the sense of
extracting explicit semantic content from image structure as at-
tempted by some computer vision algorithms (Ullman, 1996;
Torralba et al., 2010). An endeavor of the latter kind, although
undoubtedly necessary for a complete understanding of the rel-
evant issues, is beyond the scope of the current study.

The term “feature detector” as adopted here refers to a per-
ceptual entity of conceptual validity independently of specific
interpretations based on potential neural substrates (Spillmann,
2006; Morgan, 2011); similarly, we use the terms low-level and
higher level in a perceptual sense as currently understood and
conceptualized in the cognitive literature (Ullman, 1996). It is

nevertheless reasonable to speculate that observers used both pri-
mary sensory structures (e.g., V1) and distributed semantic neu-
ral resources (Walther et al., 2009; Huth et al., 2012; Ban et al.,
2013; associative cortex) to carry out the discrimination tasks in
our experiments: we specifically designed probes that matched
the properties of early visual areas in their spatial extent and
characteristics (Hubel, 1963; Bolz and Gilbert, 1986), so that our
experiments would be directly relevant to low-level structures in
the visual processing hierarchy. At the same time, probes were
embedded within natural scenes and the assigned task enforced
integration of both stimulus components, extending the rele-
vance of our experiments to neural circuitry where semantic con-
tent may be represented (Rossion and Gauthier, 2002; Huth et al.,
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introduced by the distortion (Q). Blue traces in E and F show averages across entire image; orientation filters (from fits to human
data in Fig. 1G) were applied not to the average but separately to each pixel in the image to estimate perceived distortion energy
(red tint in A–D) across the scene.
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2012; Preston et al., 2013). Studies comparing neuronal re-
sponses in early visual cortex under stimulation from artificial
versus natural statistics have reported important differences (Da-
vid et al., 2004; Haslinger et al., 2012) (including orientation
tuning changes; Smyth et al., 2003) that may be interpreted as
selective adaptations to the conditions of natural vision (Felsen
and Dan, 2005).

Previous psychophysical research has demonstrated the per-
ceptual relevance of specific properties of natural scenes, such as
amplitude spectrum (Párraga et al., 2000) or edge distribution
(Bex et al., 2009); however, no prior study has addressed the
potential impact of semantic content on low-level feature ex-
traction. For example, previous research has shown that edge
density affects image discrimination for natural scenes (Bex et
al., 2009). This result is relevant to the first level of analysis we
considered in the introduction (i.e., role of natural statistics
without meaningful content), but is distinct from the seman-
tic level targeted by the present study: edge structure around
the probe is unaffected by image inversion in our experiments,
as are all other image characteristics addressed by previous
research (Webster and Miyahara, 1997; Párraga et al., 2000;
Bex et al., 2009). By demonstrating that semantic representa-
tions shape perceptual analysis of elementary image features,
our results indicate that the sensory process must be viewed as
a multidirectional system where modules at both ends of the
spectrum, from higher to lower level representations, interact
with and inform each other in a cohesive manner within a
highly integrated architecture (Lamme and Roelfsema, 2000;
Bullier, 2001; Lee and Mumford, 2003).
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