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Anterior Cingulate Cortex Instigates Adaptive Switches in
Choice by Integrating Immediate and Delayed Components
of Value in Ventromedial Prefrontal Cortex
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Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain
track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an
available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource.
Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed conse-
quences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed conse-
quences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled
to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture
whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support
flexible policy switching that accommodates the potential delayed consequences of an action.
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Introduction
Humans and other animals make decisions by assigning values to
candidate options that compete for action selection (Rangel et al.,
2008). To ensure an outcome is optimal, an agent needs to infer
long-term expected value by integrating over several compo-
nents, including the current goal and the downstream conse-
quence of acting. A growing understanding of how hierarchical
goals influence value comparison (Hare et al., 2009, 2011) con-
trasts with a dearth of knowledge regarding how the brain infers
and integrates downstream consequence when evaluating op-
tions in a changing environment.

Paradigms requiring calculations of long-term value recruit
the prefrontal cortex (PFC; Balleine and Dickinson, 1998; Wallis
and Miller, 2003; Basten et al., 2010; Gläscher et al., 2010; Rangel
and Hare, 2010). In particular, the dorsolateral PFC (DLPFC) has
been linked to task planning (van den Heuvel et al., 2003; Wun-
derlich et al., 2012), the representation of abstract task rules

(Buschman et al., 2012; Stokes et al., 2013), as well as discounted
or goal values (McClure et al., 2004; Plassmann et al., 2010).
However, these studies do not address how the brain infers long-
term value when decisions are sequential and integrative. It is of
interest that several tasks requiring cognitive control implicitly
evoke representations of downstream consequence, and as such it
seems plausible that these processes could be subserved by a com-
mon neural mechanism. In a typical example, an external cue
signals a categorical contingency switch that instantiates a change
in action or the inhibition of a prepotent response (Kerns et al.,
2004). Although such tasks highlight a frontoparietal network as
being central to control (Botvinick et al., 2001; Badre, 2008), they
are seldom deployed in the value domain, and a focus on isolated
choice neglects downstream consequences of decisions. Recent
studies have touched on these issues implicating parietal regions
and PFC in representing the state transitions necessary for build-
ing a model of the world (Gläscher et al., 2010; Wunderlich et al.,
2012). It remains unclear what computational role these regions
play when action control is reliant on a subjective inference about
a change in expected value.

Here, we tested whether a context-specific evaluation of
action could explain choice in a value-guided sequential go/
no-go paradigm, whereby an agent tracks time-varying con-
tingencies of a dynamic environment to adapt behavior in
anticipation of future value. Building on previous studies, our
paradigm allowed comparisons between policy switches aris-
ing from either inference or an external cue that the environ-
ment had changed. Thus, this task enabled us to characterize
the computations tracked by the brain in a dynamic world. We
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predicted that PFC would compute the downstream conse-
quence of acting by tracking changing aspects of the environ-
ment and interact with regions such as ventromedial PFC
(vmPFC) and striatum, both strongly implicated in reward
(Kable and Glimcher, 2007), to compute an integrated signal
of long-term value for guiding choice policy.

Materials and Methods
Subjects
Twenty-one adults participated in the experiment (nine males and 12
females; age range, 19 –28 years; mean � SD, 23.2 � 2.3 years). All were
healthy, reporting no history of neurological, psychiatric, or other cur-
rent medical problems. Subjects provided written informed consent to
partake in the study, which was approved by the local ethics board (Uni-
versity College London, London, UK).

Training paradigm
In a conditioning phase, performed outside of the scanner, subjects
learned stimulus–reward associations between a set of four differently
colored rectangular cues and their respective monetary values. Each col-
ored rectangle corresponded to one of four possible value outcomes—1,
2, 3, or 4 tokens—randomized across individuals. Subjects were in-
structed that each token would translate into a fixed sum of money at the
end of the experiment.

Each trial began with a central fixation cross presented for 1000 ms,
followed by presentation of a random pair of colored boxes, one appear-
ing to the left of the screen and one to the right. Subjects had a 2000 ms
time window to choose between these two boxes via a left or right button
press, followed by presentation of the outcome of their choice for 1000
ms. The outcome was revealed as a written message indicating the total
number of tokens won. Subjects were instructed to explore all options
until they were confident they had learned all four associations, after
which they should choose the box from the pair with the higher value.
Each trial was defined as correct if the subject chose the more valuable of
the two options and incorrect if they failed to do so. To ensure adequate
learning, performance was calculated over six bins of 20 trials, with all
subjects reaching a performance criterion of �90% by trial 60 onward.
For absolute verification, subjects were asked to verbally communicate
the nature of the learned associations.

Task paradigm
On every trial, subjects were presented with a random sequence of
trained stimuli (see training paradigm), appearing individually and se-
quentially, with a variable interstimulus interval (750 –1250 ms). The
sequence order was pseudorandom and thus unpredictable, with each
stimulus having an equal probability of being one of the four possible
colors. In addition, the precise number of stimuli to be offered on any
trial was uncertain, fluctuating under a uniform distribution between 3
and 7.

Each stimulus constituted an offer with a worth equivalent to its re-
spective token value, for which subjects had 1500 ms to accept or reject
via a go or no-go response, respectively. A restriction was placed on the
number of offers that could be exploited. In high-constraint (HC) trials,
the acceptance budget was between 1 and 3 offers, whereas in low-
constraint (LC) trials, it ranged between 4 and 6 offers, both varying
under a uniform distribution independent of the total number of offers
made on the current trial. Subjects were not explicitly told the bounds of
the distributions from which the number of offers and total budget were
drawn, only that they were uniform. All subjects received 30 training
trials (15 per condition) to infer these distributions and familiarize them-
selves with the task attributes.

HC and LC trials were pseudorandomly interleaved. The trial type was
indicated via a small or large green circle, in the top central portion of the
screen, for HC and LC, respectively. This appeared at trial onset and
turned red after exhaustion of the budget. indicating that no-go re-
sponses were obligatory for the remainder of the trial. After the final
offer, an outcome incorporating the total number of tokens won and the
corresponding cue-token credit breakdown was revealed for 2500 ms.

One hundred twenty trials (60 per condition) were completed in the

scanner across four sessions. The number of tokens won across sessions
was summed and converted to a cash prize.

Behavioral data analyses
Global behavior. Our analysis focused exclusively on choices pertaining to
within-budget offers. Accepts (go responses) were obtained as a percent-
age of the total offer number at each offer value, conditional on HC and
LC trials. These measures were entered into a two-way repeated-
measures ANOVA with factors control (HC/LC) and offer value (1, 2, 3,
or 4). The data were analyzed in the statistical software package SPSS,
version 20.0.

Within-trial modulation of choice. Within a trial, a player transitioned
through a number of discrete states dependent on two fluctuating vari-
ables, the number of offers already seen, and the number of accepts
already used. To assess whether the probability of accepting a given offer
was flat across the entire length of a given trial or fluctuated as a function
of these variables, we split trials by offer index (i.e., 1–7) and number of
offers already rejected (i.e., 0 – 6), recalculating the probability of accept-
ing at every possible permutation (see Fig. 2). For each participant, we
summed the number of offers with a given value presented at each pos-
sible state within a trial and then summed the number of accepts at each
of those states. Dividing these measures gave us a probability of accep-
tance at every choice point. Thus, for both HC and LC trials and each
offer value, we generated a separate probability accept matrix, with offer
number increasing along the x-dimension and number of rejects increas-
ing along the y-dimension. These matrices were averaged across all par-
ticipants. For display purposes, we discarded cells with less than a total of
10 data points.

Computational modeling
Because we were interested in assaying subjects’ strategy for maximizing
reward, we evaluated evidence for four competing choice models.
Broadly, we conjectured that subjects might approach trials with a pre-
determined decision rule, in effect applying a heuristic uniformly
throughout a trial. Alternatively, because of uncertainty surrounding the
number of expected offers and the go budget (the number of offers they
can exploit for reward in a trial), subjects might continually adapt their
threshold for accepting offers across a trial. We outline the distinct mod-
els below, ordered by increasing complexity, in which each model calcu-
lated the expected value of accepting an offer (VA), which was then passed
through a sigmoid function to determine action probabilities as follows:

PA �
1

1 � exp ��� � VA�,

where � is a temperature parameter that governs the stochasticity of
choices.

Baseline heuristic model
We specified a baseline heuristic model that calculates VA by comparing
the (face) value of every offer to a stationary decision threshold:

VA � R � c1,

where R is the (face) value of the current offer, and c1 is a value threshold.
Thus, this model makes choices based solely on the immediate (face)

value of an offer with the probability of acceptance fixed throughout a
trial.

The model has three free parameters: the associated decision
threshold for both HC and LC separately, and the steepness of the
sigmoid function.

Sliding offer model
We conjectured that subjects might track the number of offers seen in a
trial and adjust a decision threshold such that an offer is more likely to be
accepted if forthcoming offers were scarce. We added a linear slope pa-
rameter to the baseline heuristic model that governed the steepness of
this decay across a trial, such that

VA � R � (c1 � o � c2),
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where R is the (face) value of the current offer, c1 is a value threshold, o is
the current offer index, and c2 governed the steepness of the associated
slope.

The model has five free parameters: the associated decision threshold
and a slope parameter for both HC and LC separately, and the steepness
of the sigmoid function.

Sliding budget model
A second variable that subjects could track to dynamically adjust their
decision threshold is the number of offers already accepted in a trial.
Given a limited go budget, a player may be less likely to accept an offer as
this resource is exhausted, assuming ample offers. This model linearly
increased the decision threshold with every additional offer accepted but
did not take into account the abundance of remaining offers, such that

VA � R � (c1 � a � c2),

where R is the (face) value of the current offer, c1 is a value threshold, a is
the number of offers accepted previously, and c2 governed the steepness
of the associated slope.

The model has five free parameters: the associated decision threshold
and a slope parameter for both HC and LC separately, and the steepness
of the sigmoid function.

Integrated sliding model
Combining the sliding offer and sliding budget models, subjects could
track both the number of offers seen and the number of offers already
accepted in a trial, using each source of information to adjust the decision
threshold. The threshold should drop linearly with every mounting offer
and rise linearly with every mounting go response. We fit separate slope
parameters that governed the linear gradient for the number of offers and
number of accepts, such that

VA � R � (c1 � a � c2 � o � c3),

where R is the (face) value of the current offer, c1 is a value threshold, a is
the number of offers accepted previously, o is the current offer index, and
c2 and c3 govern the steepness of the associated slopes.

Interestingly, this two-factor model predicts the optimal action with a
frequency of 87% (based on group mean parameter fits).

The model has seven free parameters: the associated decision thresh-
old, a slope parameter for the number of offers, a slope parameter for the
number of accepts for both HC and LC separately, and a parameter for
the steepness of the sigmoid function.

Model comparison
As described previously (Huys et al., 2011; Guitart-Masip et al., 2012), we
used a hierarchical type II Bayesian (or random effects) procedure using
maximum likelihood to fit simple parameterized distributions for
higher-level statistics of the parameters. Because the values of parameters
for each subject are “hidden,” this uses the expectation-maximization
procedure. Thus, on each iteration, the posterior distribution over the
group for each parameter is used to specify the prior over the individual
parameter fits on the next iteration. For each parameter, we used a single
distribution for all participants. Before inference, all parameters were
suitably transformed to enforce constraints (log and inverse sigmoid
transforms).

Models were compared using the integrated Bayesian information cri-
terion (iBIC), in which small iBIC values indicate a model that fits the
data better after penalizing for the number of parameters. Comparing
iBIC values is akin to a likelihood ratio test (Kass and Raftery, 1995).

Reaction time analyses
We conjectured that, if subjects were evaluating choice options in light of
an action threshold that fluctuated in accordance with the number of
offers already seen and accepted/rejected, then reaction times should be
faster when the associated threshold is low and a go response is relatively
more valuable. To test this, we used multiple linear regression to model

Figure 1. Behavioral paradigm and results. A, Subjects learned stimulus–value associations, ranging from one to four tokens, for four colored stimuli. On every trial, participants saw a random
sequence of these stimuli, varying unpredictably in length between three and seven, with each stimulus representing an offer requiring either a go response to win the associated tokens or a no-go
response for no token gain (for simplicity, the illustrations span 3 offers). Subjects had a predetermined go budget that placed a restriction on the number of offers that could be accepted. In an LC
context, subjects could accept between four and six offers but only between one and three in an HC context, with the exact budget being uncertain. After exhausting a go budget, no-go responses
were enforced for the remainder of the trial. The context or condition was cued via a large (LC) or small (HC) green circle, whereas a depleted budget was signaled via the green circle turning red. B,
Mean percentage of offers accepted split by token value and condition (HC in red, LC in blue). Subjects were less willing to accept low-value offers when the budget was scarce. Post hoc paired t tests
revealed significant decreases in percentage accept for offer values 1, 2, and 3 in HC compared to LC (all p � 0.001). Vertical lines represent SEM. C, Integrated BIC scores (for the group as a whole)
show that a model in which both the number of offers already seen and number of offers already accepted/rejected are used to adjust the threshold for action fits behavior best. ISM, Integrated
sliding model; SOM, sliding offers model; SBM, sliding budget model; BHM, baseline heuristic model. The number of free parameters built into each model is indicated in parentheses.
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the dependence of reaction times for all go choices on the corresponding
offer values (immediate values) and model thresholds, separately for HC
and LC trials. The two regressors were forced to compete for variance so
as to explore dissociable contributions to the observed reaction times.

fMRI data acquisition
fMRI was performed on a 3 Tesla Siemens Quattro magnetic resonance
scanner with echo planar imaging (EPI) and 32-channel head coil. Func-
tional data were acquired over four sessions containing 166 volumes with
48 slices (664 volumes total). Acquisition parameters were as follows:
matrix, 64 � 74; oblique axial slices angled at �30° in the anteroposterior
axis; spatial resolution, 3 � 3 � 3 mm; TR, 3360 ms; TE, 30 ms. The first
five volumes were subsequently discarded to allow for steady-state mag-
netization. Field maps were acquired before the functional runs (matrix,
64 � 64; 64 slices; spatial resolution, 3 � 3 � 3 mm; gap, 1 mm; short TE,
10 ms; long TE, 12.46 ms; TR, 1020 ms). Anatomical images of each
subject’s brain were collected using multi-echo 3D fast, low-angle shot
sequence for mapping proton density, T1 and magnetization transfer at 1
mm 3 resolution, and by T1-weighted inversion recovery prepared EPI
sequences (spatial resolution, 1 � 1 � 1 mm) with B1 mapping data to
correct for the effect of inhomogeneous transmit fields on the T1 maps
(3D EPI transverse partition direction; matrix, 64 � 48; phase direction,
right to left; 48 partitions; resolution, 4 � 4 � 4 mm).

During scanning, peripheral measurements of subject pulse and
breathing were made together with scanner slice synchronization pulses
using the Spike2 data acquisition system (Cambridge Electronic Design).
The cardiac pulse signal was measured using an MRI-compatible pulse

oximeter (model 8600 F0; Nonin Medical) at-
tached to the subject’s finger. The respiratory
signal (thoracic movement) was monitored us-
ing a pneumatic belt positioned around the ab-
domen close to the diaphragm.

fMRI data analyses
Data were analyzed using SPM8 (Wellcome
Trust Centre for Neuroimaging, University
College London). Functional data were bias
corrected for 32-channel head coil intensity in-
homogeneities. Preprocessing involved re-
alignment and unwarping using individual
field maps, coregistration of EPI to T1-
weighted images, and spatial normalization to
the Montreal Neurological Institute (MNI)
space using the segmentation algorithm on the
T1-weighted image with a final spatial resolu-
tion of 1 � 1 � 1 mm. Finally, data were
smoothed with an 8 mm FWHM Gaussian ker-
nel. The fMRI time series data were high-pass
filtered (cutoff, 128 s) and whitened using a
first-order auto-correlation (AR(1)) model.

For each subject, we used an in-house MAT-
LAB toolbox (Hutton et al., 2011) to construct
a physiological noise model to account for ar-
tifacts that take account of cardiac and respira-
tory phase, as well as changes in respiratory
volume. This resulted in a total of 14 regressors
that were sampled at a reference slice in each
image volume to give a set of values for each
time point. The resulting regressors were in-
cluded as confounds in all first-level GLMs.

To identify brain areas sensitive to within-
trial variations in choice prescribed by our
model, we derived an offer-wise go threshold
to use as a parametric modulator of offer onsets
in all first-level GLMs. This model threshold
(MT) represented an intercept value that in-
creased linearly with every offer accepted and
decreased linearly with every offer seen. The
intercept and slopes were based on the mean
posterior parameter fits across the group. If the

offer value was higher than the MT, the preferable decision is accepting,
otherwise rejecting is preferred.

Below we outline the GLM constructed for first-level analyses. All
imaging analyses address time points when offers are within budget and
the subject has a free choice. Results are reported whole-brain corrected
at the cluster level (FWE p �� 0.05) unless otherwise stated.

To enable us to explore a main effect of action constraint and val-
ue/MT (and their relevant interactions), we split offer onsets according
to constraint (HC/LC) and offer (face) value (1, 2, 3, or 4), modeling each
in a separate regressor parametrically modulated by MT. This resulted in
16 regressors of interest. The four scanning sessions were concatenated
into one, and a binary matrix was included to encode the identity of each
session. Additional regressors of no interest included six movement-
related covariates (the three rigid-body translations and three rotations
resulting from realignment), 14 physiological regressors (six respiratory,
six cardiac, and two change in respiratory/heart rate), the onsets of the go
responses (to explain away the effects of action), all offers outside of
budget (for which “no-go” responses were enforced) parametrically
modulated by offer value, and outcome onsets parametrically modulated
by the relevant number of tokens won. All regressors were modeled as
stick functions with duration of zero and convolved with a canonical
form of the hemodynamic response function (HRF) combined with time
and dispersion derivatives.

At the second level, we conducted a random-effects 2 � 4 ANOVA
with factors condition (HC/LC) and offer value (1, 2, 3, or 4), using
first-level contrast images corresponding to the onset regressors of inter-

Figure 2. Subjects’ control strategy. Subjects adjust the probability of accepting less desirable offers as a function of the
number of offers seen (x-axis) and number of offers already rejected (y-axis). The spectrum runs from blue (probability 0)
to red (probability 1).
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est for each participant. This enabled us to explore main effects of con-
dition and value and their interaction. We generated a second 2 � 4
random-effects ANOVA drawing on first-level contrast images from the
eight MT parametric modulators, to explore an average effect of MT and
a MT � value interaction. To obtain an average estimate of DLPFC
activation in HC compared with LC, parameter estimates for offer values
1– 4 were averaged in each condition, and LC was subtracted from HC.

Functional regions of interest
We used a functional regions of interest (f-ROI) approach to extract
parameter estimates in a priori regions for a subset of analyses, including
correlating neural and behavioral measures, comparing value represen-
tations between conditions and exploring functional connectivity pat-
terns. f-ROIs were derived by identifying significant clusters of activation
surrounding peak voxels from the relevant whole-brain mass univariate
analysis. Given that these clusters often spanned multiple regions, acti-
vations were constrained to corresponding anatomical ROIs from the
MarsBar toolbox (version 0.42) for SPM. For the ventral striatum (VS),
activations were constrained to an anatomical ROI derived from a diffu-
sion tensor imaging connectivity-based parcellation of the right nucleus
accumbens (NA) in humans (taken from Baliki et al., 2013). The ROI
consisted of both the core and shell subcomponents of NA, and the right
region was flipped along the x-dimension in the MarsBar toolbox to
obtain a bilateral accumbens mask.

Psychophysiological interaction
For each subject, we defined a volume of interest that included all active
voxels (at p � 0.2) from a first-level contrast that specified a linear effect
of model thresholds across offered value {�2 �1 1 2} within f-ROIs
derived from the same second-level contrast (see Fig. 5A, black arrows).
This allowed us to define voxels active on a subject-by-subject basis but
confined to the cluster active at the group level. We note that 1 of 21
subjects had no active voxels when specifying both the anterior cingulate
cortex (ACC) and left DLPFC (BA46) as seeds, whereas 3 of 21 subjects
had no active voxels when specifying dorsal vmPFC as a seed. These
subjects were excluded from the corresponding psychophysiological in-
teraction (PPI) analysis. We used the generalized PPI toolbox for SPM
(gPPI; http://www.nitrc.org/projects/gppi) to create a new GLM in
which the individual seed time course was deconvolved to construct a
neuronal time course for multiplication with regressors modeling all task
effects and then reconvolved with the HRF. Thus, the gPPI GLM includes
a psychophysiological regressor for all conditions (McLaren et al., 2012).
An indicator function for the relevant contrast, the original BOLD eigen-
variate, and six motion and 12 physiological parameters were included as
additional regressors. We first looked for regions in which connectivity
with the seed region was modulated by MT, but when this modulation
was greater for offers requiring adaptive control (values 1 and 2 in HC,
and value 1 in LC 	 values 3 and 4 in HR, and values 2, 3, and 4 in LC).
We also performed a second PPI restricted to offers requiring adaptive
choice (values 1 and 2 in HC, and value 1 in LC) to ascertain whether
connectivity increased ( positive PPI) or decreased (negative PPI) with
respect to increases in MT (compared with 0). One-sample t tests were
performed on the relevant contrasts at the second level.

Results
Subjects reject lower value offers when a go budget is scarce
Subjects were sensitive to both immediate (face) value and the
delayed consequences arising from a budget constraint. Higher
value offers were accepted more than lower value offers [a main
effect of value: F(1.68,33.63) � 277.87, mean squared error (MSE) �
379.38, p � 0.001], and more offers were accepted overall in LC
compared with HC (a main effect of constraint: F(1,20) � 182.70,
MSE � 45.69, p � 0.001). Importantly, subjects were less willing
to accept low-value offers in HC compared with LC (a budget
constraint � value interaction: F(1.73,34.67) � 30.41, MSE �
136.19, p � 0.001; Fig. 1B).

Dynamic versus fixed control
Subjects dynamically adjusted their responses when delayed con-
sequences fluctuated within a trial. These consequences de-
pended on both the number of offers already seen and the
number previously accepted/rejected in a trial. Figure 2 illustrates
that subjects used both these components to adjust their re-
sponses. We quantified this effect by comparing models account-
ing for the number of previous offers, number of previous
accepts, or both (see Materials and Methods). We found strong
evidence that the integrated sliding model, wherein both compo-
nents contribute to choice, fitted subject data best at the group
level (lowest iBIC score; Fig. 1C). Although the sliding offer

Table 1. Summary of fMRI second-level statistics

Name of region
Cluster FWE
p value

MNI coordinates Statistics

x y z t value Z score

HC 	 LC
Right parietal �0.001 28 �64 48 5.70 5.39
Right DLPFC �0.001 40 12 30 4.75 4.56
Left parietal 0.002 �28 �56 46 4.53 4.37

LC 	 HC
Right V1 �0.001 8 �76 6 7.38 6.77
Left V1 �8 �84 �8 6.08 5.72
Left parahippocampal �0.001 �28 �28 �12 5.80 5.48
Left parietal �0.001 �50 �24 24 5.77 4.46
Left insula �40 �6 �2 4.59 4.42
vmPFC �0.001 �6 44 �10 5.06 4.84
Left precuneus �0.001 �10 �54 �12 4.56 4.39
Right parietal �0.001 44 �34 24 4.49 4.33
Mid-cingulate 0.001 14 �20 46 4.08 3.96

Linear effect offer value
vmPFC �0.001 4 52 14 6.31 5.91
Bilateral accumbens �4 14 �8 5.70 5.39
Left mid-temporal �0.001 �52 �58 20 5.83 5.50
Left parietal �54 �26 22 5.62 5.33
Left superior temporal �58 �18 10 4.46 4.30
Left mid-occipital �42 �74 32 4.15 4.02
Left parahippocampal �0.001 �28 �32 �14 5.67 5.37
Right lingual 14 �44 2 5.45 5.18
Right cuneus �0.001 16 �82 32 5.65 5.35
Right M1 0.004 56 �8 44 5.38 5.12
Left M1 0.001 �44 �16 58 4.91 4.71
Right hippocampus 0.008 24 �18 �16 4.89 4.69

Negative offer value
Right insula �0.001 30 22 �10 5.44 5.17
ACC �0.001 6 24 48 5.26 5.02
Left insula 0.009 �34 18 �4 5.04 4.82
Right parietal 0.001 36 �50 50 4.47 4.31

Negative model thresholds
Left caudate �0.001 �12 �6 18 8.23 7.42
Right superior parietal 24 �56 52 7.95 7.21
Right IFGpt 32 18 28 7.92 7.19
Right thamalus 12 �10 18 7.77 7.08
Left mid-occipital �38 �72 10 7.49 6.86
Right lingual 20 �74 4 7.16 6.60
Right DLPFC 32 8 26 6.99 6.46
Right frontal mid-orbital 34 52 �6 4.87 4.67
Left putamen �0.001 �18 17 �6 4.25 4.11
Left M1 �0.001 �42 �2 52 6.40 5.99
Left DLPFC �26 6 64 4.94 4.73
Right IFGpo �0.001 34 26 �10 6.06 5.70
Right caudate 10 20 �8 4.27 4.13

Linear effect model thresholds
ACC �0.001 �6 28 22 5.29 5.04
Left DLPFC (BA46) �0.001 �32 46 18 4.69 4.51
Dorsal vmPFC (BA10) 0.037 �8 56 2 4.50 4.34

Summary results for all second-level contrasts, reported whole-brain corrected at the cluster level, FWE p � 0.05.
IFGpo, inferior frontal gyrus pars opercularis; IFGpt, inferior frontal gyrus pars triangularis; M1, primary motor cortex;
V1, primary visual cortex.
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model performs well (in which only the number of offers seen is
used to adjust choice), an addition of tracking the number of
accepts/rejects improved the maximum likelihood across every
subject (Wilcoxon’s signed rank test, p � 5.96 � 10�5). Consis-
tent with the notion that subjects used a dynamic control strat-
egy, reaction times were faster when action (model) thresholds
from the winning model were low (mean 	 HC � 192.5, p �
0.0001; mean 	 LC � 320.1, p � 0.0001), controlling for the
immediate (face) value of the current offer (mean 	 HC �
�107.3, p � 0.0001; mean 	 LC � �92.0, p � 0.0001).

fMRI neuroimaging
As in other control paradigms (Kerns et al., 2004; Barber and
Carter, 2005), we first performed a categorical comparison to
identify brain regions more active when the overall demand for
control is increased (HC 	 LC), averaging across offer values (see
Materials and Methods, GLM; Table 1). We found greater whole-
brain corrected activity in right DLPFC and bilateral superior
parietal lobule in HC overall compared with LC (Fig. 3A). These
regions are associated with model-based planning (Owen, 1997;
van den Heuvel et al., 2003; Wunderlich et al., 2012), task switch-
ing and cognitive control (Botvinick et al., 2001; Liston et al.,
2006; Badre, 2008), the resolution of uncertainty (Yoshida and
Ishii, 2006), and working memory (WM; Curtis and D’Esposito,
2003; Narayanan et al., 2005; Barbey et al., 2012).

We next hypothesized that greater right DLPFC recruitment
in HC compared with LC would result in a larger behavioral
adjustment between conditions. We focused on value 2 offers for
which we observed the largest change in behavior between HC
and LC. We derived an average parameter estimate for an HC 	
LC contrast in a right DLPFC functional ROI, combining two
activated right DLPFC clusters (1078 total voxels; Fig. 3A, mid-
dle, black arrows), averaging the 	 values for our four value re-
gressors and then subtracting LC from HC. A between-subject
correlation revealed a positive association between parameter es-
timates in right DLPFC for an HC 	 LC contrast and the change
in propensity to accept value 2 offers between HC and LC (r 2 �

0.33, p � 0.007; Fig. 3C). Thus, right DLPFC is instrumental in
the categorical adjustment of action control in our task.

To identify correlates of value for guiding choice, we tested for
a positive average linear effect of offer (face) value across both HC
and LC conditions, revealing a value-dependent response in re-
gions that included vmPFC and VS (including NA; Fig. 4A; for all
regions, see Table 1). Importantly, this value signal was indepen-
dent of any motor response because go responses were modeled
as separate onsets in our GLM. Thus, offer values were tracked in
regions involved in value representation (Schultz, 2000). Fur-
thermore, because participants’ choices were sensitive to action
constraint, we anticipated that the representation of offer value
would be modulated in one or more regions accordingly. We
tested for a value � constraint interaction (LC more linear than
HC) but did not detect any voxels that survived whole-brain
correction. Nonetheless, for exploratory purposes, we conjec-
tured that vmPFC and VS, both widely implicated in value-based
choice (Guitart-Masip et al., 2012; Hunt et al., 2012; De Martino
et al., 2013), might demonstrate an interaction when using a less
stringent ROI approach. We derived f-ROIs (see Materials and
Methods) by defining voxels (within whole-brain corrected clus-
ters) in vmPFC (928 voxels; Fig. 4B) and VS (56 voxels; Fig. 4C)
that showed a linear effect of offer value on average (as above) and
then tested for an orthogonal value � condition (HC or LC)
interaction. We found a significant interaction in vmPFC
(F(2.38,47.62) � 5.34, MSE � 1.67, p � 0.005) but not in VS (Fig.
4B). In LC, vmPFC was more responsive to value 2 than value 1
(p � 0.02) and value 3 than value 2 (p � 0.02), whereas in HC,
neither value 2 (p � 0.35) nor value 3 (p � 0.38) induced greater
BOLD than value 1.

Given behavioral and computational evidence that subjects
used trial structure to evaluate options, we conjectured that
within-trial adaptive choice would manifest as a dynamic modu-
lation of value representations in vmPFC, analogous to that ob-
served between HC and LC trials. To test this, we constructed a
summary measure reflecting a time-varying decision threshold,
as prescribed by the winning model, that then provided an offer-

Figure 3. Distinct but overlapping frontoparietal networks are recruited when action constraints increase and when the expected long-term value of an option increases. A, A frontoparietal
network spanning right DLPFC and bilateral parietal cortex was more active in HC compared with LC trials during offers subject to go/no-go. The black arrows indicate two DLPFC clusters that were
combined to form a DLPFC f-ROI responding to HC 	 LC. B, Model thresholds, denoting the long-term component of expected value, correlated negatively with BOLD in an overlapping
fronto-subcortical–parietal network, including ACC, bilateral DLPFC, parietal cortex, and striatum. Activity in these regions was highest when the value of conserving a unit of budget (rejecting) was
low. C, Subjects with greater right DLPFC recruitment (see A, black arrows, for DLPFC f-ROI) in HC compared with LC showed a larger adjustment in willingness to accept value 2 offers between
conditions (r 2 � 0.33, p � 0.007). Each point represents one participant.
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wise parametric regressor (see Materials
and Methods). In effect, this MT repre-
sented the value of carrying one more unit
of budget (the number of accepts en-
dowed for a trial) into the next offer, in-
dependent of the immediate value of the
current offer. The overall value of accept-
ing was thus the difference between offer
value and MT. Note, however, in contrast
to the downregulation of value 2 offers in
HC, the time-variant adaptation in choice
prescribed by the winning model require
an upregulation of low-value offers when
the future benefit of conserving a unit of
budget is low.

We first tested for regions in which
BOLD signal correlated with MTs across
both conditions (see Materials and Meth-
ods, GLM) finding that a fronto-subcorti-
cal–parietal network was modulated
negatively, with no regions modulated
positively. This is consistent with BOLD
signal being highest when the expected
utility of carrying a unit of budget forward
was low, and thus a go response was more
favorable. This network, which includes
ACC, bilateral DLPFC, parietal cortex,
and striatum (Fig. 3B; for all regions, see
Table 1), is partially overlapping with that
seen in the contrast of HC 	 LC (Fig. 3A),
implying that similar regions of PFC are
recruited when action control is reliant
on internal valuations versus external
cues. We note that similar networks are
engaged during WM (Curtis and
D’Esposito, 2003; Barbey et al., 2012)
and in goal-directed and/or cognitive
control paradigms (Yoshida and Ishii,
2006; Badre, 2008; Hare et al., 2009;
Rushworth et al., 2011).

In our task, the immediate reward
gained from accepting value 3 or 4 offers is
higher than the maximum MT value, and
thus these offers should always be ac-
cepted. In contrast, the difference be-
tween the immediate reward obtainable from value 1 and 2 offers
and their corresponding MTs fluctuates 
0, signifying that
choice policy, consistent with the observed behavior, should shift
in response to trial state. Consequently, we hypothesized that an
independent network tracked MTs differentially dependent on
offered value. To test this, we looked for brain regions showing a
linearly increasing effect of MTs across both conditions. Because
MTs were tracked negatively, this tested an hypothesis that they
would correlate more strongly with BOLD as offer value de-
creased. We found clusters in ACC, left DLPFC (BA46), and a
dorsal region of vmPFC (BA10) (Fig. 5A; for details, see Table 1)
that were increasingly more responsive to changes in MTs as
offered value decreased. The ACC cluster was particularly strik-
ing, with post hoc exploratory one-sample t tests revealing MT
representations solely for offers requiring adaptive choice, that is
offer value 1 for both conditions (HC, p � 0.002; LC, p � 0.01)
and a trend for offer value 2 for HC alone (p � 0.09; Fig. 5B).

Note that we found behavioral evidence of adaptive choice cor-
responding to these three offers (Fig. 2).

Finally, we used a connectivity analysis to ask whether brain
regions tracking MTs for offers requiring policy switches were
modulating value representations in vmPFC to instigate adaptive
switches in choice. We selected physiological responses from
three f-ROI seed regions, showing a linear effect of MTs (reflect-
ing the long-term component of value), that included ACC (739
voxels in group-level ROIs), left DLPFC/BA46 (502 voxels in
group-level ROIs), and dorsal vmPFC/BA10 (179 voxels in
group-level ROIs) (Fig. 5A, black arrows). Interestingly, the PFC
has been implicated previously in flexible action control, and, in
the case of DLPFC, top-down modulation of value signals (Wal-
ton et al., 2007; Hare et al., 2009). We performed a PPI to test a
hypothesis that coupling would be modulated by fluctuations in
MTs and that this change would be greater for low-value offers
requiring adaptive choice (values 1 and 2 in HC, and value 1 in
LC) than for high-value offers (in which choice is not dependent

Figure 4. Value representations modulated by context. A, The BOLD signal in vmPFC, VS, right amygdala, and precuneus/
posterior cingulate covaries with offer value. B, vmPFC tracks value linearly in LC but with a depressed slope for HC. The represen-
tation of value 2 offers is particularly degraded, mirroring behavioral data. Vertical lines represent SEM. C, An f-ROI confined to the
VS was used in a constraint (HC/LC) � value (1, 2, 3, or 4) interaction analysis.
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on MT). The regions identified by the ensuing PPI correspond to
regions whose connectivity with the relevant seed region depends
on both the immediate value and MT of the current offer.

We found a functional coupling between ACC and vmPFC
that was sensitive to fluctuations in MTs that was larger on aver-
age for offers requiring adaptive choice. This effect was significant
when using small volume correction for the vmPFC f-ROI that
tracked offer value. Given that directionality cannot be deter-
mined when comparing parametric effects across conditions, we
performed a second PPI analysis, now confined to offers re-
quiring adaptive choice, enabling us to assess whether connec-
tivity was positively or negatively modulated by increasing MTs.
A vmPFC f-ROI approach revealed that ACC and vmPFC were
more functionally coupled when MTs were high (mean PPI �
3.04, p � 0.005), in other words, when low-value offers need to be
rejected. Thus, connectivity between ACC and vmPFC was de-
pendent on both immediate value and MT. Although the left
DLPFC did not demonstrate functional coupling with vmPFC
that depended on both MT and offer value, qualitatively we ob-
served an effect in vmPFC at a more liberal threshold (p � 0.005
uncorrected). In fact, we did not detect any significant difference
in the magnitude of the PPI effect (two-sample t test, p � 0.68)
between ACC and DLPFC when using a vmPFC f-ROI, implying
that, despite a more prominent contribution of ACC, DLPFC
also contributes to the observed connectivity. When dorsal
vmPFC was used as a seed, no significant results were observed.

Discussion
Our study addressed the computational implementation of
context-specific action control in value-guided choice. We show

that subjects incorporate both extrinsic
constraints on action and intrinsic fluctu-
ations in opportunity to adaptively switch
between a go/no-go response. Mechanis-
tically, a fronto-subcortical–parietal net-
work tracks the downstream consequence
of spending a limited action budget,
whereas ACC couples to vmPFC to shift
the representation of value in favor of
long-term profit.

In our task, subjects track the number
of offers already seen and number already
accepted/rejected in a trial to compute the
future value of expending a unit of bud-
get. This model fits behavior better than
simpler candidates in which action is
driven solely by immediate reward or
when only a restricted set of environmen-
tal features is consequential. Of interest,
the winning model produces behavior
that closely approximates optimal choice,
which relies on backpropagating through
a decision tree of all future moves in a
trial. Although this strategy is computa-
tionally taxing (given the depth of the
search tree in this game), subjects could be
computing long-term value by recruiting
a model-based system that searches
through future states “on the fly” (Dayan,
2008). Alternatively, a player could track
aspects of the environment to index
stored values or to update values under a
model-free regimen. Although our task
cannot arbitrate between these possibili-

ties, we note the circuitry that tracks the MTs from our winning
model overlaps with that implicated in model-based reinforce-
ment learning (Gläscher et al., 2010; Daw et al., 2011; Wunderlich
et al., 2012).

Influential accounts of ACC propose a myriad of roles, includ-
ing conflict monitoring (Botvinick, 2007), error monitoring
(Rushworth et al., 2004), overriding prepotent responses (Kerns
et al., 2004), evaluating outcomes (Gehring and Willoughby,
2002), and action-outcome learning for negative feedback
(Rushworth et al., 2004). Although our task lacked explicit neg-
ative feedback, the finding that ACC tracks the MTs necessary for
implementing adaptive choice is consistent with the conflict
monitoring account but not with a role in error monitoring,
given that choices were closely aligned with optimality. Unlike
previous paradigms in which switches in contingency are explic-
itly cued (Kerns et al., 2004), we show that conflict in ACC can
arise endogenously via tracking fluctuations in downstream con-
sequence.

ACC is also implicated in foraging (Kolling et al., 2012) in
which it is proposed to track the value of alternative choice op-
tions during a tradeoff between exploration and exploitation. We
found that ACC activity was highest when exploiting a low-value
offer was more optimal. However, in our task, ACC only tracks
MTs corresponding to offers that are routinely rejected. In this
light, our findings can be construed as in keeping with the former
role. These findings hint that a conflict monitoring account of
ACC can be reinterpreted as reflecting a need to switch behavior
from the current default response, as opposed to encoding a non-
specific conflict signal (Shenhav et al., 2013). Indeed, recent work

Figure 5. MTs selectively tracked in a prefrontal network. A, BOLD signal in ACC, left DLPFC (BA46), and dorsal VMPFC (BA10)
increases as MTs decrease (and action is most favorable), only for offers mandating adaptive control. B, Parameter estimates from
the ACC cluster shown in A illustrate model thresholds are tracked for offers requiring adaptive control (value 1 in HC and LC, and a
trend for value 2 in HC). Red corresponds to HC and blue to LC. Vertical lines represent SEM. C, A whole-brain voxel-based gPPI
analysis revealed that ACC is more functionally connected with the vmPFC when actions cost are high and low offers should be
rejected. This region of vmPFC overlaps with a cluster that tracks offer value (Fig. 4A) and is sensitive to categorical changes in
context (Fig. 4B). D, Comparison of functional connectivity patterns between ACC (yellow; displayed at 0.001 uncorrected) or left
DLPFC/BA46 (green; displayed at 0.005 uncorrected) and vmPFC. As with ACC, the left DLPFC demonstrates a functional coupling
with vmPFC when accepting an option offering only a small immediate reward is unfavorable, but this effect only emerges at a
more liberal threshold.
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further supports the notion that ACC assumes a default frame of
reference by adapting choice from the best long-running option
(Boorman et al., 2013).

A number of studies propose that ACC expresses a prediction
error (Ide et al., 2013) that can be used to update internally gen-
erated models (O’Reilly et al., 2013). This may explain why high-
conflict or high-volatility trials, often confounded with surprise,
also induce responses in ACC. However, our data indicate that
surprise cannot fully account for the ACC activation we observe,
because stimuli are presented with equal frequency such that
surprise does not vary within a trial. Instead, a response to low-
value offers switches in line with changes in delayed consequence.
Thus, in the context of the current study, it is likely that ACC
plays a more general role in a strategic adjustment of behavior
that is rooted in processing or initiating atypical stimulus or ac-
tion requirements, which also includes surprising events.

A dynamic coupling between ACC and vmPFC was seen when
MTs dictate action costs are high, with the greatest change in
coupling evident in offers in which action requirement is most
dependent on MT. One interpretation is that ACC suppresses the
representation of low-value offers in vmPFC when the future
value of conserving a unit of budget is high and the optimal
decision is to reject. Conversely, when MTs are low, decoupling
between ACC and vmPFC may reflect a disinhibition of value
signals relating to previously unfavorable offers. This contrasts
with other suggestions that ACC signals a need for control but
plays no causal role in conflict resolution (Kerns et al., 2004) or
that dissociable decision variables are computed in vmPFC and
ACC that compete for behavioral output (Boorman et al., 2013).
Because ACC activity in our task is not sensitive to changes in
MTs corresponding to high-value offers, it is unlikely to repre-
sent an unrelated correlate of trial time or WM content.

In contrast to the selectivity implemented by ACC, we found
that MTs were tracked indiscriminately within an extensive
fronto-subcortical–parietal network. Although planned choice
has only been studied recently in a value domain, a finding that
this network tracks computations related to future value is con-
sistent with previous work from the model-based reinforcement
learning literature (Daw et al., 2005; Gläscher et al., 2010; Wun-
derlich et al., 2012). Interestingly, recent evidence suggests that
PFC neurons can adapt their tuning profiles to accommodate
changes in behavioral context (Stokes et al., 2013), a mechanism
that could underlie a network-level implementation of the adap-
tive responses observed in our task. We note that this frontopa-
rietal network also encompasses regions implicated in executive
control (Wallis and Miller, 2003; Barber and Carter, 2005; Hare et
al., 2009), exploratory behavior (Daw et al., 2006; Yoshida and
Ishii, 2006), intertemporal choice (McClure et al., 2004), and
WM (Curtis and D’Esposito, 2003; Barbey et al., 2012).

One limitation of our task is that it cannot characterize a
neural correlate of the fully integrated value derived from our
computational model (the difference between the current offer
and the associated MT) because this is correlated with the imme-
diate value of the offer. However, the observed fronto-subcorti-
cal–parietal activity may reflect a value comparison between offer
value and MT. As MTs decrease, the difference in value between
go and no-go shifts in favor of a go response, whereas when MTs
increase, they approach the average worth of the offer value range
(2.5), making the decision to accept or reject harder. Alterna-
tively, given that MTs trended downward as trials progressed
(although not exclusively because they are also a function of the
current budget), they are anticorrelated with WM demand; fol-
lowing the contents of trial history become harder to maintain

(and update) through time. Because we found that activity in this
fronto-subcortical–parietal network tracked MTs across all of-
fers, this profile may reflect a WM signature. Interestingly, it has
been shown that goal-directed choice is dependent on WM (Otto
et al., 2013). In this regard, there is considerable debate as to
whether delay-period DLPFC activity, classically interpreted as a
correlate of WM, reflects the pure maintenance of information,
or instead whether WM is merely an emergent properly of exec-
utive and attentional functions implemented in DLPFC (Postle,
2006).

Our paradigm also incorporated HC and LC environments,
and, in the former, subjects reject lower-value options to increase
the probability of capitalizing from larger later rewards. We
found categorically switching from LC to HC correlated with the
fMRI signal in a similar frontoparietal network. Within this net-
work, the more DLPFC was recruited in HC compared with LC,
the more a subject would modulate their behavioral response to
value 2 offers between conditions. In addition, we found wide-
spread correlates of offer value in regions linked previously to
value computations, including vmPFC (Hare et al., 2009), VS
(Guitart-Masip et al., 2012) and posterior cingulate/precuneus
(Litt et al., 2011). Importantly, value representations were altered
in HC in vmPFC, a key value-coding region.

Interestingly, a comparable frontoparietal network is reliably
upregulated in conditions requiring cognitive control or over-
coming response conflict in task-switching paradigms (Kerns et
al., 2004; Badre, 2008; Pochon et al., 2008; Mansouri et al., 2009).
This likeness suggests that participants may be engaging cognitive
control mechanisms to appropriately reject appetitive, though
relatively less valuable, offers in light of increasing environmental
demands in HC trials. In this framework, our data corroborate
previous ideas of interplay between PFC and value regions, sug-
gestive of a scheme whereby value signals are modulated directly
to achieve adaptive choice (Hare et al., 2009; Diekhof and Gruber,
2010). However, as with previous control paradigms, we note
that a categorical difference in activity profiles between condi-
tions does not pose any properties that allow attribution of spe-
cific computational roles.
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