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Ca2� Channels and Metabotropic Glutamate Receptors
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Slow waves of non-REM sleep are suggested to play a role in shaping synaptic connectivity to consolidate recently acquired memories
and/or restore synaptic homeostasis. During sleep slow waves, both GABAergic neurons of the nucleus reticularis thalami (NRT) and
thalamocortical (TC) neurons discharge high-frequency bursts of action potentials mediated by low-threshold calcium spikes due to
T-type Ca 2� channel activation. Although such activity of the intrathalamic network characterized by high-frequency firing and calcium
influx is highly suited to modify synaptic efficacy, very little is still known about its consequences on intrathalamic synapse strength.
Combining in vitro electrophysiological recordings and calcium imaging, here we show that the inhibitory GABAergic synapses between
NRT and TC neurons of the rat somatosensory nucleus develop a long-term depression (I-LTD) when challenged by a stimulation
paradigm that mimics the thalamic network activity occurring during sleep slow waves. The mechanism underlying this plasticity
presents unique features as it is both heterosynaptic and homosynaptic in nature and requires Ca 2� entry selectively through T-type
Ca 2� channels and activation of the Ca 2�-activated phosphatase, calcineurin. We propose that during slow-wave sleep the tight func-
tional coupling between GABAA receptors, calcineurin, and T-type Ca 2� channels will elicit LTD of the activated GABAergic synapses
when coupled with concomitant activation of metabotropic glutamate receptors postsynaptic to cortical afferences. This I-LTD may be a
key element involved in the reshaping of the somatosensory information pathway during sleep.
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Introduction
Increasing evidence demonstrates that slow waves of non-REM
sleep are involved in memory consolidation (Diekelmann and
Born, 2010) and may participate in synaptic homeostasis
(Tononi and Cirelli, 2014), both processes involving reshaping of
synaptic connectivity. At the thalamic level, the two components
of sleep slow waves (i.e., slow �1 Hz and delta waves) are char-
acterized by the almost regular occurrence of high-frequency
bursts of action potentials mediated by low-threshold calcium
spikes in its two major and interconnected cell types, i.e., the
thalamocortical (TC) neurons and the GABAergic neurons of the
nucleus reticularis thalami (NRT; Domich et al., 1986; Steriade et
al., 1993). These low-threshold calcium spikes are mediated by
T-type Ca 2� channel activation which, in both cell types, elicit a

large global influx of calcium across the entire dendritic arbor
(Crandall et al., 2010; Errington et al., 2010; Chausson et al.,
2013). As a consequence, a tight association between a presynap-
tic neuron displaying high-frequency firing and a postsynaptic
neuron showing a large concomitant Ca 2� influx characterizes
the activity of the intrathalamic network during slow waves of
non-REM sleep. Surprisingly, although (1) many experiments in
other neuronal types have shown that similar patterns of dis-
charge coupled to postsynaptic Ca 2� entry are highly suited to
modify synaptic strength (Citri and Malenka, 2008) and (2) mod-
ifications in intrathalamic functional connectivity should drasti-
cally impact information transfer to and between cortical areas
(Sherman and Guillery, 1996; Castro-Alamancos and Calcag-
notto, 1999), selective attention (Crick, 1984; Weese et al., 1999;
McAlonan et al., 2006, 2008; Higley and Contreras, 2007), and
patho/physiological brain rhythm generation (Steriade et al.,
1993; Crunelli and Leresche, 2002; Leresche et al., 2012), very
little is still known about the consequences of non-REM sleep
activity on thalamic synaptic plasticity.

Here, using a combination of in vitro electrophysiological re-
cordings and two-photon calcium imaging in the somatosensory
thalamus, we show that a stimulation paradigm that tightly mim-
ics the thalamic network activity occurring during sleep slow
waves elicits a long-term depression (I-LDT) at the GABAergic

Received July 4, 2014; revised Oct. 21, 2014; accepted Nov. 5, 2014.
Author contributions: N.L. and R.C.L. designed research; R.P., P.C., F.M.D., N.L., and R.C.L. performed research;

R.P., P.C., F.M.D., N.L., and R.C.L. analyzed data; R.P., N.L., and R.C.L. wrote the paper.
This work was supported by ANR-MNMP-2009. We thank Dr. E. Guiot for assistance in calcium imaging and Drs.

V.N. Uebele and J.J. Renger from Merck and Co. (USA) for their kind gift of TTA-P2.
*N.L. and R.C.L. contributed equally to the work.
The authors declare no competing financial interests.
Correspondence should be addressed to Régis C. Lambert, Neuroscience Paris Seine (NPS), Université Pierre et
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synapse between NRT and TC neurons of the ventrobasal nucleus
(VB). The mechanism underlying this synaptic plasticity presents
unique features, as it depends on activation of type 1 mGluRs,
GABAA receptors, and an influx of Ca 2� selectively through
T-type channels, which, in turn, triggers the activation of the Ca2�/
calmodulin-dependent phosphatase 2B, calcineurin. Therefore, we
propose that a tight functional coupling exists between GABAA re-
ceptors, calcineurin, and T-type Ca2� channels at the NRT-TC in-
hibitory synapses, which during slow-wave sleep allows expression
of LTD of the activated GABAergic synapses.

Materials and Methods
All procedures involving experimental animals were performed in accor-
dance with the EU Council Directive 86-609 and local ethics committee
guidelines. All efforts were made to minimize animal suffering and the
number of animals used.

Slice preparation. Brains were excised from 12- to 18-d-old male
Wistar rats. A block of tissue containing the thalamus was removed and
placed in a cold (�4°C) oxygenated (95% O2; 5% CO2) solution of aCSF
containing the following (in mM): 125 NaCl, 2.5 KCl, 0.4 CaCl2, 1 MgCl2,
1.25 NaH2PO4, 26 NaHCO3, 25 glucose, 5 Na-pyruvate, and 1 kynurenic
acid, pH 7.3, osmolarity 310 mOsm. The block of tissue was glued, ventral
surface uppermost, to the stage of a vibroslice (Leica VT1000S), and 280–
300-�m-thick horizontal slices containing the VB and the NRT were pre-
pared using the internal capsule and the medial lemniscus as landmarks.

Slices (three to four per hemisphere) were stored in an oxygenated
incubation chamber containing aCSF of the above composition, but
without kynurenic acid and with 2 mM CaCl2, for at least 1 h before being
transferred to the recording chamber, where they were perfused (2.5
ml/min) continuously with an oxygenated recording solution of the
same composition at room temperature or at 32°C.

Electrophysiology. Using the patch-clamp technique (Axopatch 200B
amplifier, Clampex 10; Molecular Devices), whole-cell recordings in
voltage-clamp mode were performed in neurons of the VB visualized with an
Olympus BX51WI (60� lens). Current recordings were filtered by a four-
pole Bessel filter set at a corner frequency of 2 kHz, digitalized at 10 kHz, and
later analyzed using Clampfit 10 (Molecular Devices) and Igor 6
(WaveMetrics). Recording electrodes (borosilicate glass capillaries;
WPI) were filled with the following (in mM): 128 methanesulfonic acid,
12 CsCl, 10 HEPES, 0.5 EGTA, 0.1 CaCl2, 3 MgCl2, 4 Na-ATP, 0.4 Na-
GTP, 15 phosphocreatine, and 150 U/ml creatine phosphokinase, pH
7.3, with CsOH, and osmolarity 280 mOsm (tip resistances: 1.8 –2.8 M�;
access resistance: 2–12 M�). The resulting Cl � inversion potential was
�50 mV. In some recordings, 10 mM BAPTA (Sigma-Aldrich) or 2
mg/ml biocytin (Sigma-Aldrich) was included in the pipette. At least
70% of the cell capacitance and series resistance was compensated. The
liquid junction potential (�6 mV) was systematically corrected.

IPSCs (150 –700 pA) were evoked every 30 s by electric pulses (40 –100
�s, 5–20 V) delivered by a monopolar, borosilicate glass stimulating
electrode filled with extracellular medium and placed �100 �m away
from the soma of the recorded neuron (Fig. 1A). Isolation of GABAA

IPSCs was achieved by the addition of 50 �M DL-APV and 10 �M CNQX
to the perfusion medium. Membrane resistance (�100 M�) was moni-
tored throughout the experiment and data were discarded if �20%
change of the membrane resistance was observed.

In some experiments, a second monopolar borosilicate glass electrode
was added to stimulate in isolation two bundles of NRT afferences im-
pinging on the recorded TC neuron. To ensure the independence of the
two pathways, we assessed the lack of paired-pulse depression of the
IPSCs evoked by one stimulating electrode following a preceding (100
ms) stimulation through the other electrode.

For the experiments using calcineurin antagonists, slices were first
incubated for 1 h in Cyclosporin A (CyA) and FK-506 (at 25 and 50 �M,
respectively) and then perfused with 10 �M CyA and 20 �M FK-506. CyA
was dissolved in EtOH:Tween 80 with a final concentration in aCSF of
0.1%:0.05%.

LTD induction protocol. Induction protocols consisted of four bursts of
seven stimulations at 200 Hz that were delivered at a frequency of 1.6 Hz

through the stimulating electrode. Each burst of synaptic stimulations
was paired to a 50 ms depolarization of the TC neuron from �80 mV to
various test potentials (between �30 and �10 mV; see Results for details;
Fig. 1A). Unless otherwise specified, the stimulation train started at the
onset of the depolarizing step. The protocol was repeated seven times at
0.14 Hz. Only one induction protocol was delivered per slice. Changes in
synaptic efficacy were quantified as the ratio between the mean IPSC
amplitudes over 10 min periods calculated before and 20 min after the
induction protocol.

Histology. At the end of the recordings, slices containing biocytin-filled
neurons were fixed overnight by immersion in 4% paraformaldehyde
and then washed with 0.1% PBS. After incubating the slices with 0.4%
Triton X-100 and PBS (1 h), biocytin-filled neurons were revealed using
Streptavidin Alexa Fluor 488 (1:1000; 2–3 h in dark; Invitrogen). Slices
were then washed in PBS Triton 0.4% (1 h) before being immerged in
PBS and mounted on cover slides.

Ca2� imaging. For Ca 2� imaging, intracellular solution without
EGTA was supplemented with the Ca 2� indicator Fluo-5F (300 �M;
Invitrogen) and Alexa Fluor 594 (15 �M; Invitrogen). Neurons were
loaded with indicators for 30 min before acquisition. Two-photon exci-
tation of the fluorescent dyes (custom-built two-photon laser scanning
microscope) was performed by a femtosecond Ti:sapphire laser (Mai Tai
HP; Spectra-Physics) tuned to 800 nm and fluorescent signals were ac-
quired simultaneously across dendrites at selected regions of interest
(acquisition frequency � 40 – 60 frames/s) by two high-gain photomul-
tiplier tubes (Hamamatsu H9305-03). At the end of the recordings
Z-series of 160 –190 images (512 � 512 pixels, 0.26 �m/pixel) were taken
with 0.5 �m focal steps to construct a 2D maximum intensity projection
of each neuron. Image acquisition was controlled by MPScope software
(Nguyen et al., 2006). The reported change in fluorescence (	G/R) was
calculated as the change in fluorescence (Gpeak) from baseline (G0, aver-
age of the 400 ms period before stimulus) of the Ca 2�-sensitive indicator
(Fluo-5F) normalized to the average fluorescence of the Ca 2�-
insensitive indicator (RAvg, Alexa Fluor 594): 	G/r � (Gpeak � G0)/RAvg.

Drugs. CNQX, DL-AP5, CGP-55845A, SR95531, and LY-341495 were
obtained from Tocris Bioscience, LY-367385 and furosemide from
Sigma-Aldrich, Cyclosporin A from Abcam, and FK-506 from AbMole.
TTA-P2 (provided by Merck ), was made up as 10 mM stock solution in
dimethylsulfoxide and kept at �20°C until use.

Statistical analysis. Quantitative data in the text and figures are given as
mean 
 SEM. Paired Student’s t test was used to compare the value of
average IPSCs and paired-pulse depression before and after the induc-
tion protocol. Wilcoxon signed-rank test was used as appropriate to
compare the value of 	G/R.s.

Results
Thalamic slow-wave activity induces LTD of the NRT-TC
inhibitory synapse
In TC neurons hold at �80 mV; inward GABAAergic currents
(ECl � �50 mV) were evoked in the continuous presence of the
ionotropic glutamate receptor antagonists CNQX (10 �M) and
DLAPV (50 �M) by extracellular stimulation of the afferent NRT
fibers (Fig. 1A). After a stable baseline recording, short series of
periodic (1.6 Hz) high-frequency stimulations (200 Hz) were ap-
plied to the NRT afferences while depolarizing the postsynaptic
TC neurons from �80 to �30 mV at the same time of the pre-
synaptic stimulation. This induction protocol mimics the incom-
ing bursting activity of the NRT fibers and the concomitant
low-threshold spike (LTS)-associated depolarization of the TC
neurons that occur during sleep slow waves (Fig. 1A; see Materi-
als and Methods for details of the protocol). The periodicity of
stimulation trains was chosen to be in the low range of the �
rhythmic activities reported in NRT neurons (Amzica et al., 1992;
Contreras and Steriade, 1997). As illustrated in Figure 1, B and C,
these physiological-like stimulations induced a clear depression
of the inhibitory GABAA postsynaptic currents (IPSCs) that
reached a steady state of 73 
 2% (compared with baseline; n �
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22, p � 0.001) �20 min after the induction protocol. Similar
results were obtained when recording at 32°C (postprotocol IPSC
amplitude: 74 
 5% of baseline, n � 4, p � 0.05; data not shown).
Consistent with a postsynaptic locus of expression of this I-LTD, the
paired-pulse depressions evaluated from two consecutive IPSCs 25
ms, 50 ms, or 100 ms apart were unchanged (25 ms: baseline 0.76 

0.21, postprotocol 0.80 
 0.24, n � 4; 50 ms: baseline 0.69 
 0.07,
postprotocol 0.73 
 0.09, n � 4; 100 ms: baseline 0.64 
 0.02,
postprotocol 0.66 
 0.02, n � 22, p � 0.05; Fig. 1D). As the range of
paired-pulse ratio values was large, we checked that this ratio evalu-
ated from two consecutive IPSCs 100 ms apart was not correlated to
the magnitude of the I-LTD (linear correlation test, p � 0.1).

Although the precise timing between NRT neuron-bursting
activities and TC neuron LTS generation during sleep slow waves
is unknown, the collateral innervation of the NRT by TC fibers
suggests that burst firing in NRT neurons should occur a few tens
of milliseconds after the beginning of a TC neuron LTS. There-
fore, we checked that the I-LTD was readily induced when the
train of NRT fiber stimulation occurred 20 ms after the onset of

the TC neuron depolarization (postprotocol IPSC amplitude:
77 
 3% of baseline, n � 7, p � 0.01; Fig. 1E). In contrast, no
I-LTDs were observed in experiments where either the NRT fiber
stimulations or the TC neuron depolarizations were omitted in
the induction protocol (postprotocol IPSC amplitude: 98 
 2
and 99 
 3% of baseline, n � 9 and 8, respectively, p � 0.05; Fig.
1E) indicating that both the presynaptic and postsynaptic com-
ponents of the induction protocol were required to induce the
I-LTD.

Selective Ca 2� influx through the T-type channels is required
for I-LTD induction
As shown in Figure 2A, two-photon calcium imaging indicated
that repetitive depolarizations from �80 to �30 mV induced a
robust increase in intracellular Ca 2� concentration throughout
the TC neuron dendritic arborization. To investigate the contri-
bution of calcium influx in TC neurons to the I-LTD induction
we first added the fast Ca 2� chelator, BAPTA (10 mM), in the
intrapipette solution. In this recording condition, no depression

Figure 1. LTD of the GABAergic NRT-TC synapses is induced by sleep slow wave-like activities. A, Bright-field image of a thalamic slice (left) and schematic representation of the induction protocol
(right). Extracellular electrode (s) was used to stimulate afferent fibers to the biocytin-stained TC recorded in the VB. Patch pipette, r. Induction protocol consisted of four stimulating bursts delivered
at a frequency of 1.6 Hz. Each burst contained seven stimulations at 200 Hz and was paired to a 50 ms depolarization of the TC neuron. This sequence was repeated seven times at 0.14 Hz. B,
Amplitude of IPSCs (open circle) and value of input resistance (Rm; red square) plotted against time for a representative neuron. The induction protocol indicated by a gray bar was applied following
a 10 min baseline. Averages of 20 IPSCs recorded during baseline (1, black) or 20 –30 min after the induction protocol (2, gray) are superimposed above the graph. C, Summary graph of 22
experiments performed as in B. For each neuron the amplitude of the IPSCs was normalized to the mean IPSC amplitude of the baseline period. The magnitude of the I-LTD was quantified by the ratio
between the average amplitude of the responses recorded between 20 and 30 min after the induction protocol and during the 10 min preceding the induction protocol (periods indicated by the black
bars; ***p � 0.001). D, Paired-pulse ratio of two consecutive IPSCs 100 ms apart (PPR: second IPSC amplitude/first IPSC amplitude) measured during the baseline period (before) and 20 –30 after
the induction protocol (after). Black diamonds represent individual experiments (n � 22) and the red diamonds symbolize the average value of the PPR. Traces below are examples of 100 ms
paired-evoked IPSCs recorded in one of the TC neurons before (blue) and after (green) the induction protocol (the corresponding PPR values are depicted by blue and green diamonds in the graph).
Note that the LTD of the IPSCs is not associated with changes in PPR. E, Plot of percentage changes in IPSC amplitude observed 20 –30 min after four different induction protocols consisting of (1)
the paired protocol illustrated in A (depol � bursts, n � 22), (2) the depolarization of the TC neuron without stimulation of the afferences (depol, n � 7), (3) stimulation of the afferents without
depolarization of the TC neuron (bursts, n � 9), or (4) paired protocol in which stimulations occurred 20 ms after the onset of the TC neuron depolarization (shift, n � 7). The red circle indicates the
mean value of the changes in IPSC amplitude in each condition.
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Figure 2. I-LTD induction requires specific activation of T-type calcium currents. A, Dendritic calcium responses evoked by somatic depolarizations in a TC neuron. Left, Stacked two-photon
microscopy image of a TC neuron filled with Alexa Fluor 594 and the Ca 2�-sensitive dye Fluo-5F. The red box indicates the scanned dendritic part shown at a larger magnification (top line) with the
four regions of interest highlighted. Traces below present variations in the fluorescent dye ratio (	G/R; see Materials and Methods) indicating Ca 2� responses triggered at these locations by
successive step depolarizations at 1.6 Hz from �80 to either �30 or �10 mV in control condition or in the presence of the T-channel antagonist, TTA-P2 (3 �M; corresponding protocols are
illustrated on the left). Note that TTA-P2 application almost abolished the Ca 2� influx evoked in response to depolarizing pulses from �80 to �30 mV while a large Ca 2� entry is still observed for
step depolarizations to �10 mV that strongly recruit HVA Ca 2� channels. B, Average Ca 2� responses evoked in the presence of TTA-P2 (3 �M) by somatic step depolarizations from �80 to �20
(triangles) or �10 mV (squares). In each neuron and for the three dendritic locations, Ca 2�responses were estimated by integrating over time the fluorescent ratio (	G/R.s). The values were then
normalized to the ones previously obtained in response to step depolarizations from �80 to �30 mV in the absence of TTA-P2. Note that compared with the responses due to T-channel activation,
Ca 2� responses evoked through HVA Ca 2� channels by depolarization to �10 mV were double in amplitude (***p � 0.001) while HVA-mediated Ca 2� entry due to step depolarizations to �20
mV were equivalent. C–H, Summary graphs of the I-LTD magnitude under different experimental conditions (same presentation as in Fig. 1C). Addition of 10 mM BAPTA in the recording pipette
precluded the induction of the I-LTD triggered by paired high-frequency presynaptic stimulations and postsynaptic depolarizations (see protocol in Fig. 1A; n � 11; C). Similarly, in the presence of
3 �M TTA-P2 in the bath, no I-LTD was induced with paired depolarizations of the TC neurons to �30 mV (n � 10; D), �10 mV (n � 10; E), or �20 mV (n � 11; F ). In contrast, in the absence of
TTA-P2, two-step depolarizations from �80 to �30 then �10 mV induced the I-LTD (n � 12; red symbols and records, G) while IPSCs remained stable when the TC neurons were depolarized
directly from �80 to �10 mV (n � 9; black symbols and records, G). Finally, two-step depolarizations from �80 to �30 then �10 mV readily induced the I-LTD in the presence of a mixture of
HVA Ca 2� channel antagonists (1 �M �-conotoxin GVIA, 20 �M nifedipine, 500 nM SNX-482; HVA ant.; n � 7, H ). Schemes of the postsynaptic depolarization protocols and IPCSs from
representative experiments recorded before and after the induction protocol are shown above each graph. Same calibration applies to all IPSCs (25 ms, 100 pA).
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of the inhibitory currents was observed in
any of the 11 recorded TC neurons (post-
protocol IPSC amplitude: 102 
 2% of
baseline, p � 0.05; Fig. 2C). In addition,
since the �80 to �30 mV depolarization
of the TC neurons almost exclusively acti-
vated the T-type Ca 2� channels, a new se-
ries of experiments was performed in the
presence of the specific T-current antago-
nist, TTA-P2 (3 �M), which nearly sup-
pressed all dendritic Ca 2� influx (Fig.
2A). In line with the previous experiment,
no I-LTD was observed in this condition
(postprotocol IPSC amplitude: 98 
 2%
of baseline, n � 10, p � 0.05; Fig. 2D)
confirming that an increase in intracellu-
lar Ca 2� in the TC neuron is required for
LTD induction.

To determine whether other sources
of dendritic Ca 2� entry may restore the
I-LTD in the presence of the T-channel
antagonist, the induction protocol was
modified to recruit high voltage-
activated (HVA) Ca 2� channels during
TC neuron depolarization. Although de-
polarization from �80 to �10 mV in-
duced a robust increase in the dendritic
intracellular Ca 2� signal up to the more distal monitored com-
partment (Fig. 2A,B), IPSC amplitude remained stable through-
out the recordings (postprotocol IPSC amplitude: 99 
 2% of
baseline, n � 10, p � 0.05; Fig. 2E). However, since, (1) full
recruitment of the HVA channels during the depolarizations to
�10 mV induced a two times stronger increase in intradendritic
Ca 2� concentration than T-channel activation (Fig. 2B) and (2)
it has been proposed that synaptic LTD may be impeded by es-
pecially large Ca 2� entry (Artola and Singer, 1993), experiments
were repeated while limiting the HVA recruitment by depolariz-
ing the TC neuron to �20 mV only. Even in this condition where
the amplitude of the Ca 2� influx through HVA channels
matched the one previously obtained during T-channel activa-
tion (Fig. 2B), no I-LTD was observed in any of the 10 recorded
TC neurons (postprotocol IPSC amplitude: 98 
 3% of baseline,
p � 0.05; Fig. 2F). To further assess if I-LTD induced by
T-channel activation was not blocked by HVA channel recruit-
ment and the strong associated Ca 2� entry, we next performed
experiments without T-channel antagonists using depolarizing
steps composed of a jump to successively �30 mV and �10 mV
to strongly activate T and HVA channels, respectively. As ex-
pected, a clear I-LTD was induced when both Ca 2� channel fam-
ilies were recruited (postprotocol IPSC amplitude: 77 
 2% of
baseline, n � 12, p � 0.001; Fig. 2G). Finally, in slices prepared
from �P15 rats where the NRT-TC synaptic transmission relies
on presynaptic Ca 2� entries mediated by the P/Q type channels
(Iwasaki et al., 2000), the same protocol was applied upon the
block of N-, L-, and R-type HVA Ca 2� channels by �-conotoxin
GVIA (1 �M), nifedipine (20 �M), and SNX-482 (500 nM), re-
spectively. Normal I-LTD was induced in the presence of this
HVA channel antagonist mixture (postprotocol IPSC amplitude:
75 
 5% of baseline, n � 8, p � 0.01; Fig. 2H), confirming that
activation of T-currents is necessary and sufficient to induce the
plasticity. Interestingly, however, when the TC neurons were de-
polarized directly to �10 mV, in absence of both HVA and
T-channel antagonists, no I-LTDs were triggered (postprotocol

IPSC amplitude: 100 
 3% of baseline, n � 9, p � 0.05; Fig. 2G).
Importantly, although this depolarization to such potentials
opens both T and HVA channels, it induced little Ca 2� entry
through T-channels since the step depolarization is closed to the
T-current reversal potential (Perez-Reyes, 2003). These data
strongly suggest that I-LTD induction not only specifically re-
quires T-channel activation but also T-type Ca 2� currents of
significant amplitude.

Activations of both group I metabotropic glutamate receptors
and GABAA receptors are necessary for I-LTD
We next explored which mechanisms triggered by electrical stim-
ulations of the TC neuron afferent fibers were required for I-LTD
induction. Since (1) the extracellular stimulation used in our
protocol may recruit corticofugal glutamate afferents in addition
to the NRT inputs, (2) heterosynaptic plasticity of inhibitory syn-
apses involving mGluRs has been previously reported in other
brain areas (Marsicano et al., 2002; Chevaleyre and Castillo, 2003;
Azad et al., 2004; Henneberger et al., 2007; Heifets et al., 2008;
Adermark and Lovinger, 2009; Jiang et al., 2010), and (3) mGluRs
are present on both TC neurons and NRT terminals (Turner and
Salt, 2000, 2003), we repeated our experiment in the presence of
either the broad-spectrum mGluR antagonist, LY-341495 (100
�M), or the more specific type 1 mGluR antagonist, LY-367385
(100 �M). As shown in Figure 3, both antagonists fully blocked
the I-LTD induction (LY-341495: postprotocol IPSC amplitude,
98 
 3% of baseline, n � 11; LY-367385: postprotocol IPSC
amplitude, 100 
 3% of baseline, n � 11; p � 0.05) demonstrat-
ing that the depression of the NRT-TC synapses is controlled by
glutamatergic afferences that activate type 1 mGluRs such as
those present on TC neurons at corticothalamic synapses
(Turner and Salt, 2000).

To test whether this T-channel and mGluR-dependent plas-
ticity affects every GABAergic synapse of the TC neurons or is
restricted to the inhibitory pathway activated during the induc-
tion protocol, we next simultaneously monitored in the same TC

Figure 3. Synaptic activation of mGluRs is necessary for I-LTD induction. Summary graphs of the magnitude of the I-LTD (same
presentation as in Fig. 1C) showing that addition of the mGluR antagonists, LY-341495 (100 �M, n � 11; top graph) or LY-367395
(100 �M, n � 11; bottom graph), in the bath precluded the induction of the I-LTD. Same induction protocol as in Figure 1A. Same
calibration applies to all IPSCs (25 ms, 100 pA).
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neuron two GABAergic synapse populations that were stimu-
lated in isolation (see Material and Methods). When high-
frequency stimulations were applied to only one of the synapse
populations during the induction protocol, I-LTD was induced
selectively in this stimulated pathway (postprotocol IPSC ampli-
tude: 80 
 4% of baseline, n � 11, p � 0.01) while the amplitude
of the IPSCs of the nonstimulated pathway remained stable
throughout the recording (postprotocol IPSC amplitude, 100 

4% of baseline, p � 0.05; Fig. 4A). This result shows that, in
addition to T-channel and mGluR recruitment, activation of the
GABAergic synapses during the induction protocol is required to
trigger the LTD.

Presynaptic and postsynaptic GABAB metabotropic receptors
are present at the NRT-TC synapses (Crunelli et al., 1988; Ulrich
and Huguenard, 1996; Le Feuvre et al., 1997) and in the ferret
thalamus; paired-recordings showed that prolonged burst firing
of the perigeniculate neurons activates GABAB-mediated IPSPs
in lateral geniculate TC neurons (Kim et al., 1997). As our induc-
tion protocol mimics the bursting activity of NRT neurons, we
investigated whether these GABAB receptors contribute to the
I-LTD. As shown in Figure 4B, in the presence of the specific
GABAB receptor antagonist, CGP-55845 (300 nM), a clear LTD
could still be induced (postprotocol IPSC amplitude, 71 
 3% of
baseline, n � 6, p � 0.001).

We then tested if activation of the GABAA receptors per se
during the induction protocol was required to develop the LTD.
To specifically block GABAA receptors during the induction pro-
tocol without compromising our ability to monitor changes in
GABAA-mediated IPSCs, we performed, just before the onset of
the induction protocol, a 2 s application of the specific GABAA

receptor antagonist, SR95531 (20 �M), which rapidly decreased
the IPSC amplitude to 7 
 1% of the control value (n � 9; Fig.
4C). Following this short application, IPSCs fully recovered their
baseline amplitude 20 min after the induction protocol and no
LTD could be observed (postprotocol IPSC amplitude, 102 
 4%
of baseline, n � 9, p � 0.05; Fig. 4C) indicating that GABAA

activation is necessary to trigger the I-LTD.
Requirement of GABAA receptor activation was previously

reported in long-term plasticity mechanisms resulting from a
modified chloride reversal potential due to a decrease in the K�-
Cl� cotransporter, KCC2, activity (Woodin et al., 2003). How-
ever, in our recording conditions where TC neurons were
dialyzed with a fixed chloride concentration and Cs� replaced
K� as the main intracellular cation, the IPSC amplitude was not
changed upon application of 100 �M of the cation/chloride
cotransport inhibitor, furosemide (mean IPSC amplitude after
furosemide application: 99 
 2% of baseline, n � 6, p � 0.05) and
I-LTD of the NRT-TC synapses was readily triggered by the in-
duction protocol (postprotocol IPSC amplitude: 79 
 3% of
baseline, n � 8, p � 0.001; data not shown). Therefore, we con-
cluded that Cl� cotransporters are not involved in I-LTD of the
NRT-TC synapses but that a direct state-dependent modification
of the GABAA receptors may be required. Among the various
regulatory intracellular pathways that control GABAA receptor
activity, the Ca 2�/calmodulin-dependent phosphatase 2B, cal-
cineurin, has been previously shown to directly interact with the
GABAA receptor �2-subunit to mediate LTD at hippocampal in-
hibitory synapses (Wang et al., 2003). Therefore, we tested
whether inhibition of calcineurin by pre-incubation and perfu-
sion of both Cyclosporin A and FK-506 (see Material and Meth-

Figure 4. GABAA receptor activation is required for I-LTD induction. A–D, Summary graphs of the magnitude of the I-LTD (same presentation as in Fig. 1C). A, IPSCs evoked in TC neurons in
response to the stimulation of two independent inhibitory pathways. Schematic representation of the induction protocol is presented above. Note that one NRT pathway (black) was not stimulated
during the induction protocol. For the 11 TC neurons, depression of the IPSCs was only observed for the pathway that underwent the induction protocol including the synaptic stimulation. IPSCs from
representative experiments recorded before and after the induction protocol are shown on the right of the graph for the stimulated (red) and nonstimulated (black) pathways. B, Addition of the
GABAB receptor antagonist, CGP-55845 (300 nM, n � 6), did not preclude the induction of the I-LTD. Same induction protocol as in Figure 1A. C, Puffs of the GABAA receptor antagonist SR95531 (20
�M, n � 9) were applied just before the start of the induction protocol (*). Note that 20 min after this protocol, the IPSCs fully recovered their control amplitude and no I-LTD was triggered. Same
induction protocol as in Figure 1A. D, Pre-incubation and perfusion with the calcineurin antagonists CyA and FK-506 impeded the I-LTD (n � 8). In B, C, and D, IPSCs from representative experiments
recorded before (black) and after (gray) the induction protocol are shown to the right of the graph. Same calibration applies to all IPSCs (25 ms, 100 pA).

Pigeat et al. • Homo and Heterosynaptic I-LTD in the Thalamus J. Neurosci., January 7, 2015 • 35(1):64 –73 • 69



ods) impeded the I-LTD of the NRT-TC
synapses. As shown in Figure 4D, no plas-
ticity could be induced in the eight neu-
rons challenged by the induction protocol
in this condition (postprotocol IPSC am-
plitude: 99 
 4% of baseline, p � 0.05).

Discussion
Our results establish that an LTD of the
inhibitory synaptic transmission be-
tween NRT and TC neurons is triggered
by a stimulation paradigm mimicking
the thalamic network activity occurring
during slow-wave sleep. The mechanism
underlying this synaptic plasticity pres-
ents unique features, being both het-
erosynaptic and homosynaptic and
requiring calcium entry specifically fun-
neled through T-type Ca 2� channels.

Heterosynaptic and
homosynaptic I-LTD
The block of I-LTD by a specific type 1 mGluR antagonist clearly
demonstrates the heterosynaptic nature of the plasticity at the
NRT-TC synapses. Involvement of postsynaptic mGluRs in
GABAergic synaptic depression has been previously shown in a
number of structures (Chevaleyre and Castillo, 2003; Azad et al.,
2004; Henneberger et al., 2007; Heifets et al., 2008; Pan et al.,
2008; Adermark and Lovinger, 2009; Jiang et al., 2010). In these
cases, activation of the postsynaptic mGluRs triggered a retro-
grade cannabinoid signal resulting in presynaptically induced
I-LTDs. In the thalamus, type 1 mGluRs were immunolocalized
only postsynaptically on both NRT and TC neurons (Martin et
al., 1992; Godwin et al., 1996; Vidnyanszky et al., 1996) and our
stimulation protocol may activate type 1 mGluRs on both types
of neurons. As we never observed a change in IPSC paired-pulse
depression following the I-LTD induction protocols, it is unlikely
that the present plasticity involves a decrease in release probabil-
ity resulting from direct NRT neuron mGluR activation or retro-
grade signaling due to TC neuron mGluR activation. Since type 1
mGluRs are present postsynaptically to the glutamatergic cortical
afferents impinging on TC neurons (Godwin et al., 1996; Vidnyan-
szky et al., 1996) we propose that, during sleep-like activities, gluta-
mate released by the corticothalamic afferents closely gates the
intrathalamic inhibitory plasticity via unknown postsynaptic mecha-
nisms (Fig. 5).

The present I-LTD is also clearly homosynaptic. Indeed, stim-
ulating two independent bundles of NRT GABAergic afferents of
a TC neuron showed that I-LTD was only induced in the pathway
submitted to high-frequency stimulation during the induction pro-
tocol. In addition, a transient block of GABAA receptors at the time
of the induction protocol fully precluded synaptic depression, sug-
gesting that the intracellular mechanisms require Cl � influx
and/or state-dependent modification(s) of the GABAA recep-
tors. The Ca 2�/calmodulin-dependent phosphatase 2B, cal-
cineurin, may participate in the latter mechanism. Indeed,
calcineurin that is involved in multiple inhibitory synaptic plas-
ticities (Morishita and Sastry, 1996; Lu et al., 2000; Wang et al.,
2003; Dacher et al., 2013) and blocks the present I-LTD directly
binds to the GABAA receptor �2-subunits (Wang et al., 2003).
�2-Subunits mediate receptor synaptic clustering (Essrich et al.,
1998) and their viral deletion totally suppress spontaneous and
evoked synaptic currents in TC neurons, demonstrating their

presence at the NRT-TC synapses (Rovó et al., 2014). There-
fore, one can speculate that the TC neuron calcium increase
evoked by the induction protocol activates calcineurin result-
ing in a dephosphorylation of the activated GABAA receptors,
a crucial step in their long-term desensitization (Fig. 5).

Specific activation of T-type calcium channels is required
for I-LTD
Buffering postsynaptic calcium blocked the thalamic I-LTD
induced by sleep-like activity at the NRT-TC synapses and,
although mGluR1 receptors can mobilize calcium from intracel-
lular stores (Ferraguti et al., 2008), depolarization of the TC neu-
rons and recruitment of voltage-dependent Ca 2� channels were
necessary. Various Ca 2� channels were shown to contribute to
synaptic plasticity (Cavazzini et al., 2005) and at a given inhibi-
tory synapse, whether LTD or LTP is induced may depend on the
ratio of activation of these different calcium channels (Kurotani
et al., 2008). Using a combination of pharmacological calcium
imaging and electrophysiological approaches, we showed that
a significant calcium influx through T-channels was specifi-
cally required to induce I-LTD at NRT-TC synapses. The in-
ability of high voltage versus low voltage-activated calcium
currents to trigger the synaptic plasticity was not due to dif-
ferences in amplitude or spatial extent of the rises in intracel-
lular calcium concentration.

In a number of structures, including hippocampus (Oliet et
al., 1997), cortex (Birtoli and Ulrich, 2004; Bender et al., 2006;
Kampa et al., 2006; Nevian and Sakmann, 2006), cerebellum (Ai-
zenman et al., 1998; Pugh and Raman, 2006; Ly et al., 2013), and
thalamus (Astori and Lüthi, 2013; Sieber et al., 2013), T-currents
have been involved in synaptic plasticity, although for many years
the lack of potent and selective antagonists often precluded the
ability to definitely distinguish between R- and T-channel contri-
butions. T-channel activation directly mediates a necessary rise in
intracellular Ca 2� concentration (Oliet et al., 1997; Bender et al.,
2006; Kampa et al., 2006; Nevian and Sakmann, 2006; Pugh and
Raman, 2006) and/or generates an initial depolarization that fur-
ther recruits other Ca 2� channels (Aizenman et al., 1998; Birtoli
and Ulrich, 2004). However, the requirement of a specific fun-
neling of Ca 2� through T-channels as a prerequisite to induce
synaptic plasticity was seldom tested and never proved (Nevian

Figure 5. Proposed model of the I-LTD mechanism at NRT-TC synapses. GABA release from NRT terminals (1) activates post-
synaptic GABAA receptors on TC neurons. Concomitantly large influxes of Ca 2� through T-type channels result in an increase in
calcium concentration leading to the activation of the calcium-sensitive phosphatase calcineurin. Calcineurin will then dephos-
phorylate the activated GABAA receptors (1) inducing their long-term desensitization. Conversely the synaptic strength of the
nonactivated GABAA synapses (2) is unchanged. The I-LTD induction is gated by corticothalamic afferents that activate postsyn-
aptic type 1 mGluR.
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and Sakmann, 2006). Therefore, to the best of our knowledge,
our data are the first demonstration of a synaptic plasticity that
specifically requires Ca 2� entry through T-channels. Since
T-channels are mandatory to induce I-LTD at the NRT-TC syn-
apses, one can postulate the existence of preferential link(s) be-
tween these channels and other partners of the synaptic plasticity,
as local interactions between T-channels and the GABAA recep-
tors and/or calcineurin. T-channels are known to establish such
interactions including direct protein–protein interactions (An-
derson et al., 2010, 2013; Engbers et al., 2012), but no data are
available concerning a potential colocalization of GABAA recep-
tors or calcineurin and T-channels.

Physiological relevance of I-LTD in the thalamus
In the thalamic posterior medial nucleus (POM), a long-term
potentiation of inhibitory synapses involving a totally different
mechanism was recently described (Sieber et al., 2013). This
I-LTP was induced by repetitive depolarization of TC neurons
from hyperpolarized membrane potentials at very low frequency
that evoked low-threshold calcium spikes. The associated Ca 2�

rise induced the synthesis of nitric oxide, retrogradely activating
presynaptic guanylyl cyclase and mediating the presynaptic
expression of the I-LTP. In this study, the specific requirement
of T-current was not established and L-type Ca 2� channel
antagonists blocked the I-LTP. However, the dependence of
the plasticity on TC neuron bursting, required to depolarize
the whole dendritic arbor (Errington et al., 2010), suggests
that the I-LTP may occur during sleep when TC neurons dis-
charge in bursts.

Here we demonstrated that I-LTD of the NRT-TC synapses in
the VB nucleus required a large Ca 2� influx through the
T-channels that would also be only expected during slow-wave
sleep. At first glance it may be surprising that thalamic sleep
rhythms may generate both LTP and LTD of the inhibitory affer-
ents on TC neurons. This discrepancy may be due to the different
conditions associated with the recording techniques (current
clamp in Sieber et al., 2013 vs voltage clamp in the present study)
or the slightly older rats (P17–P21) used by Sieber et al. (2013).
However, it must be emphasized that TC neurons of the POM
received at least two GABAergic afferents arising not only from
the NRT but also from extrareticular sources, the zona incerta
and the anterior pretectal nucleus, which display very different
anatomical and functional properties (Wanaverbecq et al., 2008).
Therefore, it is not clear whether the sleep-related I-LTP affects
the reticular or extrareticular GABAergic pathways impinging
on POM neurons. In addition, I-LTP was induced with sus-
tained (10 min) bursting activity at very low frequency (0.1
Hz) and was greatly reduced or absent when the bursts oc-
curred at higher frequency (�1 Hz; Sieber et al., 2013). In
contrast, we induced I-LTD by evoking short trains of
T-currents at 1.6 Hz. Therefore, LTP of inhibitory synapses in
POM should develop at early stages of NREM sleep when
bursts mainly occur at very low frequency at the TC neuron
transitions from DOWN to UP states characteristic of the slow-sleep
oscillation. Conversely, LTD at the NRT-TC synapses in VB nucleus
should be triggered during a deeper sleep state when the slow oscil-
lation is intermixed with delta-bursting activity at a higher frequency
(Crunelli et al., 2006). Accordingly, the direction of the inhibitory
plasticity may depend on the precise structure of sleep episodes in a
given thalamic area.

Finally, LTP in the POM only required repetitive bursting
activity and therefore should develop in all TC neurons and affect
every GABAergic synapse. Conversely, the I-LTD required not

only T-current generation but also GABAA and metabotropic
glutamate receptor activation (Fig. 5). Therefore, I-LTD is a more
restricted process that specifically affects activated GABAergic
synapses in a subset of TC neurons submitted to strong activation
of their corticothalamic inputs, and hence may be involved in the
precise functional reshaping of the sensory information pathway
during sleep. Indeed, since NRT neurons are involved in sensory
processing (Yu et al., 2009; Halassa et al., 2014) and selective
attention (McAlonan et al., 2008), cortically controlled depres-
sion of the NRT-TC synapse should markedly affect sensory in-
formation transfer to the cortex. In addition, in the context of
sleep-associated cognitive functions, plasticities of NRT-TC syn-
apses affect the basic network of spindle generation (Bal et al.,
1995) with potential drastic consequences on sleep-dependent
memory consolidation (Diekelmann and Born, 2010).
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