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Globoid cell leukodystrophy (GLD, Krabbe disease) is a lysosomal storage disease (LSD) caused by a deficiency in galactocerebrosidase
(GALC) activity. In the absence of GALC activity, the cytotoxic lipid, galactosylsphingosine (psychosine), accumulates in the CNS and
peripheral nervous system. Oligodendrocytes and Schwann cells are particularly sensitive to psychosine, thus leading to a demyelinating
phenotype. Although hematopoietic stem-cell transplantation provides modest benefit in both presymptomatic children and the murine
model (Twitcher), there is no cure for GLD. In addition, GLD has been relatively refractory to virtually every experimental therapy
attempted. Here, Twitcher mice were simultaneously treated with CNS-directed gene therapy, substrate reduction therapy, and bone
marrow transplantation to target the primary pathogenic mechanism (GALC deficiency) and two secondary consequences of GALC
deficiency (psychosine accumulation and neuroinflammation). Simultaneously treating multiple pathogenic targets resulted in an un-
precedented increase in life span with improved motor function, persistent GALC expression, nearly normal psychosine levels, and
decreased neuroinflammation. Treating the primary pathogenic mechanism and secondary targets will likely improve therapeutic
efficacy for other LSDs with complex pathological and clinical presentations.
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Introduction
Globoid cell leukodystrophy (GLD, Krabbe Disease) is an inborn
error of metabolism resulting from a deficiency in the lyso-
somal enzyme galactocerebrosidase (GALC; Wenger et al.,
2001). Loss of GALC activity results in the accumulation of a
cytotoxic lipid, galactosylsphingosine (psychosine), in the
CNS and peripheral nervous system leading to a dysmyelinat-
ing phenotype (Miyatake and Suzuki, 1973). The currently
available treatment for GLD is hematopoietic stem-cell trans-
plantation (HSCT), which provides only modest improve-
ments if initiated before symptom onset (Krivit et al., 1998;
Escolar et al., 2005; Martin et al., 2006). Therefore, the devel-
opment of new and more efficacious therapeutic regimens is
of the utmost importance.

An authentic mouse model of GLD, the Twitcher mouse, has
been available for more than three decades (Kobayashi et al.,
1980). This mouse mimics the human disease and has a rapid and
severe disease course (Suzuki and Suzuki, 1983). Despite the
availability of the Twitcher mouse, development of effective ther-
apies has been slow. Virtually all single-therapy approaches, in-
cluding BMT (Yeager et al., 1984), gene therapy (Lin et al., 2005,
2007; Galbiati et al., 2009; Gentner et al., 2010; Reddy et al., 2011;
Rafi et al., 2012), substrate reduction (LeVine et al., 2000; Biswas
and LeVine, 2002), antioxidants (Hawkins-Salsbury et al.,
2012a), steroids (Kagitani-Shimono et al., 2005; Luzi et al., 2009),
enzyme replacement (Lee et al., 2005; Qin et al., 2012), and neu-
ronal (Pellegatta et al., 2006) or mesenchymal (Ripoll et al., 2011)
progenitor cells, have met with minimal to modest success.

GLD is a complex disease, involving the primary pathogenic
mechanism and secondary consequences. Therefore, it is not sur-
prising that single therapeutic approaches provide limited efficacy.
Combination therapies that target both primary and secondary
mechanisms have been more successful. Intracranial gene therapy
targeting the primary defect synergized with bone marrow trans-
plantation (BMT) to nearly triple the lifespan of the Twitcher mouse
(Lin et al., 2007). Subsequent improvements in the route of gene
therapy delivery further extended the life span (Reddy et al., 2011).

Substrate reduction therapy for LSDs decreases the rate of
accumulation of undegraded metabolites by reducing the synthe-
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sis of the enzyme substrates. This can be accomplished in GLD
with L-cycloserine, which broadly decreases the synthesis of sph-
ingolipids, including psychosine (Sundaram and Lev, 1985;
LeVine et al., 2000). L-cycloserine alone significantly improves
lifespan in the Twitcher mouse to �57 d (LeVine et al., 2000) and
synergizes with BMT to increase lifespan to �112 d (Biswas and
LeVine, 2002).

Here we show that targeting the primary pathogenic mecha-
nism and two secondary consequences of GALC deficiency using
diverse therapeutic approaches dramatically increases treatment
efficacy in the Twitcher mouse. Mice were treated from an early
age with “triple therapy” consisting of BMT, adeno-associated
virus 2/5 (AAV2/5)-mediated gene therapy, and substrate reduc-
tion with L-cycloserine. Interestingly, each approach increased
efficacy in a synergistic manner, resulting in an unprecedented
increase in lifespan and persistent clinical/behavioral improve-
ments. Simultaneously targeting distinct pathogenic pathways
may be the most effective way to treat complex inherited meta-
bolic disorders, such as lysosomal storage diseases.

Materials and Methods
Experimental design. Treated and untreated Twitcher mice, as well as
untreated controls were used in this study. Twitcher mice were treated
with CNS-directed gene therapy on postnatal day (P)2, BMT on P3, and
L-cycloserine three times a week starting on P5. Experimental and control
animals of both sexes were randomly assigned to groups for analysis at
predetermined time points (n � 3– 6 animals/time point) or for life span
and behavioral analyses (n � 10 –14 animals/group). The number of
animals/group was based on previous experience with this model and the
specific assays, as well as power calculations. Quantitative biochemical
analyses (GALC activity, psychosine measurements, cytokine/chemo-
kine levels) were performed in duplicate on tissues from three to six
animals, depending on the assay. Semiquantitative histomorphometry
was performed on at least three representative sections/animal from at
least three animals/group. The photography settings were kept constant
for all images. ANOVA was used for group comparisons with Bonferroni
correction for pairwise comparisons. Student’s t test was used to compare
the means of two groups. Significant differences in life span were deter-
mined by log-rank test. Differences were deemed significance at a p value
of �0.05.

Experimental animals. Animals were housed at Washington University
School of Medicine under the supervision of MSS. The Institutional
Animal Care and Use Committee at Washington University School of
Medicine approved all animal protocols. Heterozygous Twitcher (GALC
�) mice on a C57BL/6 background were obtained from the Jackson
Laboratory, and heterozygote by heterozygote matings were used to gen-
erate the homozygous Twitcher (GALC �/�) mice used in this study.
Genotypes were determined on P1 by PCR as previously described (Sakai
et al., 1996; Lin et al., 2005). Hematopoietic stem cell donors were sex-
matched syngenic GALC �/� mice expressing GFP under control of the
CAGGS promoter (Okabe et al., 1997). Mice were housed under stan-
dard conditions with ad libitum access to food and water and were main-
tained on a 12 h light/dark cycle. Only mice that survived to weaning at
28 d were included in this study.

Viral vector. The AAV 2/5 vector was prepared by the Virus Vector
Core Facility at the Gene Therapy Center of the University of North
Carolina. The viral vector consisted of the murine GALC cDNA under
control of the CMV enhancer and chicken �-actin promoter. The murine
cDNA was followed by the 3�-untranslated region from the rabbit
�-globin gene. The single-stranded AAV2 vector was pseudotyped with
an AAV5 capsid. Virus was produced using a triple-transfection method
in HEK293 cells and was recovered using sequential step and continuous
CsCl gradients, followed by dialysis in PBS containing 350 mM NaCl and
5% sorbitol. Viral titers were determined using dot blot hybridization as
previously described (Gray et al., 2011). Virus was diluted to a final
concentration of 10 12 viral particles per milliliter in Lactated Ringer’s
solution and stored at �80°C.

Intracranial and intrathecal injections. AAV2/5-GALC was adminis-
tered to the nervous system on P2–P3. Intracranial injections were per-
formed by hand using the exact same coordinates as previously described
(Reddy et al., 2011). Briefly, the mice were immobilized by hypothermia
and the injection site cleaned with 70% EtOH. Each brain hemisphere
received three, 2 �l (10 12 viral particles per ml) injections, one in the
forebrain, one in the thalamus, and one in the cerebellum. Virus was also
administered intrathecally at the same time. To prepare the virus for
intrathecal injection, 15 �l of virus (10 12 viral particles per ml) was
mixed with 3 �l of trypan blue. To load the syringe a total of 15 �l of this
mixture was drawn up. The mouse was restrained and a needle inserted
into the spinal column approximately midway along the back. A success-
ful injection was defined as the presence of blue dye in both the cerebel-
lum and sacrum. The animals were warmed and returned to the mothers.
A 50 �l Hamilton syringe fitted with a 32 gauge needle was used for all
injections.

Bone marrow transplantation. Animals receiving BMT were exposed to
400 rads of total body irradiation from a 137Cs source on the day follow-
ing gene therapy administration (P3–P4). Mice were injected intrave-
nously (Sands and Barker, 1999) with 10 6 nucleated donor bone marrow
cells immediately after irradiation. Following this myelo-reductive con-
ditioning regimen, treated animals had donor chimerism of 5–30% at
36 d as determined by flow cytometry for GFP.

L-cycloserine treatment. Treatment with subcutaneous L-cycloserine
began on P5–P7 and continued three times/week for the life of the ani-
mal. L-cycloserine was diluted in PBS fresh each day, and then filter
sterilized before injection. Animals received 25 mg/kg L-cycloserine until
P28, and 50 mg/kg for the rest of their life.

Psychosine measurements. Psychosine was measured as previously de-
scribed. Briefly, one brain hemisphere or two sciatic nerves from a single
mouse were homogenized in 0.04 M citric acid. Fifty microliters of each
sample was added to 20 �l of N, N-dimethylpsychosine (250 ng/ml)
internal standard and 200 �l MeOH. Samples were vortexed and centri-
fuged, and then the supernatant collected. This extraction was repeated
on the remaining pellet and the supernatants pooled. Psychosine concen-
trations were obtained using a column-switching LC-MS/MS method.
Detection was achieved using an AB SCIEX 4000QTRAP tandem mass
spectrometer (Applied Biosystems/MDS Sciex) using ESI in the positive
ion mode along with multiple reaction monitoring. Analyst software
(v1.5.1, Applied Biosystems/MDS Sciex) was used for the data analysis.
The calibration curves (analyte peak area/internal standard peak area for
y-axis and analyte concentration for x-axis) of psychosine were obtained
using the least square linear regression fit (y � ax � b) and a weighting
factor of 1/x 2. The coefficient of determination (r 2) was set as 	0.98 for
acceptance criteria of calibration curves.

GALC activity. Following perfusion, one brain hemisphere was ho-
mogenized in ddH2O. The homogenate was centrifuged and the super-
natant collected. GALC activity was measured as previously described
using a 3H-glactosylceramide (Lin et al., 2005). After the reaction, un-
cleaved substrate was removed through galactose saturated chloroform/
methanol extraction. The remaining radioactivity, in the form of free
3H-galactose, was measured in a scintillation counter. The specific activ-
ity of GALC enzyme was calculated as nanomoles of substrate cleaved per
hour per milligram of protein.

Lifespan, body weight, and behavioral testing. Lifespan was recorded as
the age of the animal on the date of death or kill. Animals were killed
when they became moribund as defined as one or more of the following:
losing 	25% of their maximal body weight, ataxia severe enough to
impair ability to eat or drink, or lack of response to tactile stimulus.
Unless otherwise noted, all animals were killed by anesthetic overdose
and perfused transcardially with PBS until the liver was cleared of blood.
Bodyweight was recorded for each mouse (n � 12) once a week. Begin-
ning at week 3, mice were tested every other week for performance on the
rotarod and inverted wire-hang tests as previously described (Reddy et
al., 2011). The maximum length of either test was 60 s. Each animal was
given at least 10 min to recover between trial or tests. Rotarod: mice were
gently placed on a stationary rod, and then the rotation started. The rod
was set to rotate at a constant 3RPM. Latency to fall was recorded. The
average of three trials was recorded. Wirehang: animals were placed up-
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right on a rigid 1⁄4 inch wire mesh screen. The screen was gently shaken to
encourage gripping then turned upside down 12 inches over soft bed-
ding. Latency to fall was recorded.

LFB/PAS staining and immunohistochemistry. Brains were harvested
immediately following perfusion and either flash frozen for biochemical
analyses or fixed in 4% paraformaldehyde for 24 h at 4°C. The fixed
brains were then moved to 30% sucrose in tris-buffered saline for an
additional 24 – 48 h at 4°C. Following cryoprotection, the brain was em-
bedded in optimal cutting medium (Sakura Finetek), frozen on dry ice,
and cryosectioned. The 16 �m sections were stained with luxol fast blue
and periodic acid Schiff (LFB/PAS) as previously described (Lin et al.,
2005). Additional sections were immunostained with anti-GFAP, anti-
CD68, or anti-GFP antibodies according to standard methods. Briefly,
free-floating sections were incubated in 1% hydrogen peroxide to
quench endogenous peroxidase activity. Sections were then blocked in
normal goat serum and incubated in primary antibody. Sections were
next incubated in the appropriate biotinylated secondary antibody, fol-
lowed by incubation in Vectastain Elite ABC reagent (Vector Laborato-
ries). Sections were developed using a DAB peroxidase substrate kit
(Vector Laboratories). Antibodies were as follows: rabbit anti-mouse
glial fibrillary acidic protein (GFAP; 1:100; Immunostar), rat-anti-
mouse CD68 (1:1000; AbD Serotec), rabbit polyclonal anti-mouse GFP

(1:10,000; Abcam), biotinylated anti-rabbit IgG supplied with the Vec-
tastain kit (1:200; PK-6101 Vector Laboratories), and mouse-adsorbed
biotinylated anti-rat IgG (1:200; Vector Laboratories). Stained sections
were mounted, dehydrated and coverslipped. Images were captured us-
ing an Olympus BX41 microscope and Olympus DP20 camera. All image
capture variables were kept identical. At least three sections per animal
and three animals per treatment group were analyzed for each brain area
studied. Staining was quantified using ImageJ software. The percentage
of total image area with staining above a set threshold value was calcu-
lated as the area fraction.

Sciatic nerve. Sciatic nerves were removed and fixed in phosphate-
buffered 4% paraformaldehyde/2% glutaraldehyde (n � 4 – 6 per treat-
ment group). Nerves were then incubated in osmium tetroxide, serially
dehydrated in ethanol, and embedded in Araldite 502 (Polysciences). An
ultramicrotome was used to prepare 1 �m cross-sections, which were
then stained with 1% toluidine blue dye and mounted on slides. A Hita-
chi CCD KP-M1AN digitizing camera mounted on a Leitz Laborlux S
microscope was used for image acquisition. Histomorphometric analysis
was performed using the Leco IA32 Image Analysis System as previously
described (Hunter et al., 2007).

Cytokines. PBS-perfused brains (n � 4 –10 per treatment group) were
flash-frozen in liquid nitrogen, then thawed on ice and homogenized in a

Figure 1. Tripe therapy increases lifespan and body weight, and improves motor function in Twitcher mice. Top left, Kaplan-Meier curves comparing survival of Twitcher mice treated with
AAV�BMT�L-cycloserine (“triple-treatment”; n � 16), AAV � L-cycloserine (n � 10), or L-cycloserine alone (n � 9) to untreated Twitcher mice (n � 9) and untreated WT mice (n � 10). The
median lifespan of triple-treated Twitcher mice (298.5 d, range 160 – 454 d) was significantly greater than that of untreated Twitcher mice (39.5 d). Triple-treated Twitcher mice also lived
significantly longer than Twitcher mice treated with AAV � L-cycloserine (70 d) or L-cycloserine alone (57 d, p � 0.05). Top right, Average body weight of triple-treated Twitcher mice was
significantly greater than that of untreated Twitcher mice at 36 d. Bottom left, Although average performance of triple-treated Twitcher mice declined with age, individual animals were able to
perform the full 60 s test until the last few months of life. Bottom right, Average latency to fall on the wire-hang test of motor function was recorded every 2 weeks.
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Figure 2. Triple therapy supplies persistent GALC activity and decreases psychosine accumulation in the Twitcher mouse. A, GALC activity was increased�3.5-fold from WT levels in triple-treated
Twitcher mice at 36 d (n � 4 – 6 animals per group). Though a slight decrease in GALC activity was observed as the animals aged, GALC activity remained approximately twice WT levels in terminal
triple-treated animals. B, Thrice weekly treatment with 25 mg/kg L-cycloserine alone resulted in a significant reduction in brain psychosine in Twitcher mice (n � 4 –5 animals per group). C, Triple
therapy significantly reduced whole-brain psychosine levels in Twitcher mice at 36 d. Psychosine levels remained low at terminal time points (n � 4 –5 animals per group). D, Sciatic nerve
psychosine levels in Twitcher mice were significantly reduced by triple therapy at every time point (n � 4 –7 animals per group; **p � 0.01, ***p � 0.001).

Figure 3. Persistent donor chimerism is observed in the bone marrow and brains of triple-treated Twitcher mice. Rare GFP-positive donor-derived cells were present in the brainstem, cerebellum,
and thalamus of 36 d triple-treated mice (36D Triple). In terminal triple-treated animals (Terminal Triple) larger numbers of GFP-positive cells were observed in brainstem, cerebellum, and thalamus,
among other brain regions. There is a significant increase in donor bone marrow engraftment (right) in terminal triple-treated Twitcher mice (22.4%) compared with 36 d triple-treated Twitcher
mice (9.9%) as determined by flow cytometry. (*p � 0.05).
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solution containing 50 mM Tris-HCl, 2 mM PMSF, 2 mM EDTA, and
protease inhibitors (P8340, Sigma-Aldrich) with an Eperbach Con-
Torque tissue homogenizer. Samples were centrifuged at 14,000 
 g for 4
min at 4°C and supernatant was sent for rodent multianalyte profile
analysis (Myriad Rules-Based Medicine).

Statistical analysis. Statistical significance was calculated using a one-
way ANOVA followed by Bonferroni correction for multiple compari-
sons to compare all treatment groups unless otherwise specified.

Results
Lifespan
Untreated Twitcher animals had a median lifespan of 39.5 d (Fig.
1 top left). We previously showed that BMT or CNS-directed
AAV-mediated gene therapy initiated in newborn Twitcher mice
increased the median life span to �45 and �70 d, respectively
(Lin et al., 2007; Reddy et al., 2011). In the current study, the
median lifespan for mice treated with L-cycloserine alone or
L-cycloserine plus CNS-directed gene therapy is �57 and �70 d,
respectively. In contrast, triple-treated Twitcher mice had a me-
dian lifespan of 298.5 d, with a range of 160 – 454 d. Additionally,
several of the treated male mice were able to impregnate normal
females, whereas untreated Twitcher males are not able to breed.
Treated females were housed exclusively with other females, as
the effect of carrying a pregnancy was uncertain and not a goal of
this study. Therefore, it remains unknown whether triple-treated
Twitcher females might be fertile.

Body weight
Twitcher mice have impaired weight gain, with weight at death
approximately one-half that of age-matched GALC �/� litter-

mates (an average of 8 vs 16 g; Fig. 1 top right). Triple-treated
mice have increased weight gain compared with untreated
Twitcher mice, though not to the same extent as WT animals
(maximum weight �18 vs 25 g for a WT mouse). The weight of
triple-treated animals was stable until immediately preceding
death.

Motor function
Twitcher mice have impaired motor function as assessed through
the rotarod and inverted wire-hang tests. Untreated Twitcher
mice are unable to perform a test of coordination (rotarod) by
3– 4 weeks of age. On average, triple-treated mice can perform the
rotarod test normally until �30 weeks of age, then slowly decline
in their ability (Fig. 1 bottom left). Although the mean latency to
fall steadily decreases over time, individual triple-treated mice
typically perform normally (60 s) until 1.5–2 months before they
die. For example, two triple-treated Twitcher mice that lived to
450 and 454 d of age were able to stay on the rotarod for 60 s until
400 and 395 d, respectively. The inverted wire-hang is a test of
grip strength and is used as a surrogate for peripheral nerve func-
tion. Untreated Twitcher mice are unable to hang onto an in-
verted wire screen for the full 60 s test even at an early stage of
disease. Triple-treated animals can perform this task better than
untreated mice, but still show significant deficits compared with
WT animals (Fig. 1 bottom right).

GALC activity
Twitcher mice have virtually undetectable whole-brain GALC
activity as measured by cleavage of the radio-labeled natural sub-

Figure 4. Myelin is relatively well preserved in younger triple-treated Twitcher mice. LFB/PSAS staining was performed to assess demyelination in the cortical, brainstem, and cerebellar white
matter. No substantial myelin loss was seen in 36 d triple-treated mice (�/� 36 d triple) compared with age-matched normal controls (�/� 36 d). Older triple-treated mice (�/� 160 d triple)
show multifocal demyelination of all three evaluated areas. The degree of demyelination is similar to that observed in the untreated mice (�/� 36 d). Brainstem white matter tracts, followed by
subcortical white matter, demonstrated more severe demyelination. In addition, a considerable decrease in PAS-positive globoid cells (arrowheads), from total absence to very rare, was seen in 36 d
triple-treated mice (�/� 36 d triple) compared with untreated mice (�/� 36 d). Older triple-treated mice (�/� 160 d triple) showed considerable number of PAS-positive globoid cells.
However, they appeared smaller and with less PAS-positive material compared with untreated mice (�/� 36 d; original magnification 200
).
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strate of GALC, galactosylceramide (Fig. 2A). At 36 d, the level of
whole-brain GALC activity in triple-treated Twitcher mice is
�3.5-fold greater than WT animals. Although there is an appar-
ent decrease in GALC activity as the animals age, this is not sta-
tistically significant. Even at a terminal time point, triple-treated
Twitcher mice still have nearly double the WT levels of brain
GALC activity.

Psychosine levels
Whole-brain psychosine levels are elevated in Twitcher mice rel-
ative to WT mice (Fig. 2B,C). Thrice-weekly injections of
L-cycloserine alone significantly reduces whole-brain psychosine
(Fig. 2B). Previous studies have shown that AAV2/5-mediated
gene therapy alone reduces whole-brain psychosine levels,
whereas BMT alone does not (Reddy et al., 2011). As expected,
triple-treated Twitcher mice also show reduced psychosine levels
in the brain compared with untreated Twitcher mice (Fig. 2C).
Although whole brain psychosine levels in triple-treated animals

are likely higher than WT, this difference is not statistically sig-
nificant. Whole-brain psychosine levels remain low throughout
the lifespan of triple-treated mice, with levels indistinguishable
from WT at 160 d and at terminal time points. Psychosine also
accumulates in the sciatic nerve of Twitcher mice. This accumu-
lation is not observed in triple-treated Twitcher mice, even at
terminal time points (Fig. 2D).

GFP-positive donor cell engraftment
By 36 d, triple-treated animals have an average of 9.9% (range �
5–30%) donor chimerism in the bone marrow (Fig. 3, Bone Mar-
row Engraftment). There is a significant increase in average do-
nor bone marrow engraftment (22.4%) in terminal triple-treated
mice. Engraftment of donor microglia in the brain is a much
slower process (Kennedy and Abkowitz, 1997). At 36 d, only rare
GFP-positive cells are observed in the brains of triple-treated
mice. In contrast, numerous GFP-positive cells can be seen in

Figure 5. Microglial and astrocyte activation is reduced by triple therapy. A, B, Untreated Twitcher animals show large populations of CD68-positive cells relative to WT in all brain regions
examined. Decreased staining is observed in 36 d triple-treated Twitcher brains, though levels appear to increase at 160 d and at terminal time points. Right, Average area fraction positive for CD68
was quantified (n � 3 animals per group). CD68 staining was significantly reduced in triple-treated Twitcher brains relative to untreated Twitcher brains at 36 d. CD68 staining increased as
triple-treated animals aged. A similar pattern of GFAP staining was observed for untreated and triple-treated mice. Average area fraction positive for GFAP was significantly reduced in Twitcher
brains by triple therapy at 36 d, but showed a significant increase as animals aged (*p � 0.05, **p � 0.01, ***p � 0.001).
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terminal animals, particularly in the brainstem, cerebellum, and
thalamus (Fig. 3).

Myelination and “globoid cell” infiltration
There is a substantial decrease in LFB staining in the cortex,
brainstem, and cerebellum of untreated 36-d-old Twitcher mice
compared with age-matched normal controls (Fig. 4). There is
also an increase in the number of PAS-positive globoid cells in the
untreated 36-d-old Twitcher mice compared with the normal
controls. The level of LFB staining in 36-d-old triple-treated
Twitcher mice is comparable to the normal control. Although
there are still some globoid cells present in the 36-d-old triple-
treated Twitcher mice it is greatly reduced compared with
age-matched Twitcher mice. The intensity of LFB staining in 160-
d-old triple-treated Twitcher mice is comparable to the 36-d-old
untreated Twitcher mice. Although the number of PAS-positive
cells in 160-d-old triple-treated Twitcher mice is comparable
with 36-d-old untreated Twitcher mice, the cells appear smaller
with less PAS-positive material.

Microglial and astrocyte activation
As previously reported, an increased number of CD68-positive
macrophages and activated microglia are found in the brains of
Twitcher mice compared with WT controls at 36 d (Lin et al.,
2007; Reddy et al., 2011). Triple treatment dramatically decreased
CD68 staining at 36 d (Fig. 5A). However, CD68 staining steadily
increases as the treated mice age. A similar trend is observed for
GFAP-positive activated astrocytes (Fig. 5B). Astrocytosis is di-
minished in triple-treated Twitcher brains at 36 d, but increases
as the animals age.

Cytokine/chemokine levels
To further characterize the effect of triple therapy on neuroin-
flammation in the Twitcher brain, cytokine/chemokine levels

were measured in whole-brain homogenates. Several proinflam-
matory cytokines and chemokines were increased in Twitcher
brains relative to WT at 36 d (Fig. 6). Expression of these immune
mediators was reduced to WT levels in 36 d triple-treated mice.
The majority of these cytokines remained low throughout the
lifespan of the treated animals, with only FGF-basic showing a
slight increase in terminal mice. Interestingly, IL-10, a cytokine
with immune suppressive effects, was minimally elevated in un-
treated Twitcher brains, and was reduced to WT levels following
triple therapy.

Peripheral neuropathy
Untreated Twitcher mice demonstrate severe hindlimb weak-
ness, such that hind limbs are essentially paralyzed when mice
reach a terminal time point at �40 d of age. Untreated Twitcher
sciatic nerves are grossly swollen and display several features that
are characteristic of Krabbe disease, including myelin loss, in-
creased interstitial edema, cellular infiltration, and decreased
axon density (Fig. 7). Quantitative histomorphometric analyses
showed a significant decrease in axon density and a trend toward
decreased myelin width in untreated Twitcher mice (Fig. 7).
These changes are not prevented by triple therapy, and sciatic
nerve pathology gets significantly worse over the lifespan of
treated mice. Sciatic nerves from terminal triple-treated mice also
show a unique histological pattern consisting of concentric swirls
of myelin and connective tissue reminiscent of “onion bulb” for-
mations. This pattern was not observed in 36 d triple-treated
animals (Fig. 7).

Discussion
GLD has proven refractory to most therapeutic interventions.
This is likely due to the complex nature of this disease, involving
the primary and multiple secondary pathogenic mechanisms. In
the current study, we targeted the primary defect in Twitcher

Figure 6. Triple therapy reduces cytokine/chemokine expression in the Twitcher brain. Inflammatory cytokines/chemokines were increased in untreated Twitcher brains relative to WT at 36 d
(n � 4 –10 animals per group). Triple therapy resulted in a significant decrease in proinflammatory cytokines/chemokines. The levels remained indistinguishable from WT at terminal time points,
with the exception of a slight increase in FGF-basic. IL-10, a cytokine with anti-inflammatory functions, was significantly increased in untreated Twitcher brains relative to WT. Triple-treated Twitcher
brains showed IL-10 levels that were indistinguishable from WT at 36 d and at terminal time points (*p � 0.05, ****p � 0.0001).
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mice with AAV-mediated, CNS-directed
gene therapy (Fig. 8). In addition, we tar-
geted two secondary consequences of
GALC deficiency, psychosine accumula-
tion and neuroinflammation, with sub-
strate reduction therapy and BMT,
respectively (Fig. 8). This multipronged
approach resulted in the greatest increase
in lifespan to date, with triple-treated
Twitcher mice living to a median of �300
d and several mice living 	450 d. Based
on the increases in life span when applied
singly, the combination of these three
treatments should result in a median lifes-
pan of �90 d if they interacted in an ad-
ditive fashion. The unprecedented degree
of synergy suggests that combining thera-
pies directed at multiple targets can lead
to breakthroughs in the treatment of com-
plex metabolic disorders.

Although we obtained profound syner-
gistic effects, a second-generation AAV
vector, AAV2/5, was used in the current
study. Newer generation AAV vectors (e.g.,
AAVrh10 or AAV2/9) mediate higher levels
of transduction and have a broader distribu-
tion in the mouse brain (Foust et al., 2009;
Hu et al., 2010). Therefore, they would be
expected to increase efficacy even further.
Another limitation in the current study is
the fact that neonatal mice can only be ex-
posed to sublethal, nonablative condition-
ing radiation (�400 rads; Sands et al., 1993).
Consequently, the triple-treated mice had
donor hematopoietic chimerism of only
5–30%. It will be important to determine
whether higher levels of engraftment signif-
icantly increases efficacy in this combina-
tion treatment paradigm. Finally, recent
single-treatment studies using sophisticated
approaches and the latest generation gene
transfer vectors have reported median lifes-
pans in the Twitcher mice of only 80–120 d
(Gentner et al., 2010; Rafi et al., 2012). How-
ever, those approaches would likely increase
treatment efficacy if used in combination.

Although this intensive therapeutic
regimen is efficacious, it is not without side effects. In our expe-
rience, mice are particularly sensitive to L-cycloserine in the
weeks immediately following gene therapy and BMT. We ob-
served a relatively high (30 –50%) mortality before weaning if
mice were injected with 50 mg/kg L-cycloserine during this time.
Nearly no mortality was observed if mice were given a dose of 25
mg/kg during the same period. This sensitivity was related to the
combination of treatments, as it was not seen in animals treated
with 50 mg/kg L-cycloserine alone. Similarly, we have observed
minimal mortality in animals treated with gene therapy, BMT or
a combination of the two. It is likely that L-cycloserine, which
inhibits the synthesis of many glucosylated and galactosylated
lipids in addition to psychosine, alters the normal balance of
sphingolipids and reduces the ability of the brain to respond to
the stress associated with conditioning radiation and intracranial
injection of virus. The reduction of many sphingolipids and the

potential for developmental damage highlights the need for a
more specific inhibitor of psychosine synthesis, perhaps an inhib-
itor of galactosyltransferase. Although several other galactosy-
lated neurolipids require the galactosyltransferase enzyme, fewer
lipids would be disrupted compared with L-cycloserine. Regard-
less, this does not diminish the magnitude of synergy observed
when multiple defects are simultaneously targeted.

Even though HSCT carries a significant risk to the patient, it is
the current standard of care for GLD. One limitation of HSCT is
the slow turnover of hematopoietic-derived microglia in the
brain. It has been shown previously that significant engraftment
of donor-derived cells in the brains of mice was not observed
until 160 d post-BMT (Kennedy and Abkowitz, 1997), and there
is nearly undetectable GALC activity in the brains of 36 d
Twitcher mice treated with BMT at birth (Lin et al., 2007; Reddy
et al., 2011; Hawkins-Salsbury et al., 2012b). Due to the aggressive

Figure 7. Peripheral neuropathy is not corrected by triple therapy. Untreated WT sciatic nerves show compact, myelinated
fibers (top left). Untreated Twitcher sciatic nerves are characterized by increased interstitial edema, cellular infiltration, decreased
myelination, and decreased axon density (top right). At 36 d, nerves from triple-treated and untreated Twitcher mice appear
similar (top right, middle left). At terminal time points, numerous axons surrounded by swirls of connective tissue reminiscent of
onion bulb formations are observed in sciatic nerves from triple-treated mice (middle right). Quantitative histomorphometric
analysis demonstrated decreased myelin width (bottom left) and decreased axon density (bottom right) in untreated Twitcher
sciatic nerves relative to WT. These changes were not reversed by triple therapy and were more severe in terminal triple-treated
sciatic nerves; N � 4 – 6 animals per group (*p � 0.05, **p � 0.01, ***p � 0.001, ****p � 0.0001).
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nature of GLD, it is likely that significant disease develops before
a meaningful number of donor microglia can repopulate the CNS
and provide therapeutic levels of GALC. Here we demonstrate
that although triple-treated Twitcher mice have very few donor
cells in the brain at 36 d of age (34 d post-transplant), the number
of donor-derived (GFP-positive) cells increased in the brains of
animals that were 	160 d of age. This could be due to the fact that
they lived long enough for significant numbers of donor cells to
repopulate the brain. Alternatively, the long-lived animals may
have had higher levels of hematopoietic reconstitution from an
early age and thus a better long-term outcome. Regardless of the
dynamics of CNS engraftment, once donor cells are in the brain,
they can serve a dual role by contributing GALC to surrounding
tissue and providing an immunomodulatory effect.

Although this therapeutic regimen dramatically increases
lifespan and improves behavior, the mice eventually succumb to
the disease. One likely explanation for the continued disease pro-
gression is that the distribution of the AAV vector, and thus
GALC activity, is not sufficient to completely eliminate psycho-
sine in various brain regions. In support of this hypothesis are the
persistent, albeit low, levels of psychosine observed in the brains
of triple-treated mice. Because psychosine is measured in whole-
brain homogenates (or whole-nerve homogenates), it is possible
that local concentrations of the lipid could be considerably higher
in regions that are inaccessible to GALC. It is known that AAV

vectors preferentially infect neurons as opposed to other non-
neuronal cells, such as oligodendrocytes. In a disease such as
GLD, which severely affects oligodendrocytes and white matter,
this could be a significant limitation. Consistent with this hy-
pothesis is the fact that, although myelin levels (LFB staining)
appear relatively normal in 36-d-old treated Twitcher mice, the
improved myelination does not persist, and myelin staining is
dramatically decreased in 160-d-old treated Twitcher mice. De-
velopment of more potent or cell-specific vectors may signifi-
cantly improve outcomes.

Another potential cause for the incomplete clinical re-
sponse is the increasing neuroinflammation as the triple-
treated mice age. Although the levels of various immune
mediators in whole-brain homogenates were essentially
normalized by triple therapy, CD68 and GFAP expression pro-
gressively increase. We also see a progressive increase in PAS-
positive cells in the white matter tracts of treated Twitcher
mice between 36 and 160 d of age. This apparent discrepancy
could be due to localized increases in cytokine/chemokine
expression that are masked by low levels of cytokines in rela-
tively large areas of the brain that have little or no inflamma-
tion such as the cortex. Regional increases in cytokine/
chemokine expression could be responsible for the localized
increases in CD68 and GFAP staining and partial therapeutic
response observed in triple-treated animals.

Figure 8. The triple-treatment strategy targets the primary (GALC deficiency) and two secondary (psychosine synthesis and neuroinflammation) consequences of GALC deficiency contributing
to globoid cell leukodystrophy. Neurons are efficiently transduced and express high levels of GALC following intracranial injection of an AAV2/5 gene transfer vector. Secreted GALC binds the
mannose-6-phosphate receptor (M6PR) on nontransduced cells and is endocytosed through a process referred to as “cross-correction”. The endocytosed GALC is targeted to the lysosomes of
oligodendrocytes where it degrades psychosine. The substrate reduction therapy drug, L-cycloserine, acts on oligodendrocytes to decrease the synthesis of psychosine. This slows the accumulation
of psychosine. Bone marrow transplantation can serve two functions in globoid cell leukodystrophy: (1) it decreases both the disease- and viral vector-associated neurinflammatory response, and
(2) it can secrete GALC enzyme as donor-derived microglia reconstitute the CNS.
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A prominent feature of GLD is the involvement of the periph-
eral nervous system. This pathology is reflected in the sciatic
nerves of Twitcher mice, which show reduced myelin, decreased
axonal density, increased edema, and infiltration of immune
cells. Other than lowering psychosine, this triple-treatment regi-
men appears to have little effect on the disease in the sciatic nerve,
which likely contributes to the continued clinical/behavioral de-
cline. This is supported by the poor performance of the triple-
treated mice in the wire-hang test, which measures limb strength
and serves as a surrogate for the peripheral neuropathy. Interest-
ingly, however, the sciatic nerves of long-lived triple-treated
Twitcher mice have histological features referred to as “onion-
bulb” formations. Onion-bulb formations are typically associ-
ated with repeated cycles of demyelination and remyelination
suggesting that repair mechanisms may be initiated in the sciatic
nerve (Krendel et al., 1989; Naba et al., 2000). Abnormal onion-
bulb formation has been observed previously in Twitcher mice
following high-dose irradiation and BMT (Kagitani-Shimono et
al., 2008). However, this histological feature appears to be more
widespread in the triple-treated mice. Finally, the continued de-
cline of the triple-treated Twitcher mice could be due to incom-
plete correction of the autonomic nervous system. It has been
shown previously that the autonomic nervous system is affected
in Twitcher mice and leads to thymic atrophy and peripheral
lymphopenia (Galbiati et al., 2007).

Lysosomal enzymes, including GALC, are ubiquitously ex-
pressed. Therefore, deficiencies in these acid hydrolases would be
expected to affect many, if not most cells of the body. Not sur-
prisingly, this can activate multiple primary and secondary
pathogenic mechanisms. In the case of GLD, targeting a single
pathogenic mechanism results in modest to no efficacy. In con-
trast, synergistic increases in efficacy were observed when the
primary defect was targeted with CNS-directed gene therapy and
the secondary accumulation of psychosine and neuroinflamma-
tion were treated with L-cycloserine and BMT, respectively. It is
likely that efficacy will be further increased if additional patho-
genic mechanisms are targeted and/or when improved gene
transfer vectors and more specific substrate inhibitors are devel-
oped. Although the specific parameters will need to be empiri-
cally determined on a case-by-case basis, this type of combination
therapy provides a promising paradigm upon which to base treat-
ments for this relatively large class of inherited metabolic diseases
that are caused by both the primary genetic defect and multiple
secondary consequences that affect multiple organ systems.
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