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Neurobiology of Disease

CCR2 Antagonism Alters Brain Macrophage Polarization and
Ameliorates Cognitive Dysfunction Induced by Traumatic
Brain Injury

Josh M. Morganti,2 Timothy D. Jopson,' Sharon Liu,’ Lara-Kirstie Riparip,' Cristian K. Guandique,' “Nalin Gupta,?
Adam R. Ferguson,'* and Susanna Rosi'?>
'Brain and Spinal Injury Center, 2Departments of Physical Therapy and Rehabilitation Science, and *Neurological Surgery, University of California, San

Francisco, California 94110

Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the
increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected
tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical
insult. Following injury, there is uncertainty regarding the role that accumulating CCR2 * macrophages play in the injury-induced
neuroinflammatory sequelae and cognitive dysfunction. Using CX3CRI1“™* CCR2®*""™" reporter mice, we show that TBI initiated a
temporally restricted accumulation of peripherally derived CCR2 © macrophages, which were concentrated in the hippocampal forma-
tion, a region necessary for learning and memory. Multivariate analysis delineated CCR2 * macrophages’ neuroinflammatory response
while identifying a novel therapeutic treatment window. As a proof of concept, targeting CCR2 " macrophages with CCX872,a novel Phase
I CCR2 selective antagonist, significantly reduced TBI-induced inflammatory macrophage accumulation. Concomitantly, there was a
significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antago-
nism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation
profile 1 month after injury. Thus, therapeutically targeting the CCR2 " subset of monocytes/macrophages may provide a new avenue of
clinical intervention following TBL.
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Introduction

Traumatic brain injury (TBI) initiates a robust immune response
in the CNS involving resident glial cells, microglia, as well as
infiltration of blood leukocytes (Woodcock and Morganti-
Kossmann, 2013). Principal to this milieu response is the induc-
tion of multiple immunomodulatory cytokine and chemokine
signaling factors (Ziebell and Morganti-Kossmann, 2010; Giunta
etal., 2012). Notably, within hours following the initial trauma in
patients surviving TBI, there are increased CSF levels of CCL2,
the cognate ligand for CCR2 (Semple et al., 2010). These findings
have been recapitulated in studies modeling TBI in rodents (Is-
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raelsson et al., 2008; Semple et al., 2010), further suggesting the
involvement of CCL2-CCR2 signaling axis in the acute term fol-
lowing TBI. Importantly, activation of this signaling axis has been
shown to recruit CCR2-expressing monocytes into the injured
tissue where they become activated macrophages, expressing
multiple proinflammatory mediators (Serbina and Pamer, 2006;
Auffray et al., 2007; Prinz and Priller, 2010). Microglia, the
brain’s resident tissue macrophage, phenotypically resemble
monocyte-derived macrophages in both appearance and func-
tionality following TBI (Raivich et al., 1999; Town et al., 2005;
Cao et al,, 2012). This biological phenomenon has prevented
the accurate delineation of the contribution of infiltrated mac-
rophages in the propagation of TBI-induced inflammatory
response.

Recent work has defined two subpopulations of peripheral
blood monocytes as “inflammatory” and “circulating/resident”
monocytes (Auffray et al., 2009). These two cell types can be
accurately distinguished from each other on the basis of their
relative cell-surface expression of two chemokine receptors
CCR2 and CX3CR1, with CCR2 ¥ monocytes representing the
inflammatory subset. Although brain microglia can resemble ac-
tivated macrophages following TBI, they do not express CCR2
natively (Saederup et al., 2010; Mizutani et al., 2012) or following
CNS injury (Schilling et al., 2009). Therefore, the accumulation
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of CCR2 ™ cells into the injured brain is considered to be from
peripheral blood-borne monocytes. Interestingly, in the brain,
CCL2-CCR2 signaling has been shown to be both neuroprotec-
tive (El Khoury et al., 2007; Naert and Rivest, 2011) and neuro-
toxic (Mildner et al., 2009; Saederup et al., 2010; Belarbi et al.,
2013) in various animal models of neurodegenerative disease.
However, information regarding the accumulation and inflam-
matory role of CCR2™ peripheral macrophages in the TBI-
induced inflammatory sequelae remains ambiguous.

Herein we used the unique CX3CRI™* CCR2®"* reporter
mice (Saederup etal., 2010), referred to here as double-heterozygous
(Dbl-Het), to define the temporal kinetics of TBI-induced CCR2
macrophage accumulation in the brain. We found that accumula-
tion of CCR2 ¥ macrophages is temporally restricted to a narrow
time frame following injury. Moreover, multivariate analysis re-
vealed distinct relationships between macrophage accumulation
and inflammatory gene expression, which then identified a novel
therapeutic window for targeting CCR2 " macrophage accumu-
lation. Treatment with CCX872, a novel Phase 1 CCR2 antago-
nist, reduced the accumulation of peripheral macrophages,
disrupted the neurotoxic macrophage polarization, and pre-
vented the increased expression of the superoxide-generating
enzyme NOX2, which forms ROS, 1 d after injury. Most impor-
tantly, this treatment strategy prevented TBI-induced hipp-
ocampal-dependent learning and memory deficits measured 28 d
after injury. These data suggest that the accumulation of CCR2 ™
macrophages significantly contributes to TBI-induced cognitive
decline and supports the use of early pharmacological interven-
tion to prevent cognitive decline in patients with TBI.

Materials and Methods

Animals. All experiments were conducted in accordance with the Na-
tional Institutes of Health Guide for the Care and Use of Laboratory Ani-
mals and were approved by the Institutional Animal Care and Use
Committee of the University of California (San Francisco). Adult 6- to
7-month-old male and female Dbl-Het and wild-type (WT; C57BL6/] )
male mice were used for all experiments. Dbl-Het mice were generated as
previously described (Saederup et al., 2010) and genotyped using a com-
mercial service (Transnetyx), whereas WT mice were purchased from
The Jackson Laboratory. Mice were group housed in environmentally
controlled conditions with reverse light cycle (12:12 h light/dark cycle at
21 = 1°C) and provided food and water ad libitum.

Surgical procedure. All animals were randomly assigned and divided as
equally possible between sexes (Dbl-Het) to their treatment group. Ani-
mals were anesthetized and maintained with 2.5% isoflurane with a non-
rebreathing nose cone and passive exhaust system connected to a
stereotaxic frame (David Kopf). Once animals were secured with non-
traumatic ear bars, eye ointment was applied and their heads were cleared
of any hair around the scalp. After betadine application, a midline inci-
sion was made through the scalp. TBI was reproduced in the parietal lobe
using the controlled cortical impact (CCI) model (Smith et al., 1995).
Mice received a craniectomy ~3.5 mm in diameter using an electric
microdrill with the center point determined by a digitally calibrated ma-
nipulator arm (Leica) to the coordinates: anteroposterior, —2.0 mm;
mediolateral, 2.0 mm, with respect to bregma. Explicit attention was paid
to prevent damage to the dura during craniectomy; any animal in which
the dura was disrupted, as assessed by excessive bleeding, was omitted
from the study and replaced by another littermate. After craniectomy,
contusion was achieved using a 3.0 mm convex tip attached to an elec-
tromagnetic impactor (Leica) mounted to the digitally calibrated manip-
ulator arm. To impact flush with the natural curvature of the head/tissue,
the manipulator arm was rotated 20° on the vertical axis. The parameters
for impact were for a contusion depth of 0.95 mm (from dura), velocity
was constant at 4.0 m/s, and the impact was sustained for of 300 ms.
Importantly, these injury parameters penetrated all layers of the cortex
stopping short of disrupting the dorsal hippocampal structure (antero-
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posterior —2.0 mm, mediolateral 2.0 mm, dorsoventral —0.95 mm).
After CCl injury, the scalp was sutured and each animal received 0.5 ml of
physiologic saline (i.p.) before being placed in a water-heated incubation
chamber (37°C) until they fully recovered as exhibited by resumption of
movement and grooming. Sham animals were treated to the above pa-
rameters, except that the CCI injury was omitted. Surgical procedures
were coordinated in batches such that two time points of mice were
scheduled to be killed at the same time, this allowed for each cohort of
animals to be killed at approximately the same point during the day over
the course of the study. All animals fully recovered from surgical proce-
dures and exhibited normal weight gain for the duration.

Tissue collection. All mice were lethally overdosed using a mixture of
ketamine (150 mg/kg)/xylazine (15 mg/kg). Once the animal was com-
pletely anesthetized, the chest cavity was opened and blood was removed
using 21.5 Ga needle from the atrial cavity. Blood was subsequently ex-
pelled into standard plastic 1.5 ml conical tubes for serum collection.
After blood removal, each animal was transcardially perfused with ice-
cold Hanks balanced salt solution without calcium and magnesium
(Invitrogen). Immediately after perfusion, mice were decapitated and the
ipsilateral brain hemisphere was placed into ice-cold RPMI-1640 me-
dium without phenol (RPMI; Invitrogen).

Flow cytometry. Brain hemispheres in RMPI were used for leukocyte
isolation following standard procedures (Cardona et al., 2006). Fc
receptor blocking was performed before all staining procedures using
an anti-CD16/32 antibody (BD Biosciences PharMingen). The follow-
ing reagents were used for labeling isolated macrophages: 7AAD (Sigma-
Aldrich), CD11b AlexaFluor-700 (BD Biosciences PharMingen), F4/80
APC (Invitrogen), and CD45 FITC (WT only; AbD Serotec). Mandibular
blood draws from naive CCR2RF/RFF and CX3CR1™"CFF mice were
used as positive controls for RFP and GFP expression, respectively. Ad-
ditionally, naive WT isolated leukocytes served as negative control for
RFP and GFP expression. Spectral compensation was achieved using
polystyrene microparticles (BD Biosciences PharMingen) in combina-
tion with each of the above listed conjugated antibodies following the
manufacturer’s suggested protocol. Standard staining procedures were
conducted as previously described (Cardona et al., 2006) before analysis
on FACSAria III cell sorter (BD Biosciences). All samples were run in
duplicate.

Serum isolation. Atrial collected blood was allowed to clot at room
temperature for ~30 min. Upon formation of a solid clot, serum was
isolated by centrifugation at 1500 X g for 10 min at 4°C. The resulting
serum supernatant was aspirated and stored at —80°C.

qRT-PCR. Aliquots of each leukocyte isolation or dissected hip-
pocampi were used for gene expression analyses. Briefly, isolated leuko-
cyte samples were washed with cold Hanks balanced salt solution and
pelleted two times before final storage at —80°C. For RNA isolation,
samples were thawed on ice before being placed in Qiazol reagent
(QIAGEN). Isolated leukocytes were homogenized using repeated tritu-
ration with a pipette, whereas hippocampal tissues were homogenized
using disposable plastic pestles (USA Scientific), both in 1.5 ml micro-
centrifuge tubes. RNA was isolated using RNEasy mini-columns
(QIAGEN) following the manufacturer’s suggested protocol. RNA con-
centration and quality were measured using a NanoDrop Lite (Thermo
Scientific). A total of 300 ng of total RNA was reverse-transcribed using
the High-Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems). Amplifications of multiple gene transcripts were performed in
duplicate using SYBR Green Master Mix (Applied Biosystems) fol-
lowing the manufacturer’s suggested protocol. The relative expres-
sion of target genes was determined by the 2 ~24¢' method and
normalized against cyclophilin gene expression using a Statagene
Mx3005P Real-Time PCR system. Specifically, the multiple genes
were analyzed using the following primer sequences (5’ to 3" sense/
antisense): CD68 (GACCTACATCAGAGCCCG/CGCCATGAAT-
GTCCACTG), CD45 (CTTCAGTGGTCCCATTGTGGTG/TCAGAC
ACCTCTGTCGCCTTAG), MHCII (GCTCTCGGAGACCTATGACG/
ACAGGCAAACCTCTGGACAC), MARCO (GCACTGCTGCTGATT
CAAGTTC/AGTTGCTCCTGGCTGGTATG), NOS2 (GTTCTCAGCC
CAACAATACAAGA/GTGGACGGGTCGATGTCAC), TNFa (TGCCT
ATGTCTCAGCCTCTTC/GAGGCCATTTGGGAACTTCT), CCL2 (GC
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TGACCCCAAGAAGGAATG/GTGCTTGAGGTGGTTGTGGA), IL-1B8
(TGTAATGAAAGACGGCACACC/TCTTCTTTGGGTATTGCTTGG),
IL-6 (TACCACTTCACAAGTCGGAGGC/CTGCAAGTGCATCATC
GTTGTTC), IFN-y (TCAAGTGGCATAGATGTGGAAGAA/TGG
CTCTGCAGGATTTTCATG), Argl (GAACACGGCAGTGGCTTT
AAC/TGCTTAGCTCTGTCTGCTTTGC),YmI(GGCTACACTGGAGA
AAATAGTCCCC/CCAACCCACTCATTACCCTGATAG), FIZZI
(TCCAGCTAACTATCCCTCCACTGT/GGCCCATCTGTTCATAGT
CTTGA), CD206 (CCTCTGGTGAACGGAATGAT/ CTTCCTTTGGT-
CAGCTTTGG), IL-4 (SA Biosciences; #PPM03013F), IL-13 (SA Biosci-
ences; #PPM03021B), CD36 (GGACATTGAGATTCTTTTCCTCTG/
GCAAAGGCATTGGCTGGAAGAAC), CD163 (GCTAGACGAAGT-
CATCTGCACTGGG/ TCAGCCTCAGAGACATGAACTCGG), TGFB
(TGATACGCCTGAGTGGCTGTCT/ CACAAGAGCAGTGAGCGCT-
GAA), IL-10 (GCCAAGCCTTATCGGAAATG/ CACCCAGGGAAT
TCAAATGC), IL-4Ra (ACCAGATGGAACTGTGGGCTGA/ AG-
CAGCCATTCGTCGGACACAT), IL-1Ra (TGTGCCTGTCTTGTGC-
CAAGTC/ GCCTTTCTCAGAGCGGATGAAG), gp91#"** (ACTCCTT
GGGTCAGCACTGG/ GTTCCTGTCCAGTTGTCTTCG), p22Phex
(GCTCATCTGTCTGCTGGAGTATC/ CGGACGTAGTAATTCCTG-
GTGAG), p40°"** (CAAAGACCTGCTAGCGCTCATG/ CCACATCCT-
CATCTGACAGCAG), p47°"* (GCTGACTACGAGAAGAGTTCGG/
CCTCGCTTTGTCTTCATCTGGC), p67°"** (GCAGAAGAGCAGT-
TGGCATTGG/ CTGCCTCTCATTTGGACGGAAC), and SODI (GGT-
GAACCAGTTGTGTTGTCAGG/ ATGAGGTCCTGCACTGGTAC
AG). All primer pairs were independently validated using a standard
curve of serially diluted mouse cDNA before use in any endpoint. In each
PCR analysis, template and RT controls were included to account for
contamination. Gene expression data are represented as the fold change
relative to sham (time course experiments) or relative to vehicle-sham
values.

Tissue sectioning, immunostaining, and imaging. All brain tissue used
for imaging was sectioned on a Microm cryostat. For fluorescent imaging
of endogenous RFP (CCR2) and GFP (CX3CR1), 40 um free-floating
sections were mounted onto Superfrost Plus slides (Fisher) and allowed
to dry overnight. Slides were rinsed in buffered saline solution before
counterstaining with DAPI (Sigma) followed by coverslipping in
Vectashield fluorescent mounting medium (Vector). For imaging of
CD45™ cells, standard staining procedures using free-floating sections
were conducted as previously described (Morganti et al., 2012) using a
CD45 primary antibody (AbD Serotec) and biotin-conjugated secondary
antibody (Vector). All imaging was achieved using a Zeiss Imager.Z1
Apotome microscope controlled by ZEN software (Zeiss 2012).

ELISA analysis. Serum CCL2 concentrations were quantified using
standard ELISA technique. Serum samples were diluted 1:2 with the
supplied diluent and run in duplicate according to the manufacturer’s
suggested protocol (Quansys Biosciences). All incubations were per-
formed using a MixMate (Eppendorff) sample vortexer at 700 rpm. Raw
intensity values for each ELISA were measured on LiCor near infrared
scanner, and sample concentrations were calculated based upon the sup-
plied standard curve using Q-view software (Quansys Biosciences 2013).

CCX872 pharmacokinetic analysis. CCX872 (Chemocentryx), a small
molecule antagonist for the human ortholog of CCR2, was dissolved in a
solution of 1% hydroxypropyl methylcellulose (vehicle; HPMC + 0.1%
Tween 80) at 20 mg/ml. Approximately 6-month-old WT mice were
randomly divided into four groups: vehicle, 1, 12, and 24 h (n =
6/group). Animals received daily subcutaneous injections of CCX872 at
100 mg/kg beginning 2 d before sham surgery (day —2) and continued
until the day of surgery (day 0). At the prescribed time following the last
injection (1, 12, and 24 h groups), animals were killed by lethal overdose
of a ketamine (150 mg/kg)/xylazine (15 mg/kg). Vehicle-injected mice
were killed in the same manner 24 h after receiving the final injection.
Blood was withdrawn as described above and ejected into lithium hepa-
rin plasma collection tubes (BD Biosciences) before being placed on ice.
Brain tissues comprising either the ipsilateral hemisphere (n = 3/time
point) or hippocampus (# = 3/time point) from each animal were rap-
idly dissected and snap frozen. Analysis of the ipsilateral hemisphere as
well as the ipsilateral hippocampus was conducted to assess the pen-
etrance of CCX872 in light of this study’s experimental design examining
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both cell infiltration (ipsilateral hemisphere) as well as cognitive function
(hippocampus) to compare with circulating plasma levels of the com-
pound. Plasma was obtained after spinning the collected blood at 1700 X
g for 20 min at 18°C. CCX872 concentrations for tissue and plasma were
quantified using high pressure liquid chromatography. Briefly, brain tis-
sues were washed in deionized water, dried, and weighed. After homog-
enization of the tissue in water (0.1 g tissue/ml) on ice, a 50 ul aliquot of
the homogenized sample was extracted with 200 ul 90:10 acetonitrile:
MeOH/0.1% formic acid containing an internal standard. A 150 ul ali-
quot of the supernatant was mixed with an equal volume of 0.1% formic
acid in water for LC-MS/MS analysis with an Agilent 1100 high pressure
liquid chromatography binary pump coupled with an Applied Biosys-
tems API3000 triple quadruple mass spectrometer. The high pressure
liquid chromatography column was Sunfire C18 2.0 X 30 mm 3.5 pum,
and the mobile phase was a gradient of 0.1% formic acid in acetonitrile
(B) over 0.1% formic acid in water (A) (2%-2%-98%-98%-2%-2% B at
0-0.08-1.58-2.58-2.67-3.50 min). The mass spectrometer was operated
in the positive electrospray mode with multiple-reaction monitoring
(m/z 495 — 223 for CCX872; m/z 520 — 262 for internal standard). A
linear calibration curve was constructed through a quadratic regression
with CCX872 standard samples prepared with blank brain extract spiked
with CCX872, and the calibration range was 1-5000 ng/ml.

CCX872 administration. CCX872 was administered for two separate
studies examining acute and chronic effects of CCR2 antagonism. For
both studies, CCX872 and vehicle were injected subcutaneously as de-
scribed above. Briefly, the acute studies began administration on day —2
and continued through day 0, whereas chronic studies received injections
through day 5. Controls received injection volumes of vehicle analogous
to that of treatment animals with respect to the animal’s weight.

Behavioral analysis. At 28 d after surgery, animals were tested for
hippocampal-dependent cognitive function using the radial arm water
maze (RAWM) as previously described (Alamed et al., 2006). The
RAWM was constructed as a modification to the design previously de-
scribed by Alamed et al. (2006). Specifically, the maze consisted of a
circular pool (diameter 118.5 cm) with eight swim lanes (arms) radiating
from an open central area (diameter 36.5 cm) with a platform located at
the end of one goal arm. The pool’s eight arms were formed from sheet
metal inserts (41 cm long X 30.5 cm high) each bent at a 45° angle.
Procedurally, spatial learning and memory were assessed as previously
described (Alamed et al., 2006). Briefly, in this forced-swim behavioral
model, animals must locate a hidden platform in one of eight arms using
navigational cues set within the testing space. The first day of testing is the
acquisition phase wherein the animal is given multiple attempts, through
60 s trials (3 trials per block), to acquire the test’s parameters using an
alternating scheme of either an above water or hidden escape platform
(blocks 1-4) that is located in a semirandomly determined goal arm for
each animal. At the conclusion of the first day (block 5), all trials are
conducted using the hidden escape platform. The second day of testing is
the retention phase wherein the animal must swim to the hidden plat-
form located in the previous day’s arm. If, at any point, during either the
acquisition or retention phases, the animal enters an incorrect goal arm
or remains static for 15 s, an error penalty is tallied for that trial. All trials
were completed by either finding the escape platform or by default if the
animal had not reached the platform within 60 s. Each trial was recorded
using an overhead camera connected to a video tracking and analysis
system (Ethovsion XT version 8.5, Noldus Information Technology). All
mice were tested until the vehicle sham animals had, on average, reached
the criterion of less than one error in a block of three trials. Following the
conclusion of the 2 d paradigm, mice were assessed for motor impair-
ments in the pool with the eight arms removed, but this time with an
elevated and flagged escape platform (Alamed et al., 2006).

Statistical analyses. All analyses were performed in Prism version 6.0
(GraphPad) or SPSS version 19 (IBM). Prism was used for cell counts
from flow cytometry and gene expression analyses using one-way
ANOVA with Dunnett’s correction for multiple comparisons (time
course experiments) or two-way ANOVA with Tukey’s HSD correction
for multiple comparisons (CCX872 experiments). SPSS was used for
principal component analysis (PCA) using base, regression, advanced
models, and missing value add-ons. PCA was performed using eigen-
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Peripheral CCR2 ™ macrophage accumulation in the brain parenchyma is temporally restricted following TBI. Flow cytometric data were obtained from CX3CR7 /7 CCR2™/# adult

mice ~6 months of age at the time of injury. a, Representative pseudocolored scatterplots (n = 5 mice per time point, except 48 h, which had n = 4) of ipsilateral (D11b *F4/80 ™ macrophages
over a time course covering acute through chronic time points. CD11b * F4/80 " macrophages were delineated by the expression of CCR2 (RFP ™) along the x-axis and CX3CR1 (GFP ™) along the
y-axis, with the upper-right quadrant representing CX3CR1 " CCR2 * double-positive macrophages. b, Accumulation of C(D11b ™ F4/80 "CX3CR1 ~CCR2 * macrophages was confined to 12-24 h
following injury before returning to sham levels by 2 d after injury. ¢, Increased numbers of differentiated CD11h *F4/80 "(X3CR1 " CCR2 * macrophages began to accumulate at 12 h following
injury and persisted at significant levels through 7 d before returning to sham levels. d, Accumulation of CD11b F4/80 "CX3CR1 *CCR2 ~ macrophages began at 3 h before peaking at 12 h
following injury, however, an elevated trend that persisted through 28 d. e, Serum levels of CCL2 (n = 4/group) increased acutely and peaked by 12—24 h afterinjury, although there was an elevated
trend compared with sham for the remaining time points following injury. Data were analyzed using one-way ANOVA with Dunnett’s correction for multiple comparisons wherein the means for each
time point were compared with mean of the sham group. Data are mean == SEM. Dumbell-style bars represent the same level of significance among the those data points relative to sham. *p <

0.05. %% < 0.01. **%p < 0.001.

value decomposition of the cross-correlation matrix of all genes over
time. PCs were retained using the eigenvalue >1 and Scree plot criteria.
PC scores were calculated using the regression method. PC loadings are
represented using arrows where gauge indicates loading magnitude and
heat reflects directionality (red represents positive; blue represents in-
verse). Loading values >|0.3| were retained for PC interpretation. Signif-
icant differences were assessed using GLMs. Multivariate ANOVA
(MANOVA) was used to assess multivariate changes along PC1-3 axes,
followed by post hoc univariate ANOVA and Tukey’s post hoc testing.
Assessment of learning and memory on the RAWM was assessed using
three-way mixed repeated-measures ANOVA. Significance for all mea-
sures was assessed at p < 0.05.

Results

TBIl initiates a temporally restricted accumulation of

CCR2* macrophages

Recent work has delineated two subsets of monocytes based upon
their relative surface expression of the CCR2 chemokine recep-
tor, allowing for the distinction between resident versus periph-
eral CNS macrophages (Auffray et al., 2009; Prinz and Priller,
2010; Saederup et al., 2010). To determine when CCR2 * macro-
phages accumulate in the ipsilateral brain parenchyma following
TBI, we used flow cytometry to examine cell populations in Dbl-
Het reporter mice over acute (3—6 h), subacute (12 h-2 d), and
chronic (7-28 d) time points (Fig. 1a). Interestingly, the accumu-
lation of activated peripheral macrophages, characterized by the
following markers, CD11b *F4/80 MCCR2 *CX3CR1 7, into the
ipsilateral hemisphere, was restricted to a distinct temporal win-
dow beginning at 12 h and peaking at 24 h following injury (Fig.

1b). At 24 h following injury, the accumulation of CCR2 * mac-
rophages dissipated. However, a subset of the CD11b"F4/
80MCCR2™ macrophages subsequently differentiated into
CD11b "F4/80"CCR2 "CX3CR1 " resident-like macrophages.
The increase in the number of differentiated CCR2 ™ resident-
like macrophages was elevated by 12 h and peaked by 48 h but
persisted at significant levels through 7 d following injury (Fig.
Ic). TBI induced a dramatic increase in the number of
CDI11b "F4/80"CCR2 "CX3CR1* macrophages at all time
points, with a clear peak 12 h following injury (Fig. 1d). This
finding was similar to recent observations in a skull compres-
sion model of brain injury (Roth et al., 2014). Similar to the
temporal pattern of accumulation of CCR2 © macrophages,
there was an increase in the serum levels of CCL2, with a peak
12-24 h following injury (Fig. 1e); these data are corroborated
by similar findings observed in humans following TBI (Semple
et al., 2010). At the approximate site of the CCI impact, the
accumulation of CCR2 * and CCR2 "CX3CRI1  cells was con-
centrated within hilar and CA3/4 regions of the dorsal hip-
pocampus, and noticeably not as numerous around the
cavitation (Fig. 2a). Moreover, there were numerous CCR2 "
cells lining the third ventricle as well as within the choroid
plexus, which has been previously reported to occur following
CNS injury (Shechter et al., 2013). Visually, 1 d following
injury, CCR2 "CX3CR1 ~ and CCR2 "CX3CRI1 " cells had a
similar histologic appearance, which was distinct compared
with CCR2 "CX3CRI1 * cells (Fig. 2b—iii).
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Macrophage polarization spans the M1-
M2 continuum following TBI

Following injury, the polarization of tis-
sue macrophages into M1 or M2 subtypes
is a heterogeneous response dependent
upon various stimuli present in their mi-
croenvironment (Gordon, 2003; Man-
tovani et al., 2004; Mosser and Edwards,
2008; Lawrence and Natoli, 2011). We ex-
amined mRNA expression for multiple
genes associated with macrophage polar-
ization from the ipsilateral purified leuko-
cytes obtained at several time points after
injury. Gene expression analysis was con-
ducted to quantify classically activated or
proinflammatory M1, alternatively acti-
vated M2a, and acquired deactivation
M2c mediators. In general, TBI induced a
broad response, spanning the M1-M2
continuum across all time points, wherein
TNFa, CCL2, IL-1B8, MARCO, and Argl,
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Figure 2.  Controlled cortical impact model of TBI induces the accumulation of CCR2 ™ cells in the hippocampus. a, One day
following controlled cortical impact, CCR2 * macrophages (black) are distributed throughout the dorsal hippocampus but primar-
ily within the CA3/4 and hilar subregions of the dentate gyrus. However, concentrations of CCR2 ™ macrophages can be seenin the
third ventricle yet more diffuse in number around the cavitation (Cav.). b—d, Inset magnification (black box) of dentate/CA3
macrophages in their respective pseudocolor images and merged with DAPI nuclei. b, Yellow ovals highlight (X3(R1 ~CCR2 *
cells. ¢, Magenta arrowheads indicate CX3CR1 *CCR2 ™ cells. d, White arrowhead indicates (X3CR1 FCCR2 ™ cells. iiii, Single-
cell magnification with DAPI. i, (X3CR1 ~CCR2 * cell. if, (X3CR1 " CCR2 ~ cell. iii, (X3CR1 * CCR2 ™ cell. Representative image is
a stitched mosaic of multiple individual high-magnification images using mCherry (RFP), FITC (GFP), and ultraviolet (DAPI) epif-
luorescent filter sets. Pseudocolored image was converted to black and white.

Ym1 showed the highest expression for
proinflammatory/M1 and M2a associated
responses, respectively (Fig. 3a). Moreover, we observed a de-
layed, but significant, increase in gene expression occurring at
later time points (Fig. 3b) for the cell surface antigens CD68,
CD45, and MHC II, which is similar to findings in other neuro-
degenerative diseases (Prinz et al., 2011) as well as postmortem
tissue samples from long-term survivors of TBI (Ramlack-
hansingh et al., 2011; Johnson et al., 2013). Additionally, signifi-
cant induction of the M2a-associated cytokines IL-4 and IL-13
was only found in the late subacute phase following injury (Fig.
3a,b). Restoration of CNS homeostasis following injury may re-
quire shifting of macrophages from a proinflammatory state to
one supporting repair through expression of genes that are asso-
ciated with an anti-inflammatory phenotype (Colton, 2009).
Compared with the M1 and M2a response, gene expression of
markers associated with M2c¢ “acquired deactivation” polariza-
tion state varied depending upon the time point examined after
injury (Fig. 3b). Specifically, our data show that IL-1Ra is mark-
edly increased in the acute through subacute time points, whereas
IL-4Ra, IL-10, TGF-f3, and CD36 were significantly increased in
the subacute time span (Fig. 3a,b).

Multivariate analysis of inflammatory signaling modules

Given the multidimensional response of macrophage accumula-
tion and polarization over time after injury, we examined the
relationship of these variables using multivariate PC analysis
(Ferguson etal., 2013). This analysis yielded four orthogonal PCs,
which accounted for 83% of the total variance in inflammatory
signaling (Fig. 4). PC1, reflecting both CX3CR1 ™ and CCR2™*
macrophages and their associated genes (Fig. 4a), was character-
ized by an immediate induction during the acute phase and per-
sisted through the subacute time points (Fig. 4b). The PCl
module represented the systems-biological inflammatory re-
sponse reflecting induction of all polarization subtypes: M1,
M2a, and M2c. PC1 peaked by 3 h after injury resolving to low-
grade sustained activation through 28 d after injury. The PC2
module was not significantly correlated with changes in the ac-
cumulation of macrophages (Fig. 4¢); however, the genes associ-
ated within this module were predominantly M2a and M2c
mediators. Temporally, the PC2 module was significantly in-
duced in the late subacute phase 2 d after injury (Fig. 4d). The

PC3 module associated with increased numbers of each
of the three macrophage subsets: CX3CR1 ", CCR2¥, and
CCR2*CX3CR17¥, with accumulation of CCR2* macro-
phages as the greatest contributors (Fig. 4e). PC3 gene expres-
sion displayed a biphasic response over time, repressed in the
acute phase, and induced during the early subacute phase (Fig.
4f). Similar to what we observed in the PC1 module, PC3
expressed both M1 and M2 mediators, with concomitant ex-
pression of both Argl and NOS2 predominating. Last, PC4-
reflected CCR2 *CX3CR1 *-differentiated macrophages and
their associated genes (Fig. 4¢) followed a distinctive temporal
pattern characterized by early repression during the acute
phases and significant upregulation during the early chronic
phase following injury (Fig. 4h).

Cumulatively, these data represent a sequential activation of
the inflammatory response to brain injury such that temporally
arranged, inflammatory response peaks in the order of PC1, PC3,
PC2, to PC4 orthogonal modules. Importantly, the inflammatory
response we observed as a function of time and macrophage ac-
cumulation was heterogeneic in nature such that there was not a
clear delineation of an exclusive M1, M2a, or M2c response.
These analyses are consistent with previous reports of heteroge-
neity in CNS macrophage populations identified in the injured
brain (Wang et al., 2013) and spinal cord (Shechter et al., 2013).

Administration of CCX872 reduces peripheral macrophage
accumulation following TBI and alters inflammatory gene
expression

After receiving a total of 3 injections of CCX872, one injection per
day (Fig. 5a), pharmacokinetic profiling of CCX872 revealed that
circulating levels of the compound remained significantly higher
in the plasma compared with brain tissue at all time points exam-
ined (Fig. 5b). Noticeably, plasma concentrations of CCX872
were relatively flat over the course of 24 h. Although there was
some variability in the tissue concentrations of CCX872 between
dissected hemibrain and hippocampi, these values were dramat-
ically lower compared with plasma concentrations at their re-
spective time points. We next examined the use of CCX872 to
prevent the accumulation of peripheral macrophages following
TBI. We hypothesized that the accumulation of CCR2 * macro-
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S 3 6 12 1d 2d 7d  14d 28d S 3 6 12 1d 2d 7d 14d 28d
CD68 CD68 0£0.2 0.3x0.1 0.2£0.2 0.7£0.3 10.1 2.1£0.2* | 3+0.2*** | 1.6£0.2* 1.5£0.1
CD45 CD45 0.1£0.1 0.40.1 0.6+0.2 1.5+0.3 1.620.1* | 1.3%0.2* | 2.7£0.2*** | 1.8+0.2*** | 1.20.1
MHC Il MHC Il 0£0.2 -0.4+0.1 | -0.4+0.1 | -0.2£0.3 | -0.1x0.2 0.7+0.2 | 0.8%0.3** | 0.2+0.2 0.6+0.1
MARCO MARCO 0.4+0.5 0.8+2 8.4£0.6** | 9.620.4*** | 8.710.4* 8.3+0.5 7+0.8 -1.8+0.9 -1.120.9
- NOS2 NOS2 -0.1£0.2 -1.6£0.4 -1£0.3 0.3£0.4 1.4+0.4** | 0.9%0.2 -0.2+0.3 -0.310.2 0.310.2
E TNFa TNFa -0.4+0.7 | 5.8%0.1*** | 4.8£0.2*** | 4.3£0.4** | 4.8%0.3*** | 1.70.2 3.7¢0.3 2.240.3 2.540.2
ccCL2 cCL2 -0.1£0.2 | 3.1£0.1** | 3.6£0.2*** | 3.1£0.2*** | 3.4£0.2*** | 4.1£0.3*** | 1.9:0.2 0.5£0.2 0.3+0.2

IL-18 IL-1B -0.1£0.2 6.5:0.1 |[7.3£0.2*** | 7.6£0.4*** | 7.2£0.4*** | 3.5£0.4 4.1£0.2 2.2+0.3 210.2
IL-6 IL-6 0.1x0.3 1.7£0.1 | 2.9£0.3*** | 3.6%0.3*** | 1.520.5 2104 1.24£0.2 0£0.3 0.4+0.4
IFN-y IFN-y -0.1#0.3 | -0.1%0.2 | -0.2#0.3 | -0.3+0.6 | -0.5£0.6 | 2.6£0.8***| -0.4+0.3 | -0.3£0.3 0.1+0.3

Arg1 Arg1 -0.1£0.2 0.3+0.2 0.4£0.1 4.4%0.3* | 5.5£0.3*** | 4.920.5* | 1.210.2 -0.410.2 0+0.4
YM1 YM1 0£0.6 1.9+0.6 42404 | 6.620.5** | 6.6£0.3*** | 4.1+0.5 4.7+0.3 2.3+0.6 1.6+0.5
© FIZZ1 V74| -0.1£0.3 0.4£0.2 00.2 0.1£0.3 -0.1£0.3 1£0.3* -0.2+0.3 0+0.2 0.5+0.3

N

E CD206 CD206 0+0.1 0+0.1 0.5£0.1 -0.2+0.2 0.3£0.2 0.240.2 | 1.320.2*** [ 0.3+0.1 0.640.1
IL-4 IL-4 0+0.2 0.4£0.2 -0.2+0.2 -0.1x0.4 -0.3£0.3 2.741* -0.2+0.3 -0.6£0.3 -1.1£0.8
IL-13 IL-13 0.2£0.2 0.2£0.2 -0.4+0.3 -0.3%0.5 -0.5£0.3 | 2.4%0.8** | -0.2+0.2 -0.9£0.4 -0.5+0.1

CD36 CD36 0£0.2 0.8+0.2 0.9£0.1 1.5£0.1 26102 |4.2£0.4*** | 3.320.2** | 1.210.2 0.5+0.1

CD163 CD163 0£0.1 -0.3+0.1 0.5£0.1 -0.24¢0.3 0.3+0.2 0.5£0.3 0.9+0.3* 0.1£0.2 0.5+0

1) TGF-B TGF-B 0£0.1 -0.2+0.1 0£0.1 0.5+0.3 0.3+0.2 | 1.2£0.2** | 1.1:0.2 0.3£0.2 0.2+0.1

N
E IL-10 IL-10 -0.1+0.2 0.5+0.3 0.6+0.2 0.7+0.5 0+0.4 2.6£0.7*** 0+0.2 -0.8+0.3 | -0.4+0.4
IL-4Ra IL-4Ra 0£0.1 1.5+0.2 1.8+0.1 | 2.320.4*** | 2.4%0.1*** | 3.3£0.2*** [ 2+0.2** 0.8+0.2 0.6+0.1
IL-1Ra IL-1Ra 0+0.2 7.6£0.2* | 9.2£0.3*** | 10.240.4* | 9.4+0.5 8.210.5 5.7£0.2 4.610.2 4.210.2
Figure3. Isolated leukocytesfrom theipsilateral hemisphere (n = 4 or 5 pertime point) exhibit a broad-spectrum of M1-M2 polarization mRNA gene expression following TBI. a, Log,-converted

fold change from sham of M1 (magenta), M2a (turquoise), and M2c (orange) mRNA gene expression. Heat map visualization reveals that the soluble proinflammatory ligands of TNFe, (CL2, and
IL-113 along with the cellular marker MARCO represented the greatest induction following TBI relative to all other M1 measures. Similarly, we found the greatest induction of M2a mRNAin Ym1and
Arg relative to all other M2a measures and IL-1Ra for M2c. b, Average of Log,-converted values for each fold change with their respective significance relative to sham indicated. Bold type indicates
statistically significant fold change values. Data were analyzed using one-way ANOVA with Dunnett's correction for multiple comparisons wherein the means for each time point were compared with

mean of the sham group. Data are mean = SEM. *p < 0.05. **p << 0.01. ***p < 0.001.

phages augmented the TBI-induced proinflammatory response
due to their correlation within the PC1 and PC3 orthogonal
spaces. To test this hypothesis, we administered CCX872 and
examined the response 24 h after injury in WT mice (Fig. 5a),
reflecting the time point of highest activation within the PC3
group (Fig. 4e). Importantly, WT mice were used in lieu of the
Dbl-Het genotype to ensure complete gene expression of CCR2.
Previous work has defined CCR2-expressing monocytes/macro-
phages with a CD45™ phenotype in WT mice (Auffray et al.,
2009; Prinz and Priller, 2010; Saederup et al., 2010). Using this
treatment paradigm, serial administration of CCX872 signifi-
cantly decreased the accumulation of CD11b "F4/80"CD45"
macrophages by 50% (Fig. 5¢) compared with vehicle-treated
TBI animals. Notably, there was a visible decrease in the number
of CD45™ cells in the hilar region of the hippocampus due to
CCX872 treatment compared with vehicle (Fig. 5d). Gene ex-
pression analyses using the same targets as the time course study
above (Fig. 3a,b) showed that CCR2 antagonism significantly
decreased multiple genes associated with both M1 and M2 polar-
ization phenotypes. Specifically, there were marked reductions in
gene expression for macrophage markers of CD68 and CD45,
whereas concomitant reductions were found in CCL2, IL-6, and

IL-1B (Fig. 6a). Interestingly, we observed no change in response
in both NOS2 and TNF at this time point (Fig. 6a). These data
suggest that CCR2 " cells are not the principle constituents in
these response mechanisms following TBI. Corroborating these
findings in part, a recent report has shown that CX3CR1 " mac-
rophages are the principle mediators of NOS2 following CNS
injury (Donnelly et al., 2011). Internally, these findings are in
agreement with our flow cytometry data showing the increased
expression of TNFa before significant accumulation of CCR2 ™
macrophages. We also observed an impact on both M2a and M2c
gene expression due to CCR2 antagonism. CCX872 treatment
significantly reduced the expression of both Argl and FizzI (Fig.
6b) as well as TGF-B and IL-10 (Fig. 6¢). Moreover, when we
analyzed all of these effects simultaneously, multivariate PCA
revealed that CCR2 antagonism resulted in a significant blunting
of the inflammatory response compared with vehicle-treated an-
imals along the PC1, PC2, and PC3 orthogonals (Fig. 6d).

TBI-induced NADPH oxidase overexpression is blocked by
CCR2 antagonism

Regulation of the intermediates associated with ROS generation
is vital to neuronal health. ROS have been implicated in the prop-
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Figure4. Inflammation patternsin the brain after TBI revealed by PCA. PCA uncovered four orthogonal PC groups that together accounted for 82.7% of the total variance. Data are an analysis of

both cell infiltration data (black boxes) obtained from flow cytometry in conjunction with gene expression. a, PC1 (28.8% variance) reflects increased accumulation of both (X3CR1 ™ and CCR2
macrophages and their associated genes in the brain following injury. As both macrophage subsets increased in number, a corresponding increase occurred in gene expression for /L-13, IL-1Ra,
TNFe, IL-4Rcr, and MARCO, with YM1, Arg1,and (D36 to alesser degree. b, PCT peaked dramatically early after injury, gradually waning over time (F = 130.67,p << 0.00001). ¢, PC2 (19.5% variance)
was not linked to changes in the numbers of any accumulating macrophage subsets; however, there the PC2 group did predominantly cluster with M2a and M2c genes. Interestingly, within this
cluster, IFN-y was the most strongly correlated, followed by /L-13, IL-10, /-4, and FIZZ1, with TGF 3 and IL-4Rcx to lesser degrees. d, PC2 displayed a mild biphasic response, such that there was a
minor repression followed by a delayed induction peaking at 2 d following injury (F = 3.909, p = 0.002). e, P(3 (15.1% variance) reflects increased accumulation of all three macrophage subsets;
(CR2 ™, (X3CR1 ™, and CCR2 *CX3CR1 ™, with CCR2 ™ macrophages representing the greatest association, and their gene expression spanned the M1-M2 continuum, with NOS2 and Arg?
predominantly associated. f, Temporally, PC3 exhibited a significant biphasic response, such thatin the acute phases it was repressed followed by a significant induction in the subacute time frame
before waning at later phases (F = 30.230, p < 0.00001). g, PC4 represents increased accumulation of CCR2 "(X3(R1™ differentiated macrophages and their respective genes. As
(CR2 " (X3CR1 ™ differentiated macrophages increased in number, there was a parallel increase in gene expression of both M2a and M2, primarily with (D206, (D163, TGF 3, and (D36. h, PC4 had
a delayed response increasing by 2 d and peaking on 7 d following injury before returning to basal levels (F = 10.691, p < 0.00001). Arrows indicate PCloading magnitude (equivalent to Pearson

correlations between individual variables and PCs). Arrow gauge indicates loading magnitude. Heat reflects loading directionality: red represents positive; blue represents inverse.

agation of neuronal dysfunction in multiple neurodegenerative
diseases (Wu et al., 2003; Boillée and Cleveland, 2008; Hernandes
and Britto, 2012). Leukocyte production of ROS is primarily as-
sociated with the formation of the NADPH oxidase (NOX2),
which is comprised of multiple subunits (Block et al., 2007). In
addition to ROS production, NOX2 activation has been shown to
maintain redox proinflammatory signaling cascades within
microglia/macrophages (Block et al., 2007) as well as regulate
macrophage polarization mechanisms (Choi et al., 2012). Impor-
tantly, recent data indicate that inhibition of NOX2 decreased
neuronal damage and improved functional recovery following
TBI (Zhang et al., 2012; Loane et al., 2013). Given that TBI in-
duced a spectrum of proinflammatory/neurotoxic mediators fol-
lowing injury in the acute to subacute time frames and that this
response was blunted with administration of CCX872, we next
tested its effects on NOX2 expression. Using this treatment par-
adigm, CCX872 significantly reduced the induction of multiple
NOX2 subunits following TBI compared with vehicle-treated an-
imals. Specifically, gene expression analysis revealed that CCR2
antagonism reduced the expression of gp917ho, p22P"ox pg7Pox,
p40°"~, and p67°"°; however, there was no treatment effect on
the TBI-induced downregulation of SODI (Fig. 7a—f, respec-
tively). Acutely, our data suggest that the bulk of NOX2 activation
following TBI is mediated through the influx of CCR2 * macro-
phages, as treatment with CCX872 significantly blunted this re-
sponse. Importantly, our findings are corroborated by data
showing that CCR2™/~ mice are have reduced ROS production
(Seki et al., 2009).

CCR2 antagonism prevents TBI-induced

cognitive dysfunction

Based upon the marked reduction of accumulated macrophages,
the reduced proinflammatory response, and the reduced ex-
pression of the NOX2 complex, we extended our hypothesis to
examine whether CCR2 antagonism would reduce TBI-
induced cognitive dysfunction. Again using WT mice, we de-
livered CCX872 or vehicle for 5 d following surgery (Fig. 8a).
Hippocampal-dependent cognitive function was assessed 28 d
following surgery using the 2 d RAWM (Fig. 8b), which tests
spatial learning and memory (Alamed et al., 2006). TBI induced a
significant increase in the average number of errors during the
acquisition phase of RAWM for vehicle-treated TBI animals, but
not in CCX872-treated mice (Fig. 8c). Notably, during the reten-
tion phase of the RAWM test, we observed a significant decrease
in the average number of errors for CCX872-treated TBI animals
compared with vehicle (Fig. 84). Next, we quantified the gene
expression of markers associated with macrophage polarization
response from the isolated ipsilateral hippocampus. Similar to
the response we observed at 24 h following injury (Fig. 6),
CCX872 treatment significantly blunted the chronic elevation of
multiple proinflammatory markers. Specifically, we observed
markedly decreased expression of CD68, CD45, TNFa, CCL2,
and IL-1B (Fig. 8e,f). Conversely, there was an inverse M2 re-
sponse such that Argl and FIZZI expression was significantly
increased, whereas YM1 and IL-10 had visible trends for in-
creased expression (Fig. 8g,h).
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Figure 5.  CCR2 antagonism ameliorates TBI-induced peripheral macrophage response 24 h after injury. a, CCX872 and vehicle subcutaneous injection schedule. Each animal received a single injection of

(X872 or vehicle once per day. CCX872-treated mice received three total injections at 100 mg/kg volume by weight; vehicle-treated mice received injection volumes analogous to that of CCX872 animals with
respect to their weight. b, Pharmacokinetic profile of CCX872 following three subcutaneous injections shows that (X872 concentration remains significantly higher in the plasma (n = 6/time point) at all time
points relative to both the ipsilateral hemibrain (n = 3/time point) and hippocampus (n = 3/time point). ¢, (X872 significantly decreased the accumulation of CD11b ™ F4/80 (D45 " macrophages 24 h
following injury. This resulted in an ~50% decrease in the average number of ipsilateral F4/80 "'CD45 " macrophages compared with vehicle-treated TBI mice. d, Representative images of (D45 * cells (dark
gray) within the hilar subregions of the dentate gyrus 1d afterinjury for both vehicle- and (CX872-treated animals. Mirroring flow cytometric data, CCX872 treatment visibly decreased the number of (D45 * cells
in the hilar region of the hippocampus compared with vehicle-treated TBI animals. Flow cytometric data were analyzed using two-way ANOVA with Tukey’s HSD correction for multiple comparisons. Data are
mean + SEM.”#p < 0.01, pairwise comparison for vehicle-TBl versus CCX872-TBI. Hemi, Ipsilateral hemisphere; HPC, ipsilateral hippocampus; V, vehicle; 1, 1h; 12, 12 h; 24, 24 h; C, ((X872.
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Acute treatment with CCX872 reduced neuroinflammatory response following TBI. Data were obtained from leukocytes (n = 6/group) isolated from the ipsilateral hemisphere. a,

(X872 treatment ameliorated TBI-induced proinflammatory/M1 response 24 h after injury. Specifically, CCX872 significantly reduced (D68, (D45, CCL2, IL-1[3, and IL-6 gene expression compared
with vehicle-TBI animals. b, CCX872 treatment also reduced the expression of the M2a mediators Arg7 and FIZZ1. ¢, Further, this treatment paradigm also decreased TBI-induced response in two
anti-inflammatory M2c cytokines (TGF3 and /L-10) at this time point. d, Effect of CCR2 antagonism on multidimensional inflammation within the PC1-3 space. MANOVA revealed a significant
cumulative multivariate effect on PC1-3 (Wilks A = 0.087, F = 6.57, p << 0.001). Post hoc univariate ANOVAs revealed a significant effect on PCT (F = 19.0, p << 0.001), PC2 (F = 4.74,p < 0.05),
and PQ3 (F = 3.92, p < 0.05). The effect on PC4 did not reach significance (p > 0.05). Gene expression for all groups is relative to vehicle-sham values. Data were analyzed using two-way ANOVA
with Tukey’s HSD correction for multiple comparisons. Data are mean + SEM. *p << 0.05, (pairwise comparison for vehicle-TBI versus CCX872-TBI. #p << 0.01, pairwise comparison for vehicle-TBI
versus CCX872-TBI. #p << 0,001, pairwise comparison for vehicle-TBI versus CCX872-TBI. Black bars represent sham. Red bars represent TBI. V, Vehicle; C, CCX872.

Discussion

Following neurotrauma, the innate immune response is set into
rapid action such that microglia accumulate at the site of injury
(Davalos et al., 2005) followed by a sequential recruitment of
systemic immune cells (Morganti-Kossmann et al., 2007; Kigerl
et al., 2009; Donnelly et al., 2011). However, the ability to dis-
criminate the function of recruited CCR2 ™ peripheral macro-
phages to the injured CNS remains poorly understood as resident
microglia acquire a phenotype akin to peripheral macrophages
following TBI (Raivich et al., 1999; Cao et al., 2012). Therefore, a
better understanding of the function of recruited macrophage re-
sponse to the injured brain is required to develop targeted strategies
to prevent TBI-associated secondary injury. To investigate this prob-
lem, we purposefully used the unique CX3CRI"™™* CCR2®™* re-
porter mice (Saederup et al, 2010) to accurately delineate the
contribution of CCR2 * macrophages in the TBI neuroinflam-
matory response. By using these mice, we have avoided the con-
founding effects of developing bone marrow chimeras and
radiation exposure to the CNS, which have been shown to in-
crease infiltration of peripheral macrophages into the CNS
(Mildner et al., 2009; Morganti et al., 2014). Our study demon-
strates that TBI induces a robust response involving the recruit-
ment and accumulation of peripheral CCR2 * macrophages into
the injured ipsilateral parenchyma at a discrete time point. With

regard to the dorsal hippocampus, a brain region involved in
learning and memory, the accumulation of CCR2 * cells localized
within the CA3/4 and hilar regions of the dentate gyrus. Concom-
itant to the cellular macrophage accumulation, we show that the
polarization response of these cells was heterogeneic and overlap-
ping, such that proinflammatory responses were occurring si-
multaneous to expression of anti-inflammatory and tissue repair
mediators. Although the inflammatory response was heteroge-
neic, multivariate analysis revealed distinct correlations among
macrophage cell accumulation in the ipsilateral hemisphere, in-
flammatory gene expression, and time after injury. Importantly,
our findings show that targeting the subset of CCR2 ¥ mono-
cytes/macrophages with CCX872, a Phase I CCR2 antagonist,
significantly reduced the accumulation of peripheral macro-
phages following injury while also reducing their inflammatory
and neurotoxic profile in the acute term. Cumulatively, admin-
istration of CCX872 for a short duration was able to prevent
TBI-induced cognitive dysfunction in the long-term.

Using a comprehensive time course following TBI, we dem-
onstrated that the TBI-induced accumulation of CCR2 * macro-
phages was delayed to a temporally restricted window following
injury. These data are in agreement with the onset of CD45™
macrophage accumulation shown to occur by 1 d after CClinjury
(Jin et al., 2012; Hsieh et al., 2013); however, our data indicate
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Figure 7.  CCR2 antagonism mitigates TBI-induced upregulation of the NOX2 subunits. All

data were obtained from leukocytes (n = 6/group) isolated from the ipsilateral hemisphere.
a—-e, mRNA gene expression for the multiple subunits associated with NOX2 activation, which
results in increased ROS production, were downregulated in CCX872-treated TBI animals com-
pared with vehicle-treated TBI. f, However, CCX872 treatment was unable to rescue TBI-
induced downregulation of SOD1. Data were analyzed using two-way ANOVA with Tukey’s HSD
correction for multiple comparisons. Data are mean = SEM. *p << 0.01, pairwise comparison
for vehicle-TBI versus CCX872-TBI. “#p << 0.001, pairwise comparison for vehicle-TBI versus
(CX872-TBI. Black bars represent sham. Red bars represent TBI.

that this accumulation is discreet and disappears compared with
a previous report of protracted accumulation (Jin et al., 2012).
Discrepancies between these findings may be due to the differen-
tiation of CCR2 * macrophages in favor of CX3CR1 expression,
which we showed persisted for several days following injury. Pre-
vious work has shown that macrophage expression of CCR2,
upon engraftment in the brain parenchyma, is downregulated in
favor of CX3CR1 (Saederup et al., 2010). In this context, CCR2-
expressing cells, regardless of their acquired CX3CR1 expression,
significantly accumulated between 12 and 24 h and persisted
through 7 d after injury. Parallel to the accumulation of periph-
eral CCR2 macrophages, our data show a similar expression peak
of serum CCL2, which remained chronically elevated following
injury. CCL2 is the strongest chemoattractant for inflammatory
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monocytes (Takahashi et al., 2009). Notably, CCL2 has been re-
peatedly shown to be rapidly elevated following various brain
injury models (Glabinski et al., 1996; Rancan et al., 2001); and
more importantly, CCL2 is significantly elevated in the CSF of
human survivors from TBI (Semple et al., 2010). Combined, our
findings in tandem with previous reports implicate circulating
levels of CCL2 as a clinical biomarker for the infiltration of
CCR2 ™" cells to injured brain parenchyma following TBI.

In the current study, our data indicate a sequential induction
of inflammatory mediators spanning the M1-M2 continuum. To
this end, we show that there was not a defined time after injury
that could be labeled exclusively within the linear constraints of
being M1, M2a, or M2c. Comparatively, FACS sorting of accu-
mulated peripheral macrophages from the injured spinal cord
also demonstrated similar heterogeneity and inflammatory over-
lap among gene expression responses (Shechter et al., 2013).
However, we did observe a sequential inflammatory profile
wherein M1 preceded M2a, which preceded M2c. These findings
are similar to wound-healing responses in tissue outside the CNS,
such that proinflammatory and proteolytic macrophages are the
first to accumulate, followed by macrophages that promote
wound-healing and anti-inflammatory characteristics (Deonar-
ineetal., 2007). Although there was a resolution of the substantial
induction of the majority of proinflammatory mediators, several
persisted in the chronic phases of injury, akin to similar data
published in spinal cord injury (Kigerl et al., 2009). The inability
of the CNS’ innate response to injury to return to basal levels is a
hallmark of brain injury as chronic activation of these systems is
present for years after the initial insult (Ramlackhansingh et al.,
2011;Johnson et al., 2013). Our current data would suggest that a
contingent of CX3CR1 " microglia/macrophages remains acti-
vated during these chronic time points and is responsible for the
persistent M1 phenotype. However, an important limitation
present in this study is the inability to distinguish resident
CX3CR1 " macrophages from those that originated peripherally
regardless of native antigenic expression of CX3CR1™ or
CCR2 ™. Given that peripheral Ly6C'°CX3CR1 " monocyte-
derived macrophages are antigenically and phenotypically simi-
lar to CNS resident microglia/macrophages, it is difficult to
delineate resident versus peripheral function of these two popu-
lations of cells in this model. Moreover, our data would suggest
that a certain number of CCR2 * macrophages differentiated af-
ter engraftment into the injured parenchyma to more closely
resemble CX3CR1 " resident microglia/macrophages as has pre-
viously been shown (Saederup et al., 2010). Accumulation of
Ly6C'°CX3CR1 * monocytes into the CNS may be disease-model
specific as some models (Huang et al., 2006) are noticeably absent
of this phenomenon. However, elegant work in a rodent spinal
cord injury model has shown that Ly6C'°CX3CR1 " monocytes
invade and persist at protracted time points in the injured spinal
cord where they are responsible for propagating neuronal dam-
age at chronic time points (Donnelly et al., 2011).

Blocking CCR2 * macrophage accumulation in neurodegen-
erative disease remains controversial as both sparing (Mildner et
al., 2009; Semple et al., 2010) and exacerbating (Gliem et al., 2012;
Shechter et al., 2013) effects can be found. These divergent find-
ings portend the diverse role of these systemic cells in various
animal models recapitulating neurological disease. In the current
study, we show that CCR2 " macrophages are associated with
both neurotoxic and tissue repair gene expression profiles de-
pending upon the time they are examined after insult. However,
in our model, the overarching effect from the accumulation of
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these cells into the brain after TBI is that of a proinflammatory  tory macrophage accumulation in obesity-associated steatohepa-
and neurotoxic mediator. These findings are analogous to a re- titis (Parker et al., 2014). Although statistically insignificant in
cent report that found similar neurotoxic properties in CCR2"  our model, there were visible trends in gene expression changes
infiltrating macrophages in a mouse model of stroke (Hammond  due to CCX872 treatment alone. In both the acute and chronic
et al.,, 2014). Importantly, although some T-cell populations  studies, there were visible trends for CCX872 treatment alone to
(Mack et al., 2001) as well as endothelial cells (Dzenko et al.,  induce the expression of polarization markers associated within
2001) have been shown to express CCR2 to varying degrees, re-  the M1/M2 polarization spectra. Given that CCX872 showed
cent work using bone marrow chimeras has convincingly shown  poor penetrance in the uninjured brain compared with circulating
the neurotoxic actions of CCR2-expressing cells are predomi-  levels, these gene expression changes may suggest that circulating
nantly associated with the infiltration of CCR2 * monocytesinto ~ CCR2™ monocytes may have intrinsic signaling capabilities at the
the injured CNS (Hammond et al, 2014). The neurotoxic  level of the CNS endothelium/microvasculature, even during non-
response associated with CCR2 ¥ macrophages in our study is  pathological conditions. As such, these findings warrant further ex-
further substantiated by our data from the administration of the ~ amination into the homeostatic roles of circulating CCR2™"
CCR2 antagonist CCX872. Acutely, administration of CCX872  monocytes on CNS function.

blunted the ingress of inflammatory macrophages, which was Clinically, TBI is one of the most powerful environmental risk
paralleled by reduced inflammatory and neurotoxic response  factors for the development of Alzheimer’s disease and dementia
compared with vehicle-treated TBI animals. Similarly, preclinical ~ (Fleminger et al., 2003; Sivanandam and Thakur, 2012), which
administration of CCX872 has been shown to reduce inflamma-  may be linked to chronic activation of the CNS’ innate response
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(Ramlackhansingh et al., 2011). Unfortunately, pharmacological
interventions using broad-spectrum approaches to inhibit innate
immune function after TBI are largely inconclusive both experi-
mentally (Bye et al., 2007; Ng et al., 2012) and clinically (Beau-
champ et al., 2008). Previous studies have shown that chronic
neuroinflammation disrupts the macromolecular synthesis im-
plicated in synaptic plasticity and memory (Rosi et al., 2005) and
alters information processing (Rosi et al., 2009), which is linked
with hippocampal-dependent cognitive function (Belarbi et al.,
2012). Given the link between homeostatic neuronal dysfunction
and inflammation, we sought to determine whether pharmaco-
logically blocking CCR2 ™ cell accumulation in the brain could
preserve hippocampal cognitive function disrupted by TBI.
Herein, we provide novel evidence that targeting CCR2 * mono-
cytes mitigates TBI-induced hippocampal-dependent cognitive
dysfunction as animals that received CCX872 in conjunction
with TBI performed significantly better in the RAWM compared
with TBI animals given vehicle. Importantly, the sparing of cog-
nitive deficits following TBI in this model is presumably due to
the reduced neuroinflammatory and neurotoxic profiles afforded
by limiting the injury-induced migration of CCR2™ macro-
phages following injury, which preferentially accumulate in the
hippocampus.

In conclusion, our results demonstrate that CCR2 ¥ macro-
phages contribute to the long-term cognitive decline associated
with a controlled cortical impact model of TBI. These findings are
consistent with previous reports, which show that mobilization,
and accumulation of CCR2 ™ macrophages in mice, promotes
degenerative neuropathology (King et al., 2009; Mildner et al.,
2009). Together, our proof-of-concept model demonstrates the
viability of selectively targeting CCR2 " circulating monocytes to
prevent TBI-induced neuroinflammatory-mediated sequelae.
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