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Neurons in the cerebral cortex are constantly integrating different types of inputs. Dependent on their origin, these inputs can be
modulatory in many ways and, for example, change the neuron’s responsiveness, sensitivity, or selectivity. To investigate the modulatory
role of lateral input from the same level of cortical hierarchy, we recorded in the primary visual cortex of cats while controlling synaptic
input from the corresponding contralateral hemisphere by reversible deactivation. Most neurons showed a pronounced decrease in their
response to a visual stimulus of different contrasts and orientations. This indicates that the lateral network acts via an unspecific
gain-setting mechanism, scaling the output of a neuron. However, the interhemispheric input also changed the contrast sensitivity of
many neurons, thereby acting on the input. Such a contrast gain mechanism has important implications because it extends the role of the
lateral network from pure response amplification to the modulation of a specific feature. Interestingly, for many neurons, we found a
mixture of input and output gain modulation. Based on these findings and the known physiology of callosal connections in the visual
system, we developed a simple model of lateral interhemispheric interactions. We conclude that the lateral network can act directly on its
target, leading to a sensitivity change of a specific feature, while at the same time it also can act indirectly, leading to an unspecific gain
setting. The relative contribution of these direct and indirect network effects determines the outcome for a particular neuron.
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Introduction
Information processing in the CNS relies on a combination of
various signal streams. Already in primary sensory cortex, the
local microcircuit is fed by long-range intracortical, feedback,
and callosal input (Gilbert and Wiesel, 1979; Innocenti, 1994;
Angelucci and Bressloff, 2006). What remains unclear is how
these inputs are combined in the cortex. Although a lot is known
about the integrative properties of single neurons in vitro, much
less is known about the neuronal arithmetic of neurons embed-
ded in their network in vivo (Silver, 2010). Previously, we dem-
onstrated that the combination of ipsilateral and contralateral
inputs in primary visual cortex leads to a context-dependent scal-
ing of orientation tuning curves (Wunderle et al., 2013). This
could be due to a specific interaction of the callosal input with one
or more of the mechanisms creating orientation selectivity or a
more general phenomenon of cortical processing. However, the
nature of the modulation by intracortical inputs can be inferred
by observing a neuron’s contrast response function (CRF).

Changes in the neuron’s responsivity shift the response verti-
cally along the response axis (“response gain”), which corre-
sponds to a linear output increase, i.e., a multiplicative scaling of
the neuron’s evoked response. On the other hand, changes in the
neuron’s sensitivity shift the response horizontally along the con-
trast axis (“contrast gain”), which corresponds to a multiplicative
scaling of the input, i.e., the stimulus contrast (Fig. 1). On the
level of microcircuits, it has been shown that neuromodulators
(Bhattacharyya et al., 2013) and inhibitory neurons can control
the gain of pyramidal neurons at the input or output (Katzner
et al., 2011; Wilson et al., 2012). Similarly, for more complex
functions like surround suppression (Cavanaugh et al., 2002)
and, moreover, shifts in spatial attention (Reynolds et al.,
2000; Williford and Maunsell, 2006), such changes in input
and output gain have been described previously. Here, we
investigate these mechanisms for the actions of interhemi-
spheric connections.

In early visual cortex, callosal connections link the two hemi-
spheres at the border between the areas 17 and 18 (Innocenti,
1994) and are discussed to extend the lateral network at the same
level of cortical hierarchy across the vertical meridian (Schmidt,
2013) as long-range intrinsic connections do across the horizon-
tal meridian (Jeffs et al., 2009). To unveil the scaling mechanism
of these lateral interhemispheric inputs, we combined extracellu-
lar recordings in the primary visual cortex of anesthetized cats
with reversible thermal deactivation. We recorded in the callosal
recipient zone while deactivating locally the corresponding cal-
losal sending zone in the other hemisphere (Fig. 1).
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We found that lateral input conveyed via the corpus callosum
can change the contrast sensitivity and responsivity of a neuron,
i.e., modulate the gain at the input or output, or a combination of
both. We propose that the relative contribution of direct inter-
hemispheric and indirect intrinsic inputs determines the scaling
mechanism for each particular neuron. A simple model that in-
cludes contrast-dependent response normalization can account
for the experimental results.

Materials and Methods
All procedures in this study were approved by the ethics committee of the
State of Hessen in accordance with the guidelines of the German law for
the protection of animals.

Surgical procedures and recordings. A detailed description of the surgi-
cal and recording procedures can be found in the studies by Peiker et al.
(2013) and Wunderle et al. (2013). For this study, five adult cats (one
male, four females) bred in the Institute’s colony were used. After initial
anesthesia (10 mg/kg ketamine supplemented with 1 mg/kg xylazine),
two craniotomies were performed around the area 17/18 border region
(Horsley–Clarke coordinates AP �4 to �5, ML �1 to �7) on both
hemispheres in topographical correspondence. A cryoloop with a dimen-
sion of 5 � 3 mm 2 giving rise to a deactivated region of �8 � 6 mm 2 was
placed on the left hemisphere. On the right hemisphere, two 4 � 4
tungsten microelectrode arrays (planar configuration, fixed electrode
length, 250 �m spacing, 1 M�, Microprobes) were positioned in topo-
graphical correspondence to the cryoloop to record multiunit activity.
We inserted the electrode arrays and started to collect data as soon as
most of the channels demonstrated visually driven activity. After some
recording sessions, we advanced the arrays to isolate new multiunits.
According to this procedure and the characteristics of the encountered
receptive fields (RFs), it is likely that the majority of our units stem from
supragranular layers. However, due to the curvature of the brain, the
laminar position of neurons recorded with our arrays could not be de-
termined with precision. Therefore, in one animal, two additional 16
contact laminar silicone probes (Neuronexus) were positioned in area 17
close to the 17/18 border. We used optical imaging of intrinsic signals to
confirm the location of the 17/18 border before electrode implantation
(Wunderle et al., 2013). Based on RF size and position as well as spatial
and temporal frequency preference, we classified the recorded multiunits
(n � 142) as being located in the 17/18 transition zone or more toward
area 17 or area 18 (Movshon et al., 1978; Tusa et al., 1979). According to
this classification, the majority of recorded sites (n � 88) were located at

the 17/18 border close to the vertical meridian, in area 17 (n � 49), and a
few in area 18 (n � 5).

For recordings, the animals were paralyzed (pancuronium bromide,
0.15 mg/kg/h), and anesthesia was maintained with 0.6% halothane and
N2O/O2 (70/30%). A recording session consisted of three states: warm
(precooling), cooling, and rewarm (recovery). Recording during the
cooling state was initiated after the cooling loop reached a stable temper-
ature of 3 � 1.5°C for 5 min. The recovery recording was started �20 min
after cooling was terminated.

Visual stimulation. We presented drifting square wave gratings on a
gamma-corrected 21 inch CRT monitor at a 57 cm distance from the
animal’s eyes, which were fitted with contact lenses to ensure optimal
refraction. Whole-field gratings were presented at seven different con-
trasts (4, 8, 12, 18, 24, 48, and 100% Michelson contrast) drifting in eight
directions (45° steps) orthogonal to their orientation. We started data
collection 250 ms before stimulus onset (blank). Stimuli moved for 750
ms immediately after onset. We later added the average (spontaneous)
activity in the 250 ms preceding each condition to the CRFs representing
the response at 0% contrast. Spatial frequency and speed of the gratings
were fixed for a given recording session and chosen from two sets, de-
pending on which set was preferred by most of the neurons. The param-
eters for the area 17 set were 0.5 cycles per degree and 4°/s, and for the
area 18 set 0.15 cycles per degree and 16°/s. Each condition was randomly
presented 15 times with an interstimulus interval of 1.5s.

Data analysis. Offline analysis was performed using custom-written
software in Matlab (MathWorks). From 32– 64 simultaneously recorded
channels, only those exhibiting reliable multiunit activity were used for
further analysis according to the following criteria: (1) A three-factor
ANOVA was performed to test whether the response amplitude (spikes
per second) to a drifting stimulus was significantly larger than within the
prestimulus period (blank), if there was a significant difference between
different stimulus directions and also between different contrasts (all
three p 	 0.05). (2) The direction or orientation tuning of the multiunits
reached a certain threshold. We calculated a direction selectivity index
(DSI) and orientation selectivity index (OSI), defined as 1 minus the
circular variance of the direction or orientation tuning curve, respec-
tively (Swindale, 1998). Those indices range from 0 (totally unselective)
to 1 (perfectly selective). As some analyses tested effects on direction and
orientation tuning curves (see Fig. 4), only neurons with a DSI or OSI of

0.2 were considered for further analysis. We classified neurons as sim-
ple or complex based on their response modulation to the drifting grat-
ings (Skottun et al., 1991). Neurons were defined as complex if their

Δ

Δ

Figure 1. Left, Experimental setup. Neurons projecting to the contralateral hemisphere were reversibly deactivated by local cooling while spiking activity of neurons in the callosal recipient zone
was recorded extracellularly. Middle, Callosal connections (CC) could modulate the gain at a neuron’s input or its output. Right, Input gain modulation is expressed as a change in the semisaturation
contrast (C50) of a neuron’s contrast response function, shifting the curve horizontally. Output gain modulation is expressed as a change in the maximal response (Rmax) of a neuron, shifting the
contrast response curve vertically.
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response at the fundamental frequency (F1) of the drifting grating was
smaller than the mean firing rate (F0). Only two multiunits were classi-
fied as “simple” by this method; all others had an F1/F0 ratio smaller than
one. We also applied a spike-sorting algorithm (wave_clus 2.0,Quiroga et
al., 2004) to obtain single units. In addition to visual inspection, a cluster
was defined as a single unit if its signal-to-noise ratio was larger than 6
(peak to trough distance divided by the average SD) and if no more than
10% of the spikes had an interspike interval smaller than 10 ms. Applying
these criteria revealed 30 single units with a reasonable fit to the CRFs out
of 142 recorded multiunits.

RFs were mapped throughout the experiment using an automatic
back-projection method (Fiorani et al., 2013). Briefly, the spiking activity
in response to a bar (width, 1°; length, complete mapping area of 30 �
30°), drifting in 16 different directions (speed, 20°/s), was mapped to
visual space and summed across directions. From the resulting 2D den-
sity plot, we defined the area above 70% of the maximum response as the
border of the RF. The center of the RF was determined as the centroid of
this region. With this method, the absolute size of the RF is just an
estimate and depends on the chosen threshold. However, comparisons
between sessions indicated that reliability and the sizes of the RFs were in
good agreement with reports in the literature for the areas we recorded in
(Hubel and Wiesel, 1967).

Error bars in the figures denote �1 SEM unless stated otherwise, and
significance levels are indicated by asterisks.

Description of responses to contrasts. To describe the behavior of neu-
rons to different contrasts and experimental manipulations, we fitted the
neuronal responses with hyperbolic ratio functions (Albrecht and Ham-
ilton, 1982):

R � Rmax� cn

cn � c50
n � � s, (1)

where R is the response of the neurons to a stimulus contrast c. Four
parameters describe the shape of the function: Rmax is the maximal (sat-
uration) firing rate, C50 is the semisaturation contrast where responses
are half-maximal, n determines the slope of the hyperbolic function, and
s is level of spontaneous activity. We used a nonlinear optimization algo-
rithm (“trust-region-reflective” implemented in the Matlab function
“lsqnonlin”) to minimize the sum of squares between the data and the
model. The quality of the fit was assessed by calculating an adjusted R 2

controlling for the number of model parameters.
To get a direct impression of the change in Rmax and C50 per recorded

unit, we performed a combined fit to the data during warm and cooling,
keeping n and s fixed between the two experimental states, but allowing
Rmax and C50 to vary independently.

Rwarm � Rmax,1� cn

cn � c50,1
n � � s, (2)

Rcool � Rmax,2� cn

cn � c50,2
n � � s. (3)

To compare the changes in Rmax and C50 between experimental states, we
computed a modulation index (MI):

MI � �Pcool � Pwarm

Pcool � Pwarm
�, (4)

where Pcool and Pwarm are the parameters Rmax or C50 during the cooling
and warm states, respectively. A negative value of the MI indicates a
decrease of the parameter, whereas a positive value indicates an increase.
Confidence intervals (CIs) for each parameter were determined by boot-
strap resampling (95% CIs, 1000 resamplings).

The analysis above quantifies a change in the parameters Rmax and C50,
but does not quantify the respective gain mechanism directly. Therefore,
we fitted three extended versions of model (1) to the data. The full model
included two additional parameters a1 and a2 to allow for a change in
response during thermal deactivation:

R � a1 � �Rmax� cn

cn � a2 � c50
n � � s�. (5)

a1 scales the maximal response, thereby shifting the curve vertically (“re-
sponse gain”). Because of its common usage, we call this type of modu-
lation, including spontaneous activity, response gain, however, it was
referred to as “activity gain” in other publications (Williford and Maun-
sell, 2006). The second parameter, a2, changes the semisaturation con-
trast (C50), thereby shifting the curve horizontally on a logarithmic
contrast axes (“contrast gain”). We performed a combined fit, holding
the parameters Rmax, C50, n, and s fixed between the two experimental
states (warm and cool). The response during cooling was fit with the two
additional parameters a1 and a2 being free, and held constant at 1 for the
warm state. Additionally, the data were also fitted with two reduced
models including only the parameter a1 (response gain model) or a2

(contrast gain model).
To determine the performance of the two reduced models in compar-

ison to the full one, we calculated a contrast ratio between the residual
sum of squares (RSS) of the models:

RMP � �RSSfull � RSSred

RSSfull � RSSred
� 1� � 100. (6)

Reduced model performance (RMP) ranges from 0 to 100, where 0 indi-
cates a low performance of the reduced model, and 100 indicates that the
reduced model is as good as the full model in describing the data.

However, to be able to correlate the gain mechanism with other neu-
ronal properties, we calculated a gain index (GI), indicating whether a
given unit follows more a contrast or a response gain mechanism. To this
end, we directly compared the residual sum of squares between the re-
duced models:

GI � �RSSCG � RSSRG

RSSCG � RSSRG
�, (7)

where RSSCG and RSSRG are the residual sums of squares for the contrast
and response gain models, respectively. The GI ranges from �1, indicat-
ing a contrast gain, to �1, indicating a response gain.

Description of responses to orientation. We also analyzed orientation
tuning at each contrast. To get a better resolution in the orientation
domain, we first interpolated average responses to 16 directions using
piecewise cubic interpolation as in our previous manuscript (Wunderle
et al., 2013). Subsequently, opposite directions were averaged to get ori-
entation tuning curves. Before averaging tuning curves, we aligned re-
sponses to each unit’s preferred orientation.

We fitted individual tuning curves with Gaussian functions in order to
describe their shape, analogous to the fitting of the contrast response
functions:

R�� � � B � Ae����p
2/�2�2�. (8)

In the above expression, R is the neurons response to stimulus orienta-
tion �. The function has four free parameters: �p is the neurons preferred
orientation given in angular values between �90° and �90° by 
� �
mod(90 � � � �p,180) � 90; B is the baseline firing rate; A is the ampli-
tude of the tuning curve above baseline; and the parameter � is the tuning
width expressed as the SD of the Gaussian function. To compare the
parameters between warm and cool, we computed a modulation index
according to Equation 4.

Results
We present here data from 142 multiunits recorded close to the
area 17/18 border of the visual cortex from five anesthetized cats.
We calculated each unit’s CRF from the average multiunit activ-
ity during the presentation of an optimal grating.

The average normalized CRFs in the warm, cool, and rewarm
states are depicted in Figure 2A. The average spike rate decreased
significantly during cooling (t test, p 	 0.001, uncorrected) and
recovered during rewarming for all contrasts tested. Next, each
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CRF was fit with a hyperbolic ratio function to obtain the curve’s
characteristic parameters, described in Materials and Methods.
This was done before (warm) and during (cool) local thermal
deactivation on the hemisphere contralateral to the recordings.
The parameter values for the warm and cooled states are plotted
against each other in Figure 2B.

We separately plotted the data for those recording sites with
an average rate increase (Fig. 2B, gray dots) and decrease (black
dots) across all contrasts. In agreement with our previous studies
(Schmidt et al., 2010; Wunderle et al., 2013), only a few neurons
increased their activity upon thermal deactivation (n � 11, 7.7%
of total multiunits).

The baseline parameter (s), corresponding to the spontaneous
activity of the recorded neurons, decreased on average by 32%
(median, Wilcoxon signed-rank test, p 	 0.0001). This strong
effect, however, resulted mainly from the multiunits with a high
spontaneous rate (median split; mean rate, 7.9 spikes/s), whereas
for multiunits with a low spontaneous rate (mean rate, 1.2
spikes/s) the decrease was only 9%, consistent with what we re-
ported previously (Wunderle et al., 2013). The steepness param-
eter (n; slope of the fitted CRF) was, on average, not affected by
interhemispheric input (median change, �3.5%; p � 0.22). The
maximal response of the multiunits (Rmax) decreased signifi-
cantly by 19% (median; p 	 0.0001). Interestingly, for some re-
cording sites (n � 24 or 17%), Rmax increased during thermal
deactivation, although the average firing rate across contrasts de-
creased (for 18 of the 24). This is because those CRFs became
nonsaturating, leading to the increase in Rmax.

Noteworthy is that the semisaturation contrast increased sig-
nificantly during cooling by 35% (median; p 	 0.0001). To-
gether, the dominating influences of interhemispheric input we
observed were changes in responsiveness (response gain) and
sensitivity (contrast gain) to stimulus contrast. To explore the
relationship between these two parameters, we applied a com-

bined fit to the data, keeping the parameters s and n constant
between warm and cool states, leaving Rmax and C50 free to
change (Eqs. 2, 3; see Materials and Methods). We calculated a
modulation index for these two parameters (Eq. 4), with negative
values indicating a decrease during cooling compared to the
warm state and positive values indicating an increase. In Figure
2C, these indices are plotted against each other together with their
95% confidence intervals. Most points are located in the lower
right quadrant, indicating a decrease in Rmax and an increase in
C50 during deactivation. However, the correlation between both
modulation indices is positive (Spearman 	 � 0.35, p 	 0.0001).
This is because data points with strong positive effects for one
parameter tend to lie around zero for the other parameter, indi-
cating that neurons with a strong change in Rmax tend to have a
small change in C50 and vice versa.

Contribution of contrast and response gain to scaling of CRFs
Given the results above, it seems unlikely that the effect of inter-
hemispheric input can be described as a pure response or contrast
gain. We therefore fit a “full model” including both Rmax and C50

as free parameters and compared the quality of this fit to that of
the two “reduced models,” with either Rmax or C50 being a free
parameter between warm and cooling states (Eq. 5). Figure 3A
shows this procedure for three multiunits, which represent the
different types of modulation we observed throughout our sam-
ple. For all three multiunits, the full model provides an excellent
fit, indicated by adjusted R 2 values of 0.996, 0.987, and 0.983,
respectively. For Unit 1, the response gain model failed to ade-
quately describe the CRFs during the warm (black line) and cool-
ing (gray line) states. Nevertheless, the variance explained by the
model was still very high (R 2 � 0.964). This is because the hyper-
bolic ratio function has the general form of a typical CRF. We
therefore expressed the goodness of fit of the reduced models as
their performance relative to the full model (reduced model per-

A B

C

Figure 2. Shape of contrast response functions before and during thermal deactivation. A, Average normalized spike rate as a function of grating contrast for the optimal orientation of each
multiunit. The activity decreases during cooling for all contrasts and recovers to precooling rates after rewarming. B, Impact of thermal deactivation on the four parameters describing the contrast
response function for each recording site. Black dots indicate multiunits decreasing their average firing rate; gray dots indicate those increasing their firing rate during callosal blockage. C,
Modulation indices for Rmax and C50. Negative values indicate a decrease of the parameter during cooling. Gray bars denote 95% confidence intervals. *p 	 0.05.
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A

B C

Figure 3. A, Example of three multiunits being modulated by a contrast gain (top row), response gain (middle row), or combination of both (bottom row). B, Model performance for
all recording sites; 100% means a contrast or response gain model is as good in explaining the data as the full model. Black and gray dots indicate multiunits with average rate decreases
and increases, respectively, and red crosses indicate single units obtained by spike sorting. Data points below the diagonal (gray shading) are classified as contrast gain multiunits, and
those above as response gain multiunits. C, Average normalized contrast response functions in the warm (black), cooled (gray), and rewarmed (dashed) states for the contrast and
response gain multiunits, shown separately. The dotted lines indicate the difference between the warm and cool states. Data are given for the preferred orientation of each unit and 45°
away from the preferred orientation.
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formance, Eq. 6). This fraction was only 55% for the example unit
presented in Figure 3A. In contrast, the contrast gain model pro-
vided an excellent fit for this unit, with an RMP of 96.7%. For
Unit 2, the opposite was true, with the response gain model
providing a better fit (RMP, 97.4%) than the contrast gain
model (RMP, 11.1%). Interestingly, Unit 3 could only be de-
scribed by a combination of contrast and response gain. The
performance of each model alone was only a fraction of the full
model (36.8% and 44.6% for the contrast and response gain
models, respectively).

In Figure 3B, the performance of the contrast gain model is
compared with that for the response gain model for all multi-
units. It becomes clear that across all multiunits we can observe a
continuum between those that can be described by one of the gain
models alone and those that can only be adequately described
using both a contrast gain and a response gain parameter (Fig. 3A,
Unit 3). One possibility for the latter group is that these multi-
units are noisier, and thus provide a worse fit. We therefore per-
formed a median split on the model performance for contrast and
response gain, sorting the multiunits in two groups: those that
could be fit well by the contrast or response gain model (or both)
and those that could not (Fig. 3B, median border marked by
dashed lines). Interestingly, those multiunits that could not be fit
well with the reduced models were fit even better by the full
model (average R 2 � 0.983) than those multiunits well described
by either of the reduced models (average R 2 � 0.970). This indi-
cates that the multiunits with a low model performance for con-
trast or response gain alone indeed were not noisier, but could
only be adequately described by including both parameters, Rmax

and C50, into the model. We separately plotted single units ob-
tained by spike sorting (Fig. 3B, red crosses). There is a clear
tendency for the single units to prefer one or the other gain mech-
anism. Eighty percent of the single units had a model perfor-
mance of 
90% for the contrast or response gain mechanism.
This indicates that a given neuron is usually modulated by an
input or output gain modulation, but can be occasionally influ-
enced by both mechanisms simultaneously.

For further analysis, we put the multiunits into two groups to
simplify: those that could be better described by a contrast gain
mechanism (Fig. 3B, data points below the diagonal) and those
better described by a response gain (Fig. 3B, data points above the
diagonal). This allowed us to replot the data with respect to the
scaling mechanism that best described the neurons’ behavior.
Figure 3C (left) shows the average normalized CRFs for contrast
(n � 64) and response gain (n � 78) multiunits at their preferred
orientation after subtracting spontaneous firing. As expected
from the scatter plot (Fig. 3B), the curves do not follow a perfect
contrast or response gain (compare Figs. 1, Fig. 3B), but the dom-
inant mechanism is clearly visible (i.e., from the difference be-
tween the warm and cool conditions indicated by the dotted line).
The average effect was a significant decrease of firing rate at all
contrasts (t test, p 	 0.007) for both groups. However, the scaling
of a CRF by a response gain mechanism could potentially look
like a contrast gain, because of a ceiling effect at high contrasts;
that is, the interhemispheric input may not be able to increase the
firing of the neurons at high contrast, because they already fire at
maximum. We therefore analyzed the CRFs at the orientation 45°
away from each unit’s preferred orientation. As shown in Figure
3C, the contrast gain multiunits still show a shift along the con-
trast axis. All effects were reversible, indicated by a recovery to
baseline after rewarming.

Contrast dependence of orientation tuning
We showed above that interhemispheric input scales the CRF of a
particular neuron with a bias toward either a contrast or a
response gain. Therefore, the question arises of whether those
neurons are also differently influenced with regard to their ori-
entation tuning. As mentioned in the introduction, the inter-
hemispheric input was shown previously to scale the responses of
orientation tuning curves in a multiplicative manner, although
some additive affects were also observed. Here, we present the
average orientation tuning curves for different contrasts in the
warm (black lines) and cooling (gray lines) states separately for
those multiunits classified as contrast and response gain (Fig.
4A). Individual tuning curves were normalized to peak responses
during the warm state, after subtracting spontaneous activity. As
expected, the effect of cooling was stronger at lower contrasts for
the contrast gain multiunits. However, a perfect contrast gain
mechanism would predict the maximal change at intermediate
contrasts, with no effect at the lowest ones. This is clearly not the
case for our data, where the strongest (relative) effects are present
at the lowest contrasts. The decrease in absolute firing rate, how-
ever, was weaker for the two lowest contrasts (4 and 8%) than for
the intermediate contrast (12%). For the response gain multi-
units, the relative decrease in activity was fairly uniform across
contrasts, as expected for this scaling mechanism. Most impor-
tantly, the scaling of responses for each orientation tuning curve
resembles a multiplicative change at each contrast for both the
contrast and response gain multiunits. To explore this in detail,
we fit a Gaussian model to each tuning curve in the warm and
cool state (Eq. 8). Similar to CRFs, we expressed a change in the
respective parameter between the states by a MI, with a negative
value representing a decrease of the parameter during cooling.
The results for each parameter are shown in Figure 4B for the
contrast gain (left) and response gain (right) multiunits. For each
parameter, we tested for differences in the MI across contrasts
by a repeated-measures (RM)-ANOVA. Individual changes at
each contrast were assessed with a nonparametric permuta-
tion test (simultaneous across all contrasts), controlling for
multiple comparisons (n � 10,000 resamplings). For the con-
trast gain multiunits, the amplitude parameter of the fitted
Gaussian function showed a strong dependence on contrast, as
expected from the plots above (RM-ANOVA, p 	 0.0001). The
decrease was significant ( p 	 0.001) for each contrast except
the highest ( p � 0.09). The offset, representing the DC com-
ponent of the tuning curve, was significantly reduced at 4%
and 12% contrast ( p 	 0.05), but there was no significant
difference between contrasts as assessed by RM-ANOVA. The
tuning width, expressed as the SD of the tuning curve, as well
as the preferred orientation, did not change during cooling
(RM-ANOVA and individual permutation tests, both p 

0.1). For the response gain multiunits, the results were similar.
However, the only significant effect was a decrease of the tun-
ing amplitude at each contrast (permutation test, p 	 0.05).
This decrease was different between contrasts (RM-ANOVA,
p 	 0.0001); however, it was not as pronounced as for the
contrast gain multiunits.

The present analysis shows that the effect of interhemispheric
input on the orientation tuning curves is a change in their ampli-
tude (and for some contrasts in their offset), without a change in
tuning selectivity or preferred orientation, in agreement with a
multiplicative gain change for both contrast and response gain
multiunits.
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Dependence of scaling mechanism on cellular properties
In the previous paragraphs we discussed that the effect of inter-
hemispheric input can be described as either a contrast or a re-
sponse gain. Here, we ask whether a specific property of the
neurons determines the scaling mechanism. We tested four
classes of properties: (1) RF, (2) tuning, (3) CRF, and (4) laminar
position. All properties were obtained in the warm state. To be
able to correlate the type of scaling mechanism with the various
neuronal properties, we calculated a GI, indicating how well a
given change in firing rate can be described by either the contrast
or the response gain mechanism (Eq. 7). A GI of 	0 indicates a
contrast gain mechanism, whereas a GI 
 0 represents response
gain.

Receptive field properties
We obtained receptive field position (azimuth and elevation) and
size by an automatic mapping procedure described in Materials
and Methods. The RF positions given here are relative values,
normalized within each animal. Given our recording sites, abso-
lute RF positions were usually close to the vertical and horizontal
meridian. We also classified the recorded neurons into simple
and complex, based on their response modulation to the drifting
gratings (for details, see Materials and Methods). In Figure 5A
(top row), the RF properties are plotted against the gain index.
We used the nonparametric Spearman rank correlation to deter-
mine whether there was a relationship between the two. The 95%
confidence interval (obtained by a bootstrap test, n � 1000 resa-
mplings) is indicated together with the correlation coefficient
above each plot. We detected a weak but significant positive cor-
relation between GI and RF size, indicating that bigger RFs tend

to benefit from a stronger response gain contributed by callosal
input.

CRF properties
It could be that a specific CRF shape itself dictates the scaling
mechanism. We therefore correlated GI with the four parameters
of the hyperbolic ratio functions (Fig. 5A, middle row). There was
a strong relationship of the shape parameter (n) with the scaling
mechanism (r � 0.51), indicating a response gain change for
those multiunits with a steep CRF slope. Correlation with the
other parameters was weak or not significant.

Tuning properties
We also tested for a correlation between GI and the direction/
orientation selectivity (expressed as a DSI or OSI) and the pre-
ferred direction/orientation of the neuron (Fig. 5A, bottom row).
There was a weak but significant correlation between GI and DSI,
indicating a stronger response gain for neurons with higher di-
rection selectivity.

Laminar position
To examine whether contrast and response gain multiunits dis-
tributed differently across cortical layers, we recorded from lam-
inar probes in area 17 close to the vertical meridian in one animal
(Fig. 5B). We inserted the probes during visual inspection until
the uppermost contact vanished in the brain tissue and started to
record action potentials. According to the probe’s length (16 con-
tacts with a 100 �m intercontact spacing), we assumed the mid-
dle (granular) layer 4 to be recorded on the center contacts. This
was confirmed by a current source density (CSD) analysis (sec-

A

B

Figure 4. Analysis of orientation tuning curves. A, Average normalized orientation tuning curves at each stimulation contrast for the contrast and response gain multiunits. The dotted lines
indicate the difference between the warm and cool states. For both groups, firing rates are scaled approximately multiplicatively at each contrast. B, Change in the parameters of a Gaussian fit to
individual tuning curves for the contrast gain (left) and response gain multiunits (right). A negative modulation index indicates a decrease of the parameter during cooling. Significant changes are
only present for the amplitude and the DC offset of the tuning curve.
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ond spatial derivative across channels followed by interpolation;
Mitzdorf and Singer, 1979) of local field potentials recorded si-
multaneously with the multiunit activity. In the CSD analysis, the
first current sink after stimulus onset indicated the input layer 4.

By separating contrast and response gain multiunits, we found
that contrast gain was stronger in the supragranular than in the
granular or infragranular layers (p 	 0.05, ANOVA). Interest-
ingly, the supragranular layers are those where direct callosal
input is to be most expected. For the response gain mechanism,
there was no significant difference between layers. Thus, con-
trast and response gain cells distributed significantly differently
among layers. Since both electrodes sampled both upper and
lower layers, a sampling bias in depth seems to be unlikely to have
caused the significant ANOVA test. A spatial sampling bias would
be relevant if there existed scattered infragranular islands of con-
trast gain units, which we accidentally did not hit. In that case, we
would erroneously assume an anisotropic distribution of con-
trast and response gain units. However, according to the hypoth-
esis that contrast gain units predominantly receive direct callosal
input, it is rather likely that we underestimated the number of
supragranular contrast gain units, as there exist acallosal bridges
in area 18 in carnivores (Manger et al., 2002).

Given the dependence of the scaling mechanism on some of
the properties tested, especially the strong dependence on the
steepness of the CRF, these findings indicate that the network a
particular neuron is embedded in biases the scaling mechanism
toward a contrast or response gain mechanism.

Model of interhemispheric impact
So far, we have shown that interhemispheric input can affect
neurons by a contrast gain mechanism, a response gain mecha-
nism, or a combination of both. Furthermore, it seems that re-
sponses to different orientations are scaled multiplicatively, with
the strength determined by the stimulus contrast and gain mech-
anism. We also found that the mechanism present is correlated to
the steepness of the CRF, a parameter most likely determined by
the connectivity of a particular neuron. Based on these observa-
tions, we developed a simple model describing the effect of inter-

hemispheric input on the CRF and orientation tuning curves.
This model is not meant to capture the precise biophysical prop-
erties of synaptic integration, but to provide insight into the pu-
tative components of the underlying mechanism. In most models
of gain modulation, the modulating input is a constant with re-
gard to the stimulus parameters (Murphy and Miller, 2003; Ayaz
and Chance, 2009). This is obviously not the case in our experi-
mental setup. As we presented stimuli in both visual hemifields,
the incoming callosal input is also dependent on the stimulus.
The model is constrained in some parameters based on the anat-
omy and physiology of interhemispheric connections. Among
them, connections are assumed to be excitatory (Conti and Man-
zoni, 1994) and link neurons with similar responses to contrast
(Berardi et al., 1987; Tardif et al., 1997) and orientation (Schmidt
et al., 1997; Rochefort et al., 2009). Furthermore, the CRF is
assumed to scale the amplitude of the orientation tuning curves,
keeping tuning selectivity constant across contrasts (Sclar and
Freeman, 1982).

A sketch of the model is presented in Figure 6A. The neuron
surrounded by the dashed circle represents the recorded neurons.
It receives three types of synaptic input, as follows.

The first type of input is noncallosal input (NCI; Fig. 6, black),
which can originate from direct geniculocortical afferents or
from other neurons in the same or a different layer. The inputs
are a combination of the two vectors for stimulus contrast (SC)
and stimulus orientation (SO):

NCI(c, �) � SCdir(c) � SOTdir(�), (9)

where SC is modulated in the contrast dimension and constant in
orientation, and vice versa for SO. The T in the equation above
indicates vector transposition. Stimulus contrast is modeled as a
hyperbolic ratio function:

SCdir(c) �
cn

cn � c50
n . (10)

A B

Figure 5. Dependence of scaling mechanism on cellular properties. A, Various cellular properties are plotted as a function of the scaling mechanism (expressed as a gain index; for details, see
Materials and Methods). The Spearman rank correlation coefficient and the 95% confidence interval are given above each plot (significant correlations are indicated in bold). B, Laminar analysis of
the scaling mechanism for the data obtained from one cat. Depth of recording was verified by a CSD analysis (right). The black dots (left) label individual multiunits, and stars indicate the mean for
each compartment. The contrast gain mechanism is most prominent in the supragranular layers, whereas a response gain exists throughout all layers.
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c is stimulus contrast, n the steepness of the function, and C50 the
semisaturation contrast. Orientation tuning is modeled using a
Gaussian function:

SOdir(�) � Adir

�� � �p
2

2�2 � Bdir, (11)

where � is orientation, Adir is the amplitude of the direct input,
�p is the peak orientation, � is the SD, and Bdir is a baseline
parameter representing the DC offset of the direct input. The
multiplication of the two curves is shown as a 3D mesh plot in
Figure 6B.

The second type of input is direct callosal input (DCI; Fig. 6,
blue). The DCI is modeled in a similar way as the NCI, sharing the
parameters n, C50, �p and �, having the amplitude (Acall) and
baseline (Bcall) as free parameters. However, in our model, the
NCI is scaled by a contrast-dependent gain function (gF). Such a
function divides the input for increasing stimulus drive, namely,
contrast, as proposed by the divisive normalization model
(Carandini and Heeger, 2012) and observed experimentally
(Cardin et al., 2008). We assumed this gain function to be a
decreasing exponential:

gF (c) � exp�� c


�, (12)

with 
 is determining how rapid the function decreases to 0. The
gain function is constant across orientations. The direct callosal
input as a function of contrast and orientation is therefore mod-
eled as follows:

DCI(c, �) � �SCcall(c) � SOTcall(�)� � gF(c, const.).

(13)

The third type of input is indirect callosal input (ICI; Fig. 6, red).
ICI is also modeled as a combination of stimulus contrast and
stimulus orientation. It represents an indirect effect of callosal
input, which is not weighted by a contrast-dependent gain func-
tion, and may originate from neurons nearby themselves receiv-
ing direct callosal input. The parameters n, C50, �p and � are the
same as for the NCI and DCI; amplitude (Aid) and baseline (Bid)
are free parameters:

ICI(c, �) � SCid(c) � SOTid(�). (14)

A B

C

Figure 6. Model of interhemispheric impact on CRFs. A, Sketch of the model describing the influence of interhemispheric input. A given neuron (inside dashed circle) is supposed to
receive three types of input: noncallosal input, direct callosal input, and indirect callosal input. B, Activity was modeled as a combination of contrast and orientation. In the case of DCI,
the activity was weighted by a contrast-dependent gain function. C, Model behavior for a pure contrast gain (top row) or response gain (bottom row) mechanism. Starting from the green
curve (intact interhemispheric input), the activity was shifted to the right for the contrast gain mechanism and downward for the response gain mechanism (removing different levels
of input). The behavior of the model components is coded in the same colors as the shifts of the CRFs. The unit of the y-axis is input rate for all plots except the gain function, which was
set to range between 0 and 1.
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We performed a simultaneous fit to the data obtained during
warm and cool states. A constrained nonlinear optimization al-
gorithm was used to obtain the fit parameters (“trust-region-
reflective” implemented in the Matlab function “lsqnonlin”).
More specifically, the data for the cool state were assumed to
receive only noncallosal input, because cooling blocks the DCI
and ICI contributions. We therefore minimized the RSS between
the data during cooling and the modeled NCI:

min RSScool � min�
c,�

{Datacool(c, �) � NCI(c, �)}2.

(15)

A neuron is assumed to receive all three types of inputs during the
warm state, but the relative contribution is weighted by the value
of the respective amplitude parameter. We therefore minimized
the sum of squares between the data in the warm state and the
sum of all synaptic inputs:

min RSSwarm � min�
c,�

{Datawarm(c,�)

� [NCI(c, �) � DCI(c, �) � ICI(c, �)]}2. (16)

To obtain the fit parameters, we minimized the combined sum of
squares for cool and warm. We constrained some of the param-
eters to avoid biologically implausible parameter values. The up-
per and lower bounds were as follows: Adir [0, Acool

�2], �p [5, 90],
� [0, 360], Bdir [0, Bcool], n [0, Inf], C50 [0, Inf], Acal [0, Inf], Bcal

[0, Inf], Aid [�Awarm, Awarm], Bid [0, Bwarm], 
 [0, Inf]. The neg-
ative amplitude for the indirect input was chosen to allow for
inhibitory effects.

We first applied the model to synthetic data consisting of a
CRF scaled only by its C50 (contrast gain multiunits; Fig. 6C, top
row) or Rmax (response gain multiunits; bottom row). We specif-
ically asked the model how the individual parameters change
given a certain cooling-induced shift in the CRF. A progressive
increase in C50 (5% contrast steps) led to an increase of the direct
callosal input. The gain function did not change between states,
with a 
 of �14% contrast. However, the multiplication of the
gain function with the direct callosal input resulted in a function
having its maximum at an intermediate contrast (26%). The
contrast-dependent gain function therefore transformed the sig-
moidal shape of the callosal input into a new function, leading to
a rightward shift when added to the receiving CRF. The contri-
bution of the indirect input was only marginal for the contrast
gain mechanism. A progressive change in Rmax (10 spikes/s steps),
on the other hand, gave a different result. Here, the direct callosal
input was near zero, whereas the indirect input increased pro-
gressively. The addition of the indirect input to the receiving CRF
(with the same shape parameters) led to a pure change in Rmax

corresponding to the multiplicative scaling by a constant factor.
Those results indicate that a neuron can change its CRF by a
contrast or response gain mechanism, depending on the relative
contribution of direct and indirect callosal input. Direct callosal
input seems to contribute more to a contrast gain mechanism,
whereas indirect callosal input is likely to be involved in the re-
sponse gain mechanism. This supports our interpretation of Fig-
ure 5B that the prevalence of contrast gain in supragranular layers
reflects direct callosal input.

Next, we applied the model to the 142 multiunits recorded.
Figure 7A shows box plots of the parameter values, split by those
units determined previously to be contrast gain or response gain
multiunits. To facilitate comparison between direct and indirect
parameters, we z-scored Rmax and C50. The other parameters are

in their respective units. As expected, for the contrast gain mul-
tiunits, Rmax was larger for the direct input than for the indirect
one (Mann–Whitney U test, p 	 0.01). Correspondingly, for the
response gain multiunits, Rmax was larger for the indirect input
(p 	 0.001). This was also true when comparing contrast and
response gain within one input type. The offset for the direct
input was (in original units) close to zero. For the indirect input,
some multiunits required a particular offset, representing a DC
shift. The tuning width (SD) and center of the orientation com-
ponent, as well as the slope of the gain function (
), did not differ
significantly between contrast and response gain. Interestingly,
the slope parameter (n) was larger for the response gain multi-
units than for the contrast gain ones, as shown in Figure 5A. Also,
the semisaturation contrast (C50) was larger for the contrast gain
multiunits. This is surprising because we did not find a correla-
tion between C50 and the scaling mechanism in the previous
analysis.

Next (Fig. 7B), we averaged the individual model components
(inputs), as for the synthetic data shown in Figure 6C. Once
more, it becomes obvious that for contrast gain multiunits, the
direct callosal input dominates over the indirect input and vice
versa for the response gain multiunits.

To draw predictions from our model, we had to make sure
that it fit well to the data. Therefore, we tested the goodness of fit
by evaluating the R 2 value across orientations (at highest con-
trast; Fig. 7C, top) and contrast (at preferred orientation; Fig. 7C,
bottom). Generally, the model provided a good fit for both con-
trast and response gain multiunits, deteriorating for nonpre-
ferred orientations and low contrast. As an additional control, we
performed a bootstrap analysis (n � 1000 resamplings) to get an
estimation of the variability of responses for the real data and the
model. Figure 7D plots the average normalized CRFs and tuning
curves (points) together with the model (lines). The confidence
intervals for data and model largely overlap, indicating a good fit.
For the tuning curve at low contrast, however, one observes some
slight deviations, in accordance with the reduced R2 value de-
scribed previously. In summary, the present model proposes a
cell-specific contribution of different input streams, whose rela-
tive contribution determines the scaling mechanism.

Discussion
In the present study, we investigated how different signal streams
are combined in the primary visual cortex. We reversibly deacti-
vated a restricted part of the cortex to control the synaptic input
to a spatially distinct neuronal population. It turned out that this
synaptic input could change the overall output (response) gain of
the target neuronal population. However, we also found clear
evidence for an input (contrast) gain modulation. Importantly,
orientation tuning was scaled multiplicatively for all stimulus
contrasts; i.e., we found a response gain in the orientation do-
main. This implies that the action of the lateral interhemispheric
network distinguishes between stimulus features, being sensitive
to contrast but invariant to orientation.

Input and output gain modulation through the
interhemispheric network
Most of the neurons we recorded decreased their firing rate upon
thermal deactivation of the contralateral hemisphere. This is in
line with previous reports (Payne et al., 1991; Sun et al., 1994;
Schmidt et al., 2010; Peiker et al., 2013; Wunderle et al., 2013) and
the predominant excitatory nature of the interhemispheric con-
nections (for review, see Conti and Manzoni, 1994). The rate
decreases we observed are surprisingly strong, given the small
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fraction of callosal synapses on a typical dendritic tree (Porter and
White, 1986). However, this could be explained by a local am-
plification of the incoming interhemispheric input through
recurrent connections (Douglas et al., 1995), as was proposed
previously for the intrinsic horizontal network (Reynaud et
al., 2012).

Previously (Wunderle et al., 2013) we demonstrated that the
interhemispheric input leads to a multiplicative scaling of orien-
tation tuning curves. Such a response gain mechanism describes a
rather unspecific increase or decrease in the output response of a
neuron or a population of neurons. As a consequence, those neu-
rons can modulate their level of activity without changing their

τ

A

B

C D

Figure 7. Performance of the callosal model. The model was fitted to each recorded multiunit individually. A, Box plots of the model parameters describing the callosal influence for those
multiunits classified as contrast or response gain. The parameters Rmax and offset were normalized for comparison between contrast and response gain. B, Average fitted model components are as
in Figure 6C. The lines indicate the mean for contrast (black) and response gain multiunits (gray). C, Goodness of fit across orientations for the highest contrast (top) and across contrasts for the
preferred orientation (bottom). D, Average normalized contrast response function and orientation tuning curves (for a low and high contrast) separate for the contrast and response gain multiunits.
The mean and 95% CI for the data are given by the dots and error bars; the mean and 95% CI for the model are given by the lines and transparent shadings. CG, Contrast gain; RG, response gain. *p 	
0.05; **p 	 0.01; ***p 	 0.001.
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tuning properties. For example, orientation tuning is known to
be invariant with stimulus contrast, keeping tuning selectivity
despite changes in overall stimulus drive (Sclar and Freeman,
1982). By analyzing the CRF, we now could confirm that many
neurons in primary visual cortex are indeed under the control of
interhemispheric input through a response gain mechanism.
This leads to a picture where the two hemispheres reinforce each
other along the vertical midline of the visual field to compensate
for the lack of input from the contralateral side (Peiker et al.,
2013). However, we also found neurons whose contrast sensitiv-
ity was modulated by the interhemispheric network. Such an
input gain modulation effectively multiplies the stimulus con-
trast that reaches a neuron. As a result, cortical neurons can adapt
their dynamic range to the prevailing contrast levels in the visual
stimulus (Ohzawa et al., 1982). It was shown previously that this
contrast gain control is a dynamic process that involves the sur-
rounding pool of neurons, probably mediated through long-
range horizontal connections (Reynaud et al., 2012). The results
presented here suggest that along the vertical meridian represen-
tation, the interhemispheric network takes over the role of the
intrinsic long-range connections in setting the contrast gain of
the local neuronal population. It is important to note that for
many neurons we not only observed exclusive contrast or re-
sponse gain modulations, but also a mixture of both. This indi-
cates that the interhemispheric network influences a given
neuron by more than one mechanism.

Mechanisms of contrast and response gain
For many recording sites, we found a mixture of contrast and
response gain modulation. What could be the mechanism imple-
menting both types of modulation in the brain? One possibility is
that a given cortical neuron is affected by different callosal net-
works. In our model, we implemented this as a direct callosal
input leading to a contrast gain and an indirect callosal input
leading to a response gain. The relative contribution of each input
will determine the outcome for a particular neuron.

To realize a contrast gain, the callosal input has to increase the
firing rate at an intermediate contrast, but with no effect at low
and high contrasts. A solution to this problem is the weighting of
incoming activity by a contrast-dependent gain function (Cardin
et al., 2008). This function is constant across orientations, pre-
serving the multiplicative scaling of orientation tuning curves
without changes in selectivity, as observed experimentally. Such a
gain function could be the result of the biophysical properties of
the receiving neurons (Cardin et al., 2008) or a population effect
through divisive normalization (Albrecht and Hamilton, 1982;
Heeger, 1992; Ohshiro et al., 2011; Carandini and Heeger, 2012).
A third mechanism could be the targeting of specific compart-
ments of callosal recipient cells, leading to nonlinear response
modulations, as observed for subpopulations of inhibitory neu-
rons (Wilson et al., 2012).

As discussed above, it seems unlikely that the strong rate de-
creases we observed on most recording sites are the sole contri-
bution of the input through callosal synapses. In the model, we
therefore implemented a second ICI, leading to a response gain.
The ICI may come from a local population of neurons which
themselves receive input from different callosal fibers, amplify it,
and mix it together with the input from other sources, e.g., feed-
forward, feedback, or intrinsic horizontal connections. In this
situation, the callosum just contributes to the pool of excitatory
inputs, and therefore leads to an unspecific gain change. The
latter mechanism might be generic to many cortical circuits and
has been observed under different circumstances.

However, it is important to note that the input, which comes
through the callosal connections, is by itself dependent on the
properties of the visual stimulus. This is supported by in vivo
studies showing that the visual callosal system links neurons with
a similar response to stimulus contrast (Berardi et al., 1987; Tar-
dif et al., 1997) and orientation (Schmidt et al., 1997; Rochefort et
al., 2009). In this situation, the simple addition of the visually
driven selective ipsilateral and contralateral inputs leads to a mul-
tiplicative gain change, as shown in our model. This is different
from a scenario where the independent variable leading to a gain
modulation of cortical responses is a scalar value. In the study by
Olsen et al. (2012), for example, a fixed optogenetic activation of
a pool of layer 6 pyramidal neurons led to a robust gain modula-
tion of visually induced activity in the other cortical layers. New
optogenetic tools may allow more specific stimulation or inhibi-
tion of subpopulations of callosal neurons, and thereby more
insight into their interactions with local intrinsic activity.

Factors determining the scaling mechanism
If the relative contribution of direct callosal input and indirect
network influences determines the scaling mechanism, this bal-
ance is probably reflected in the cellular and anatomical proper-
ties of a particular neuron. We tested for a range of receptive field,
CRF, and tuning properties, but did not find a strong correlation
with any of those (Fig. 5). One exception was clearly the tendency
toward a response gain for neurons with a steeper CRF. In a
previous modeling study, it was proposed that the shape of the
CRF is determined by the relative contributions of single neuron
and network properties (Persi et al., 2011). Following this argu-
mentation, our experimental results indicate that this relative
contribution is also reflected in the connectivity profile of inter-
hemispheric projections.

We also found the contrast gain mechanism to be particularly
strong in the supragranular layers. This strengthens our hypoth-
esis that a contrast gain modulation reflects a direct action of the
callosal input, because most visual callosal connections terminate
in these layers (Houzel et al., 1994).

Some neurons increased their activity after blocking callosal
input. Those increases occurred mainly through a response gain
mechanism (Fig. 3B). This indicates that those neurons were re-
leased from suppression by the indirect callosal input (i.e., re-
sponse gain modulation) or that there was a more direct effect
through interhemispheric feedforward inhibition (Toyama et al.,
1974; Martin et al., 1983) targeting parvalbumin-positive in-
terneurons known to mediate a response gain modulation
(Wilson et al., 2012). Thus, our results support the hypothesis
that modulations by a contrast or response gain reflect the
connectivity pattern of a particular neuron and the network it
is embedded in.

In summary, we showed that the combination of two signal
streams in the visual cortex can lead to distinct effects, dependent
on a particular stimulus feature. Whereas orientation tuning
seems to be invariant to a modulating input, sensitivity and re-
sponsiveness to stimulus contrast can be increased (or de-
creased). This extends the role of the lateral interhemispheric
network from a pure gain setting to the specific enhancement of a
particular feature, namely, contrast sensitivity. Given the similar-
ity to results obtained for the intrinsic horizontal network, we
propose that our findings can be generalized to other corticocor-
tical connections, helping us to understand how different signals
are combined in the brain.
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