The Journal of Neuroscience, July 15,2015 - 35(28):10217-10223 - 10217

Brief Communications

FGF Signaling Is Necessary for Neurogenesis in Young Mice
and Sufficient to Reverse Its Decline in Old Mice

Wenfei Kang and Jean M. Hébert

Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461

The mechanisms regulating hippocampal neurogenesis remain poorly understood. Particularly unclear is the extent to which age-related
declines in hippocampal neurogenesis are due to an innate decrease in precursor cell performance or to changes in the environment of
these cells. Several extracellular signaling factors that regulate hippocampal neurogenesis have been identified. However, the role of one
important family, FGFs, remains uncertain. Although a body of literature suggests that FGFs can promote the proliferation of cultured
adulthippocampal precursor cells, their requirement for adult hippocampal neurogenesis in vivo and the cell types within the neurogenic
lineage that might depend on FGFs remain unclear. Here, specifically targeting adult neural precursor cells, we conditionally express an
activated form of an FGF receptor or delete the FGF receptors that are expressed in these cells. We find that FGF receptors are required for
neural stem-cell maintenance and that an activated receptor expressed in all precursors can increase the number of neurons produced.
Moreover, in older mice, an activated FGF receptor can rescue the age-related decline in neurogenesis to a level found in young adults.
These results suggest that the decrease in neurogenesis with age is not simply due to fewer stem cells, but also to declining signals in their

niche. Thus, enhancing FGF signaling in precursors can be used to reverse age-related declines in hippocampal neurogenesis.
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[Signiﬁcance Statement

Hippocampal deficits can result from trauma, neurodegeneration, or aging and can lead to loss of memory and mood control. The
addition of new neurons to the hippocampus facilitates memory formation, but how this process is regulated and how we might
manipulate it to reverse hippocampal dysfunction remains unclear. The FGF signaling pathway has been hypothesized to be
important, but its role in generating new neurons had been poorly defined. Our study indicates that FGF signaling maintains and
expands subsets of neural precursor cells. Moreover, in older mice, increasing FGF signaling is sufficient to reverse the decline in
neuron production to levels found in young adults, providing a potential means of reversing age-related hippocampal deficits.

~

Introduction

In the adult hippocampus, neurogenesis normally occurs in the
dentate gyrus (DG) with roles in memory ogenesis, and pattern
separation. Neuron 70:589-596 (Aimone et al., 2011; Eisch and
Petrik, 2012). Quiescent stem cells within the subgranular zone
(SGZ) of the DG produce proliferative progenitors, which gen-
erate neuroblasts that mature and integrate into existing net-
works. How this process is regulated, why it declines with age, and
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how we might manipulate precursor cells to reverse hippocampal
dysfunction upon damage or aging remains largely unknown.

In the SGZ, a dozen extracellular signals regulate steps in the
neurogenic process (Alvarez-Buylla and Lim, 2004; Suh et al.,
2009; Faigle and Song, 2013). Changes in these signals may also
contribute to age-related declines or responses to damage (Ro-
lando and Taylor, 2014). However, an important family of se-
creted factors, whose function in the adult SGZ is poorly defined,
is FGFs.

Studies examining FGF function in SGZ neurogenesis yielded
mixed results. Increasing FGF2 protein by intraventricular infu-
sions in middle-aged mice or old rats leads to increased DG neu-
rogenesis (Jin et al., 2003; Rai et al., 2007), whereas transgenic
overexpression of Fgf2 alone with strong promoters does not
increase neurogenesis (Taupin et al., 2000; Zucchini et al., 2008).
These discrepancies could be due to age, abnormally high con-
centrations of infused versus transgenically generated FGF2,
and/or inflammation that accompanies cannula-mediated infu-
sion. Studies showing an FGF2-dependent neurogenic response
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in the DG from ischemia or seizures are consistent with a
requirement for damage and/or inflammation facilitating
FGF2-mediated neurogenesis (Yoshimura et al., 2001).

In Fgf2 ™'~ or Nestin-Cre;Fgfr ™ mice, FGF signaling is re-
duced and DG neurogenesis decreases (Zhao et al., 2007; Werner
etal.,, 2011). However, adult hippocampal neurogenesis could be
altered indirectly by developmental forebrain defects in Fgf2 ~/~
and Fgfr ™» mutants and systemic defects in Fgf2 '~ mutants
(Dono et al., 1998; Ortega et al., 1998; Vaccarino et al., 1999;
Raballo et al., 2000; Korada et al., 2002; Ohkubo et al., 2004;
Smith et al., 2006, 2014; Tole et al., 2006). Moreover, reduced DG
neurogenesis in Fgf2 '~ mice is not rescued by infusion of FGF2
or mimicked with neutralizing FGF2-antibodies (Werner et al.,
2011). Noteworthy is that deletion of Fgfr2 specifically in adult
GFAP-expressing precursors results in an eventual decline after 4
months in DG neurogenesis (Stevens et al., 2012). Nevertheless,
the function of FGFs in the adult DG remain largely unresolved.

Here, to circumvent indirect and compensatory effects, we
ablated all three DG-expressed FGF receptors, Fgfrl, Fgfr2, and
Fgfr3 specifically in SGZ precursors in young and older adult
mice. We also expressed an activated ligand-independent FGF
receptor specifically in SGZ precursors. With these approaches,
we establish whether FGF signaling directly in precursor cells is
necessary or sufficient in promoting hippocampal neurogenesis
at different ages.

Materials and Methods

Mice and treatments with BrdU and tamoxifen. The CAG-flox-stop-flox-
Fgfr3TDII, Fgfrlﬂ“x, FgfrZﬂ”", Fgfr3"~, Fgfr3™, and Nestin-CreER mice
were described previously (Deng et al., 1996; Trokovic et al., 2003; Yu et
al., 2003; Balordi and Fishell, 2007; Su et al., 2010; Kang et al., 2014). Two
to 3-month-old mice (young adults) or 12- to 14-month-old mice (aging
adults) were used at the start of each experiment. Approximately equal
numbers of males and females were used in each experiment and they
exhibited similar phenotypes. Tamoxifen, 20 mg/ml in corn oil, was
administered intraperitoneally (5 mg/35 g body weight) every other day
for a total of five doses. For labeling newly generated neurons, BrdU (100
mg/kg body weight) was injected intraperitoneally twice daily for 5 d
starting after the last tamoxifen treatment. Brains of young or aging adult
mice were collected for analysis 3—4 weeks after the last dose of tamoxifen
treatment. For examining the proliferation of precursor cells, BrdU (100
mg/kg body weight) was injected 2 h before the mice were killed.
Immunofluorescence. Mice were perfused intracardially with 4% parafor-
maldehyde and postfixed overnight in 4% paraformaldehyde at 4°C, cryo-
protected in 20% sucrose, and embedded in OCT. Tissue was cryosectioned
at 20 wm and mounted on slides before incubation with primary antibodies
overnight at 4°C and with AlexaFluor-568, AlexaFluor-488, or AlexaFluor-
633 secondary antibodies (Invitrogen, 1:400) for 1 h at room temperature.
For NeuN, BrdU, and Nestin staining, before blocking in goat serum, sec-
tions were heated in 10 mM sodium citrate at pH 6.0 in a microwave oven for
antigen retrieval. For BrdU, sections were then incubated with 2 N HCl for
30 min at room temperature for DNA denaturation. TUNEL staining was
performed following the manufacturer’s protocol (Roche). Sections for con-
trols and mutants were matched along the A—P axis for comparisons. The
following primary antibodies were used: rabbit anti-Caspase3 (1:200, Cell
Signaling Technology), mouse anti-NeuN (1:100, Millipore), rabbit anti-
GFAP (1:500, Dako Cytomation), mouse anti-Ki67 (1:100, BD PharMin-
gen), rat anti-Nestin (1:100, BD PharMingen), rabbit anti-DCX (1:400, Cell
Signaling Technology), guinea pig anti-DCX (1:2000, Millipore), rat anti-
BrdU (1:100, Accurate). Sections were analyzed by fluorescence microscopy
(Zeiss AxioSkop2) or confocal microscopy (Zeiss LSM-510 MetaDuo V2).
Fluoro-Jade B staining. Slide-mounted sections were washed with PBS
and immersed in 100% ethanol for 3 min followed by 1 min rinse in 70%
ethanol and one in distilled water. Slides were then incubated in 0.06%
potassium permanganate for 15 min, rinsed in water, and transferred to
a 0.001% Fluoro-Jade B solution in 0.1% acetic acid for 30 min. After
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staining, the slides were rinsed in water, air-dried on a hot plate, cleared
with xylene, and coverslipped with Permount.

Quantification and statistical analyses. Cells were counted along the
length of the dorsal blade of the DG in positionally matched coronal
sections from control and mutant mice. Statistical analyses were per-
formed using Student’s f test. At least three sections from both hemi-
spheres for each of three mice per genotype were used for cell counts. The
numbers were averaged and compared between mutant and control lit-
termates. Data are presented as mean = SEM.

Results
FGF receptors are both necessary and sufficient for
hippocampal neurogenesis
To characterize the function of FGF signaling in adult hippocam-
pal precursor cells, Nestin-CreER mice were used to target adult
neural stem and progenitor cells to avoid indirect developmental
or nonautonomous effects. For loss-of-function (LOF) experi-
ments, we conditionally deleted all three FGF receptor genes that
are expressed in neural precursors (Nestin-CreER;Fgfr*/;
Fgfr2™F;Fgfr3*'~; hereafter LOF mutants). For gain-of-function
(GOF) experiments, we conditionally expressed a constitutively
activated  Fgfr3 transgene (Nestin-CreER;CAG-fx-stop-fx-
Fgfr3™P™; hereafter Fgfr3-GOF mutants). Littermate controls ei-
ther did not carry Nestin-CreER or did not receive tamoxifen and
no significant difference in phenotype could be observed between
these controls. Similarly, mutants carrying Nestin-CreER and
only subsets of the six-floxed Fgfr alleles exhibited relatively nor-
mal phenotypes at 3—4 weeks after tamoxifen treatment, consis-
tent with functional compensation between the three Fgfr genes.
In the SGZ, three weeks after the end of tamoxifen treatment,
the number of cells labeled with DCX or PSA-NCAM (markers
for immature neurons) were significantly reduced in LOF mu-
tants and increased in Fgfr3-GOF mutants (Fig. 1A, C,D; DCX:
control, 86.5 = 10.6; LOF, 33.6 = 4.7; Fgfr3-GOF, 144.1 = 14.6
cells/mm; p < 0.01; PSA-NCAM: control, 39.8 * 3.1; LOF,
22.9 * 2.7; Fgfr3-GOF, 60.7 = 5.0 cells/mm, p < 0.01; mean =
SEM). To assess the numbers of newly generated mature neu-
rons, sections were colabeled with NeuN, a neuronal marker, and
BrdU (administered 3 weeks before collecting brains). Consistent
with the observed changes in immature neurons, newly matured
neurons were reduced ~5-fold in LOF mutants, whereas they
increased ~6-fold in Fgfr3-GOF mutants (Fig. 1B,E; control:
2.56 * 0.31; LOF: 0.51 = 0.18; Fgfr3-GOF: 14.93 *+ 1.95 cells/
mm, p < 0.001; mean = SEM). These data indicate that FGF
receptors are both necessary and sufficient to generate neurons in
the adult DG.

FGF receptors are necessary for stem-cell maintenance and
sufficient for progenitor cell proliferation

To assess whether the neurogenic phenotypes observed in the
LOF and Fgfr3-GOF mutants were due to changes in the numbers
of stem cells, progenitor cells, or both, we examined coexpression
of GFAP with Nestin, which together mark stem cells, and Nestin
with DCX, which together mark progenitors. Although the num-
ber of stem cells remained unchanged in Fgfr3-GOF mutants
compared with controls, a significant decrease was observed in
LOF mutants 3 weeks post-tamoxifen (Fig. 2 A, B; control: 27.4 =
1.8 vs LOF: 19.7 = 1.7 cells/mm, p < 0.001; Fgfr3-GOF: 28.0 =
1.5; mean = SEM), indicating that FGF signaling is necessary to
maintain stem cells but not sufficient to expand them.

Not surprisingly, LOF mutants had fewer progenitors (con-
trol: 9.71 = 0.89 vs LOF: 1.88 = 0.51 cells/mm, p < 0.001;
mean + SEM) and fewer Nestin(—)DCX(+ ) immature neurons
(control: 22.1 * 1.6 vs LOF: 10.8 = 1.8 cells/mm, p < 0.001;
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FGF signaling promotes adult hippocampal neurogenesis. A, Neuroblasts orimmature neurons (DCX+) and (B) newly generated mature neurons (NeuN -+ BrdU -+ ) in the hippocampal

DG are significantly decreased in the FGF receptor LOF mutant and increased in the Fgfr3-GOF mutant. DAPI counterstain (blue). (~E, Quantification of DCX+ (€), PSA-NCAM+ (D), and
BrdU-+NeuN+ (E) cells; * and ** indicate significant differences with control, p << 0.07and p << 0.001, respectively.

mean * SEM). In contrast, Fgfr3-GOF mutants displayed twice
as many progenitors (control: 9.71 * 0.89 vs Fgfr3-GOF: 23.2 =
3.47,p <0.001; mean = SEM) and 70% more immature neurons
(control: 22.1 % 1.6 vs Fgfr3-GOF: 38.0 = 2.4 cells/mm, p <
0.001; Fig. 2 A, B). Results obtained using the proliferative marker
Ki67 were consistent with a ~50% decrease and ~150% increase
in proliferating progenitor cells in the LOF and Fgfr3-GOF mu-
tants, respectively (Fig. 2C; control: 8.04 * 1.55; LOF: 4.67 =
1.04; Fgfr3-GOF: 19.55 = 5.23 cells/mm, p < 0.05; mean =*
SEM). Because the number of stem cells in the Fgfr3-GOF mu-
tants is unchanged, the increase in the number of progenitors
suggests that FGF receptor activity is sufficient to directly pro-
mote their expansion. However, whether the decrease in progen-
itors in LOF mutants indicates a requirement for FGF receptors
in directly promoting the proliferation of these cells remains un-
clear because a decrease in progenitors could simply reflect the
observed decrease in stem cells (Fig. 2 A, B). To address this issue,
we examined the fraction of DCX+ cells that were in S-phase
using a short-term BrdU pulse. Whereas Fgfr3-GOF mutants
showed an increase in the fraction of BrdU+DCX+/DCX+ cells,
no significant change was detected in LOF mutants (Fig. 2D;
control: 2.41 * 0.73%; LOF: 3.63 = 1.31%; Fgfr3-GOF: 7.72 *
1.15%; p > 0.05 for control vs LOF, p < 0.01 for control vs
Fgfr3-GOF; mean * SEM), suggesting that FGF signaling is not
necessary for progenitor proliferation, but when enhanced it is
sufficient to increase proliferation.

Increased FGF receptor activity reverses the age-related
decline in hippocampal neurogenesis

Neurogenesis in the rodent hippocampus declines dramatically
by 12 months of age with decreases in progenitor cell prolifera-
tion and survival of new neurons (Kuhn et al., 1996; Rao et al.,
2006; Jessberger and Gage, 2008; Lugert et al., 2010; Encinas et al.,
2011; Kuipers et al., 2015). The ability of FGF receptor activity to
increase neurogenesis in young adults prompted us to test
whether it could also reverse the compromised neurogenesis of
older mice. Three weeks post-tamoxifen, 12- to 14-month-old
control animals had few DCX+ neuroblasts, equal to only 2.4%
of that in the young 3- to 4-month-old control animals, with
simpler dendritic branches (Fig. 3A, B). In 12- to 14-month-old
LOF mutants, there was no statistically significant difference in
the number of neuroblasts compared with age-matched litter-
mate controls. However, in old Fgfr3-GOF mutants, the number
of neuroblasts was approximately three times higher than in lit-
termate controls (Fig. 3 A, B; control: 2.04 £ 0.32 cells/mm; LOF:
1.35 = 0.41; Fgfr3-GOF: 6.34 * 0.73; p < 0.001; mean * SEM),
and the morphology of the neuroblasts in Fgfr3-GOF mutants
was more complex with larger dendritic trees and more branches
compared with controls. As in young mice, the increase in the
number of neuroblasts was due to an increase in the number of
progenitors, rather than stem cells, which instead decreased per-
haps due to their activation and conversion to a progenitor state
(Fig. 3C; GFAP+Nestin+ cells: control, 14.5 + 1.3; LOF, 15.1 *
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FGF signaling is necessary to maintain stem cell numbers and sufficient for expanding progenitor cells. A, Neural stem cells, progenitors, and immature neurons in the hippocampal DG

were identified by combinations of markers. Neural stem cells (GFAP+Nestin+; carets) are decreased in LOF mutants but appear unchanged in Fgfr3-GOF mutants. Progenitor cells
(Nestin+DCX +; arrowheads) and immature neurons (DCX + only; arrows) are increased in Fgfr3-GOF mutants and decreased in LOF mutants. Lower (top) and higher (bottom) magnification views
are presented. B-D, Quantification of GFAP +Nestin +, Nestin +DCX+, and Nestin(—)DCX+ cells (B), Ki67 + cells (C) along with the percentage of DCX+ cells that were BrdU + aftera2 h BrdU
pulse (D); * and ** indicate significant differences with control, p < 0.05 and p << 0.001, respectively. Colabeling was quantified by confocal microscopy.

1.1; Fgfr3-GOF, 6.9 = 1.8; Nestin+DCX+ cells: control, 0.61 =
0.23; LOF, 1.12 * 0.29; Fgfr3-GOF, 3.16 = 1.0). In old control
mice, the number of new mature neurons (NeuN+BrdU+, 3
weeks after BrdU treatment) was only ~15% of that in young
controls. Unlike in young mice, the older LOF mutants produced
as many neurons as the older controls (control: 0.37 = 0.17 vs
LOF: 0.31 * 0.31 cells/mm, p > 0.05; mean = SEM), consistent

with decreased FGF signaling underlying the normal age-related
decline in hippocampal neurogenesis. In contrast, old Fgfr3-GOF
mutants generated approximately five times more new neurons
than old controls (control: 0.37 £ 0.17 vs Fgfr3-GOF: 1.84 = 0.35
cells/mm, p < 0.001; mean * SEM; Fig. 3C), reaching a level
comparable to that in normal young mice (young control: 2.56 *
0.31 vs old Fgfr3-GOF: 1.84 = 0.35 cells/mm, p > 0.05; mean *
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Increasing FGF receptor activity reverses the age-related decline in hippocampal neurogenesis. A, DCX+ immature neurons in the hippocampal DG significantly increase in 12- to

14-month-old Fgfr3-GOF mutants compared with littermate controls. Right, Typical examples of dendritic arborizations, which are more complexin Fgfr3-GOF mutants. Quantification of DCX+ cells
(B) and GFAP+Nestin+ and Nestin+DCX+ progenitor cells (C); * and ** indicate significant differences with control, p << 0.05 and p << 0.001, respectively. D, Confocal image of a newly
generated BrdU+NeuN+ neuron in a 12-month-old Fgfr3-GOF mutant. DAPI counterstain (blue). E, The number of new neurons increases in 12- to 14-month-old Fgfr3-GOF mutants to levels

comparable with young controls (mean == SEM; **p < 0.001).

SEM), indicating that FGF signaling is sufficient to reverse the
age-related decline in neuron production.

Discussion
Previous studies of FGFs in adult hippocampal neurogenesis
yielded inconsistent results. Here, using conditional genetic ap-
proaches to decrease or increase FGF signaling in adult stem/
progenitor cells in vivo, we find that FGF signaling is required in
stem cells to maintain their normal numbers but not sufficient to
increase them, suggesting that stem cell numbers might be at a
plateau in young adults. Conversely, in progenitor cells, FGF sig-
naling is not required to maintain their numbers or promote
their proliferation (with decreased progenitors in LOF mutants
due simply to decreased stem cells), but is sufficient to enhance
progenitor proliferation, leading to increased numbers of neuro-
blasts and neurons. The requirement for FGF receptors in main-
taining stem but not progenitor cells in the adult hippocampus is
reminiscent of their role in maintaining cortical radial glial stem
cells but not progenitors during development (Kang et al., 2009).
In this study, we used a constitutively active form of Fgfr3 to
increase FGF signaling. There is no conclusive evidence to date
that would allow us to predict that the use of constitutively active
forms of Fgfrl and/or Fgfr2 would have yielded similar results.
Nevertheless, previous studies support the notion that signaling
through FGFR1, FGFR2, and FGFR3 is functionally similar. A
transgenically expressed chimeric receptor composed of the ex-
tracellular and transmembrane domains of FGFR3 and the intra-
cellular domain of FGFR1 behaves like FGFR3 in chondrocytes
(Wang et al., 2001). In zebrafish, expression of constitutively ac-
tive forms of FGFR1, FGFR2, and FGFR3 each result in similar
phenotypes (Ota et al., 2009). Finally, when the three Fgfr genes,
Fgfrl, Fgfr2, and Fgfr3, are simultaneously deleted in developing
mouse tissues, dramatically more severe phenotypes are obtained
compared with single- or double-mutants (Saarimaki-Vire et al.,
2007; Kang et al., 2009, 2014; Pack et al., 2009; this study), sug-

gesting that the receptors likely compensate for each other by
signaling through similar intracellular pathways.

In the adult DG, ~50% of newly generated neurons die within
a month after their birth (Dayer et al., 2003). FGF signaling is
essential for cell survival in multiple developing tissues, including
the embryonic telencephalon and mid-hindbrain junction (Sato
etal., 2004; Zervas et al., 2005; Paek et al., 2009). Hence, we asked
whether FGF signaling also plays a role in the survival of newly
generated immature neurons in the adult hippocampus. How-
ever, TUNEL assays, anti-activated caspase3 antibody stains, and
Fluoro-Jade B staining did not reveal quantifiable cell death
(Biebl et al., 2000; White and Barone, 2001; as also reported by
others) regardless of genotype. Nevertheless, in older Fgfr3-GOF
mutants, although the number of DCX+ cells (neuroblasts and
immature neurons) is significantly increased compared with lit-
termate controls, it remains ~10-fold lower than young controls.
Despite this, the older Fgfr3-GOF mutants have numbers of new
mature NeuN+ neurons comparable to young controls, suggest-
ing that in addition to promoting proliferation, increasing FGF
signaling in older mice may promote the survival of newborn
neurons.

In fact, we show that increasing FGF receptor activity in neural
precursor cells of older adults reverses the decline in neurogen-
esis, returninglevels to those found in young adults. This finding,
together with a previous study that reported increased hip-
pocampal neurogenesis following intraventricular infusion of
FGF2 to old rats (Jin et al., 2003), suggests first that FGFs act
directly on hippocampal stem cells and second that the decrease
in neurogenesis with age is not only due to a decreased ability of
stem cells to generate new neurons or respond to FGF signals, but
also a decrease in the availability of ligands in their environment.
A scarcity of FGF ligands in the hippocampus with age could also
explain why disrupting FGF receptors in older adults does not
significantly reduce the already low levels of neurogenesis. Con-
sistent with the idea that decreased FGF ligands with age results in
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decreased hippocampal neurogenesis, expression of FGF2 in the
DG is reduced in old animals (Shetty et al., 2005). However, in
addition to FGF2, there are 22 other FGFs, some of which may be
expressed locally in the hippocampal stem-cell niche, and three of
which, the circulating endocrine FGFs, may reach stem cells in
the DG via their close association with the vasculature (Palmer et
al., 2000). Therefore, the identity of the FGF ligand(s) that affect
neurogenesis with age remains unclear.

The notion that stem cells in old mice can be activated to
restore neurogenesis is also supported by previous evidence. The
activity of neural precursor cells declines with age, yet their num-
bers do not necessarily decrease (Hattiangady and Shetty, 2008;
Lugert et al., 2010). Furthermore, exercise and environmental
enrichment in old mice can increase neurogenesis to more youth-
ful levels (Kempermann et al., 2002; van Praag et al., 2005), and
kainic acid-induced seizures can reactivate the proliferative state
of neural precursor cells (Rao et al., 2008; Lugert et al., 2010).
How exercise, environmental enrichment, or seizures activate
precursors is unknown, but it is interesting to speculate that these
factors act at least in part by stimulating FGF signaling.

Altogether, this study establishes FGF signaling as a critical
regulator of adult hippocampal neurogenesis in vivo. Further-
more, the ability of increased FGF signaling to restore neurogen-
esis in aging animals makes it a potential target for the prevention
or reversal of age-related deficits in hippocampal function.
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