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Although the visual system has been extensively investigated, an integrated account of the spatiotemporal dynamics of long-range signal
propagation along the human visual pathways is not completely known or validated. In this work, we used dynamic causal modeling
approach to provide insights into the underlying neural circuit dynamics of pattern reversal visual-evoked potentials extracted from
concurrent EEG-fMRI data. A recurrent forward- backward connectivity model, consisting of multiple interacting brain regions identi-
fied by EEG source localization aided by fMRI spatial priors, best accounted for the data dynamics. Sources were first identified in the
thalamic area, primary visual cortex, as well as higher cortical areas along the ventral and dorsal visual processing streams. Consistent
with hierarchical early visual processing, the model disclosed and quantified the neural temporal dynamics across the identified activity
sources. This signal propagation is dominated by a feedforward process, but we also found weaker effective feedback connectivity. Using
effective connectivity analysis, the optimal dynamic causal modeling revealed enhanced connectivity along the dorsal pathway but
slightly suppressed connectivity along the ventral pathway. A bias was also found in favor of the right hemisphere consistent with
functional attentional asymmetry. This study validates, for the first time, the long-range signal propagation timing in the human visual
pathways. A similar modeling approach can potentially be used to understand other cognitive processes and dysfunctions in signal
propagation in neurological and neuropsychiatric disorders.
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An integrated account of long-range visual signal propagation in the human brain is currently incomplete. Using computational
neural modeling on our acquired concurrent EEG-fMRI data under a visual evoked task, we found not only a substantial forward
propagation toward “higher-order” brain regions but also a weaker backward propagation. Asymmetry in our model’s long-range
connectivity accounted for the various observed activity biases. Importantly, the model disclosed the timing of signal propagation
across these connectivity pathways and validates, for the first time, long-range signal propagation in the human visual system. A
similar modeling approach could be used to identify neural pathways for other cognitive processes and their dysfunctions in brain

disorders. j

ignificance Statement

Introduction
To understand the fundamental principles of the human visual
system, it is crucial to know how visual signals are propagated,
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organized, processed, and transformed. Behavioral, anatomical,
physiological, and theoretical studies have revealed that the visual
system comprises of a complex hierarchy containing a mixture of
“bottom-up” sensory-driven and “top-down” feedback mecha-
nisms (Kastner and Ungerleider, 2000). The “bottom-up” theory
suggests that visual sensory information is first translated into
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neural impulses by specialized photoreceptors located in the ret-
ina; and subsequently, the information is projected via the lateral
geniculate nucleus of the thalamus to the primary visual cortex
(striate cortex or V1), which then proceeds to higher-order cor-
tical areas via the dorsal (occipitoparietal) and ventral (occipito-
temporal) pathways, believed to underlie visual spatial and visual
perceptual processing, respectively (Wang et al., 2012).

Evidence from macaque studies has revealed the presence of
reciprocal feedback connections in the majority of the cortical
pathways (Felleman and Van Essen, 1991). However, top-down
(e.g., attentional) modulations are not confined to cortical pro-
cessing (Wangetal., 2012) but can also occur within the thalamo-
cortical networks, as demonstrated by single-cell studies on
macaque (McAlonan et al., 2008), as well as fMRI studies in hu-
mans (O’Connor et al., 2002; Saalmann and Kastner, 2011).
Moreover, invasive studies in animals have investigated the tim-
ing (latencies) of signal propagation in the visual cortex (V1 and
V2) and throughout the visual pathways [including lateral genic-
ulate nucleus, V1-V4, middle temporal (V5/MT), and medial
superior temporal areas] (Nowak and Bullier, 1997; Schmolesky
et al., 1998). These high-resolution studies have quantified the
classical temporal hierarchy of information flow along the visual
pathways. However, the single-unit recordings may not be suffi-
cient to encode the information flow (neuronal populations are
required) and may not readily be applied and investigated in
human studies.

Noninvasive methods of evoked potentials are valuable for
detecting the temporal profile of visual processing due to its
reliability and high temporal resolution. In this context, several
neuroimaging studies have investigated the spatiotemporal char-
acteristics of neural generators in the visual system under a check-
erboard pattern reversal process (Barnikol et al., 2006; Di Russo
etal., 2007, 2012). For instance, using a combined visual-evoked
potentials (VEP)-fMRI source analysis, Di Russo et al. (2007)
showed that early pattern reversal VEP components (N75 and
P100) are generated in the medial occipital cortex (V1) while
N150 component is generated by contribution from several areas,
particularly the parietal lobe [motion selective (MT/V5) area]
as the major contributor and the mid-occipital (V3A) and ven-
tral occipital (V4/V8) cortices as minor contributors. Further,
Barnikol et al. (2006) investigated the anatomical identification
of the underlying sources and the sequence of their stimulus-
locked VEP activations. They used combined magnetoencepha-
lography (MEG), magnetic field tomography, and probabilistic
cytoarchitectonic maps of the visual cortex to remedy intersub-
ject and interhemispheric variability. Interestingly, they not only
found a consistent pattern of sequential and distinct activations
(e.g., N75 was generated in V1/V2) but also found evidence of
crosstalk among VC regions (between V1/V2 and V5 regions).
However, these studies have provided only piecemeal evidence of
the spatiotemporal dynamics of human visual processing, and an
integrated functional anatomy remained unclear.

In this work, we address the above limitations by modeling the
spatiotemporal dynamics of signal propagation across large-scale
brain networks. In particular, we analyze the hierarchical cortical
processing of the visual pathway using simultaneous EEG-fMRI
data and the hypothesis-driven framework of dynamic causal
modeling (DCM) (David et al., 2006). DCM models neural ac-
tivity dynamics at the level of neuronal populations and thereby
allows making an inference about connections within or between
specified cortical source units. We introduce an optimal DCM
model to analyze the signal timing of pattern reversal VEPs. Us-
ing a recurrent forward-backward model structure with seven
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Table 1. MRl acquisition parameters for T,-weighted structural and T,-weighted

functional scans

Geometric settings Contrast settings
T,-weighted structural scan
FOV (mm) 256 X 256 X 160 Scan mode 3D
Voxel size (mm) 1TX1X1 Technique FFE
Recon voxel size (mm) 1 Fastimagingmode  TFE
Recon matrix 256 Shot mode Multishot
Slice orientation Sagittal TE (ms) 3.9
No. of slices 160 Flip angle (°) 8
TR (ms) 8.5
T,-weighted functional scan
FOV (mm) 240 X 240 X 131 Scan mode MS
Voxel size (mm) 3X3X3.2 Technique FFE
Slice thickness (mm) 3.2 Fastimagingmode  EPI
Recon voxel size (mm) 3 Shot mode Single shot
Recon matrix 80 TE (ms) 28
Slice orientation Transverse Flip angle (°) 90
No. of slices 37 TR (ms) 2000
Gap (mm) 0.35 Dynamic scans 165

identified source areas distributed in the brain, we provide strong
evidence for these cortical source activities’ contributions to the
observed VEP. In addition, we show that, in higher cortical areas,
the dorsal pathway has stronger effective coupling gain to pri-
mary visual cortex than that of the ventral pathway.

Materials and Methods

Participants

In this study, 12 male volunteers participated. All were in good health,
had no history of neurological impairment, and had a normal or
corrected-to-normal vision. The participants were 19-52 years of age
(mean age 30 = 9 years). A specific handedness was not required for this
study. The subjects were recruited from both the university and hospital
staff community. They provided their written consent after being
described the nature of the study. Nobody was paid for his or her partic-
ipation. The study was undertaken in accordance with the declaration of
Helsinki, with full approval for the project sought from and obtained
from the ethical review committee in St. James’s Hospital, Dublin.

Data acquisition

fMRI acquisition. The fMRI acquisition was performed continuously on a
3T MRI scanner (Philips Achieva 3.0T, Philips Medical Systems), located
in the Centre for Advanced Medical Imaging, St. James’s Hospital, Dub-
lin, Republic of Ireland. The scanner was equipped with an 8-channel
SENSE head coil, which was used for all experiments. The participants
were comfortably positioned in the MRI scanner with their head inside
the head coil. To reduce head movement, several soft pads were placed on
both sides of the head. The subjects were instructed to maintain visual
fixation on the screen and keep the number of eye-blinks to a minimum
during the experiments.

For each subject, a high resolution T,-weighted structural scan was
initially acquired for anatomical overlay on the fMRI images. Following
this, 165 T, -weighted, echo-planar, functional scans with a repetition
time of 2 s were acquired, resulting in an overall acquisition time of 5.5
min for each fMRI experiment. The acquisition parameters are given in
Table 1.

EEG acquisition. The EEG data were acquired simultaneously with the
fMRI scanning using an MR-compatible EEG amplifier (BrainAmp MR,
Brain Products) and a 32-channel EEG cap (BrainCap MR, Brain Prod-
ucts). The electrodes were applied according to the international 1020
system and were referenced to FCz with a common forehead ground. All
electrode impedances were kept <10 k(). Because of the large gradient
artifacts induced by the MRI scanner, the data were sampled at 5 kHz,
with a resolution of 0.5 wV and a dynamic range of =16.4 mV ensuring
no amplifier saturation or aliasing effects. Furthermore, an additional
electrode was placed on the back of each subject to record the ballisto-
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cardiogram artifact during the scanning. The digitized data were trans-
mitted via an optical fiber out of the scanner room, avoiding any induced
currents by the alternating magnetic field.

Experimental paradigm

The visual stimuli were generated by using the software Presentation 14
(Neurobehavioral Systems). The designed visual stimuli were back-
projected by a color LCD projector (NEC MT1065, NEC) onto an Acryl
screen behind the scanner bore while continuing fMRI acquisition. The
subjects passively received the visual stimuli via a mirror integrated into
the head coil. In addition, the stimuli were also displayed on a computer
screen, which was located in the control room. In theory, the Presenta-
tion software provides stimulus timing at an accuracy of 1 ms. However,
the temporal resolution was limited by the refresh rate of the computer
monitor, which was set by default to 60 Hz. According to the Nyquist
theorem, the stimulating power was uniformly distributed over a range
from 0 to 30 Hz. Furthermore, Presentation controlled the synchroniza-
tion between the MR scanner, the EEG system, and the computer screen.
Therefore, different event markers were sent to the EEG recording system
simultaneously with the onset of every acquired brain volume and every
presented visual stimulus.

A black-and-white checkerboard pattern was reversed at a rate of 2 Hz
in a block design consisting of 15 s stimulation and 15 s rest conditions.
The checkerboard was composed of 8 X 8 checks. Each check subtended
a visual angle of 0.6° both horizontally and vertically, while the whole
checkerboard covered visual angles 0f 4.8°. During the rest periods, a gray
screen was shown. The mean luminance of the checkerboard was kept
constant throughout the entire experiment to avoid interfering flash
VEPs. However, the absolute stimulus luminance and spectral composi-
tion could not be measured.

Data analysis
EEG data analysis. The EEG signals were first corrected for gradient
artifacts (due to the switching of the imaging sequence of the MR scan-
ner) using the average artifact subtraction method (Allen etal., 2000) and
for ballistocardiogram artifacts (due to the interaction between the static
field of the MR scanner and the heart beats) using the PCA method
(Leclercq et al., 2009). Next, the data were filtered in the range between
0.5 and 30 Hz and down-sampled to 256 Hz. Experimental trials were
epoched from —50 to 250 ms relative to stimulus onset and baseline
corrected using the average over the peristimulus time window. This
period covered VEP components and was presumed to reflect almost all
changes due to stimulus variations during a VEP process. The trials in
which the signal on any channels exceeded +80 uV were marked as eye
blink or movement artifacts and rejected. Hence, an average 8.2% of
trials were rejected from responses of each subject. Compared with anal-
ogous works (Warbrick and Bagshaw, 2008; Lalor and Foxe, 2009; Odom
etal.,, 2010), we noticed a constant stimulus onset delay of ~50 ms in our
VEP components. Hence, we simply shifted the peristimulus time by 50
ms. Finally, to extract VEPs, we averaged trials using a robust averaging
method (Wager et al., 2005).

fMRI data analysis. The functional images were rereferenced to the
anterior commissure area and spatially normalized into MNI space. Af-
terward, the images were smoothed with 10 mm FWHM Gaussian ker-
nels using a third degree B-spline interpolation and voxel sizes of 2 X 2 X
2mm?°. A GLM analysis with a block design was exploited to evaluate the
fMRI data at the subject level. A regressor was defined for stimulation
response type and convolved with the canonical hemodynamic response
function to estimate the BOLD activity. The movement-related parame-
ters from realignment were also taken into account in the design matrix
during GLM analysis. To identify the ROIs, the statistical parametric
maps of group effects (assessed in the usual way using the summary
statistic approach to random effects or intersubject analysis) were ex-
tracted from stimulation contrast map using a cluster-level threshold of
p < 0.05, FWE corrected across the whole brain.

Asymmetric EEG-fMRI source localization

For each subject, we performed an EEG source localization constrained
by spatial priors from fMRI data, so-called asymmetric integration (Hen-
son etal., 2010). We used the fMRI contrasts obtained under stimulation
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condition to produce the 3-D volumetric image of the clusters as spatial
priors. The clusters were projected in MNI space to the closest vertices
of the canonical cortical mesh of each subject obtained from the
T,-weighted structural scan. Given the generated fMRI contrasts, we
inverted the VEPs using multiple sparse priors imaging source recon-
struction with the greedy search scheme. In the imaging approach, the
sensor data are projected into 3-D brain space using a large number of
fixed dipoles distributed over the cortical sheet. This allows for explora-
tion of larger regions of activity (Litvak et al., 2011). We selected greedy
search algorithm for fitting and optimizing the parameters of inversion
(Friston et al., 2008). This technique provides more plausible results
in comparison with other hyperprior models, such as independent
and identically distributed (minimum norm) and smoothness prior
(LORETA) (Henson et al., 2009). We followed the following steps for
performing EEG-fMRI source localization: (1) source space modeling
using a cortical mesh consisting of 8196 vertices, (2) data coregistration,
(3) forward modeling using boundary element method, and (4) inverting
the VEPs using multiple sparse priors imaging method, optimized by
greedy search algorithm and constrained by regions of interest from the
fMRI results.

DCM
We used DCM for evoked potential responses to quantify the coupling
changes (effective connectivity) and disclose the information propaga-
tion along the visual pathways. DCM relies on neural mass (i.e., neuronal
population-based) Jansen-Rit formulation to explain multiple coupled
source units (David et al., 2006). It can be specified by an input-state-
output process where a stimulus-dependent phasic input drives the
model to generate the source ( pyramidal) activity, and then the system
output is generated using a linear electromagnetic forward model
(Daunizeau et al., 2011). As in a typical DCM framework, the cortical
source model contains three subpopulations: excitatory deep pyrami-
dal cells, inhibitory interneurons (e.g., basket cells), and excitatory stel-
late cells. Within a cortical column, both pyramidal cells and inhibitory
interneurons are associated with the supragranular (II-III) and infra-
granular (V-VI) layers, whereas excitatory stellate cells are with the gran-
ular (IV). Their population dynamics are described by a collection of
second-order differential equations that embody the parameters related
to intrinsic (within area), extrinsic (between areas: forward, backward,
and lateral) connections, synaptic, input, and conduction delays (David
etal., 2006). The observation function is a lead field matrix (i.e., forward
model) that is parameterized by the location and orientation of each
source to account for the passive propagation of the electromagnetic field
from the source (average membrane potential of pyramidal cells) to the
sensor activity (EEG) with some observation errors (Kiebel et al., 2006).
To complete the process of model inversion, DCM uses an iterative op-
timization procedure called variational Laplace to minimize the com-
plexity (divergence) term and maximize the accuracy (energy) term
(Friston et al., 2007). This inversion scheme returns a (free energy ap-
proximation to) log model evidence that is used for Bayesian model
comparison (see below), where model evidence is accuracy minus com-
plexity. Indeed, the variational Laplace is a generalization of expectation
maximization algorithm where in each step the ensemble of a set (i.e.,
density) instead of a point is estimated. The parameters of the mean-field
under a fixed-form Laplace (i.e., Gaussian) assumption are factorized
into a set of Gaussian densities to facilitate the maximization process.
We selected to model the VEP data during the poststimulus period
0-250 ms under the checkerboard condition. For computational expe-
diency, we elected 8 singular value decomposition components corre-
sponding to spatial modes to explain the data in a reduced form. This
data reduction also prevents the modeling of artifacts (Kiebel et al.,
2006). We inverted models for each subject under the Bayesian optimi-
zation scheme and evaluated them using Bayesian model selection that
uses free energy as a measure of model evidence. To make group infer-
ence, we compared them by their exceedance probabilities (EP) under
the random effect assumption that takes the subject variability into ac-
count (Stephan et al., 2010). After the model selection, we inspected the
temporal profile of pyramidal source activities that are thought to be the
major contributor to the local field potentials or EEG signals.
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EEG scalp measures

EEG + fMRI

Figure 1.

TA: Thalamic area

LVC: Left visual cortex
RVC: Right visual cortex
LPP: Left posterior parietal
RPP: Right posterior parietal
LIT: Left inferior temporal
RIT: Right inferior temporal

Grand mean VEPs (averaged over 32 EEG channels across 12 subjects) for checkerboard stimulation at sensor and source levels. 4, The VEPs during the stimulation condition can be

characterized by an initial negativity at 100 ms (N1), followed by a positivity ~125 ms (P1) and a second negativity with a peak latency of ~170 ms (N2) after stimulus. B, The integrated EEG-fMRI
(i.e., EEGinverse problem aided by spatial priors of fMRI), disclosed source responsesin TAin 9, IT cortexin 9, PP cortexin 10, and VCin 12 of 12 subjects. The glass brain results are displayed in axial,

sagittal, and coronal views.

Software note

We used FASST.2 (montefiore.ulg.ac.be/~phillips/FASST .html) to re-
move the BCG and gradient artifacts from EEG data, EEGLAB version
10.0.0.0b (scen.ucsd.edu/eeglab), and custom MATLAB scripts to visu-
alize the results in 3-D space, and SPM12 version 6225 (www.fil.ion.ucl.
ac.uk/spm) to perform the DCM and source analyses. All toolboxes are
implemented in MATLAB (The MathWorks).

Results

EEG and fMRI data analysis

The group-averaged VEPs to the checkerboard stimulation over
scalp electrode locations exhibited large-magnitude responses lo-
calized to the visual cortices (occipital lobe) with a peak at 125 ms
after stimulus (Fig. 1A). In particular, the VEPs during the stim-

ulation condition characterized by the classic triphasic pattern
consisted of an initial negative component at ~100 ms (N1),
followed by a pronounced positive peak ~125 ms (P1) and
a second negativity with a peak latency of ~170 ms (N2) after
stimulus, consistent with previous works (Warbrick and Bag-
shaw, 2008; Lalor and Foxe, 2009; Odom et al., 2010).

Figure 1B shows the results of EEG source localization con-
strained by spatial priors of fMRI, which gave rise to seven prom-
inent source areas. The areas consist of the thalamic area (TA),
left/right visual cortex (LVC/RVC), left/right inferior temporal
cortex (LIT/RIT), and left/right posterior parietal (LPP/RPP).
The area detected by source localization in the deep brain is the
thalamic area based on its proximity and its temporal profile (Fig.
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Neural circuit model architectures assumed for pattern reversal VEPs. A, Model 1 s a feedforward (bottom-up) cortical hierarchy, B, Model 2 is a forward— backward process with a

feedback connection from PPs areas to V(s on the ipsilateral side. €, Model 3 is a recurrent forward— backward process with two backward connections from PPs and ITs to VCs on the ipsilateral side.
The maxima in the source reconstructed images (Fig. 1B) provided the location priors for the equivalent current dipoles assumed by the point sources in DCM. The MNI coordinates (mm) of the sources
areasfollows: TA:x =0,y = —5,z="10;lVCx= —12,y = —98,z= —10;RVC:x =12,y = —98,z= —6; LIT:x = —45,y = —65,z = —20;RIT:x = 45,y = —65,7 = —20; LPP:
x= —25y= —70,z=35RPP:x = 25,y = —70,z = 33. Segmented circle of the TA represents direct dipole estimation without an explicit neural model.

1B; see Propagation of neural activities along the visual path-
ways). In the localization procedure, the sources were identified
as they peaked with the largest conditional estimates of evoked
power [sum of squared source activity over the selected time, i.e.,
maximum intensity projection (MIP)]. The sources in the order
of MIP values were the TA, RVC, LVC, RPP, LPP, RIT, and LIT
areas. The whole-brain GLM analysis of fMRI data similarly re-
vealed clusters in the following: RVC, t = 13.97, 1303 voxels;
LVC, t = 13.23, 871 voxels; RPP, t = 4.45, 124 voxels; LPP, t =
3.73, 102 voxels; RIT, t = 3.4, 15 voxels; LIT, t = 3.1, 10 voxels;
and TA, t = 2.5, 8 voxels. Some minor activations were found in
the frontal areas of 6 of 12 subjects (t = 2, 5 voxels) that might be
related to attentional modulation (Corbetta and Shulman, 2002).
Both integrated EEG-fMRI and GLM analysis of fMRI data sug-
gested stronger activity and spatially extensive responses in the
right hemisphere with respect to the left.

Model selection

Figure 2 shows the anatomical structure of the three plausible
neural circuit models investigated, each containing seven source
areas based on the above reconstruction results. For simplicity,
we did not consider the bilateral frontal areas in our model hy-
pothesis due to having lower active voxels (GLM analysis) and
low MIP values (source localization). Moreover, to reduce the
model parameters, we did not explicitly develop a neural model
for the thalamic activity but directly fed its dipole source activity
to the cortical neural model as inputs. In other words, in contrast
to standard implementations of DCM, we replaced the simple
(Gaussian) thalamic input with empirically reconstructed tha-
lamic responses that contributed to the measured signal and
drove higher (cortical) sources [the SPM code (“spm_erp_u.m”)
was edited to accommodate empirical inputs]. The thalamic
source activity was estimated in the approximate coordinates of
x =0,y = =5,z = 10 in MNI space. The structural models
investigated differ in terms of extrinsic forward and backward
connections. Model 1 is a purely feedforward (“bottom-up”) cor-
tical hierarchical model, in which the visual stimuli are processed
in an ascending fashion along the pathways (Fig. 2A). In this
hypothesis, the visual information that is bilaterally entered from
the retina into the thalamus relays to the contralateral side of the
primary visual cortex and then continues along the two parallel
ventral (inferior temporal) and dorsal (posterior parietal) path-
ways. Model 2 is similar to model 1 but has an extra feedback
connection from PPs to VCs on the ipsilateral side (Fig. 2B).
Model 3 represents a recurrent forward—backward process with
two extra backward connections from PPs and ITs to VCs on the
ipsilateral side (Fig. 2C). DCMs were inverted for each subject
under the checkerboard condition. The group Bayesian model
selection gave rise to a substantially higher exceedance probabil-

ity for model 3 ((EP; = 0.83) > (EP, = 0.16) > (EP, = 0.01)).
Hence, this model was selected for our subsequent analyses.

Propagation of neural activities along the visual pathways

We inverted the most probable DCM model for the grand mean
(12 subjects) VEPs under stimulation condition. Figure 3 shows
the reconstructed results at both source and sensor levels. At the
source level, responses in the thalamic area presented a temporal
profile with a main positive peak ~70 ms after stimulus (Fig. 3A).
Driven by the thalamus, the VC areas then produced a profile,
with similar temporal characteristics at the peaking region as the
cortical sensor level VEPs (i.e., both peaked at 125 ms after stim-
ulus in Fig. 3A,C). The IT and PP sources revealed amplitude-
reduced and temporally delayed type of responses of the VC
source activity (Fig. 3B). Interestingly, we found that the PP
sources have greater activities than the corresponding IT sources
in both brain hemispheres for VEPs from grand average (Fig. 3B)
and for most of the individuals (9 of 12) (Fig. 4). Moreover, the
right sources were stronger than the corresponding left sources.
This could perhaps be caused by the slightly higher biased atten-
tion in the left hemifield (for further evidence, see Effective con-
nectivity analysis). In sensor space, the first principal component
of estimated responses after 50 ms after stimulus indicated a close
match with observed measurements for stimulation condition
(Fig. 3C). The projected 3-D scalp topographic maps further ver-
ified the accuracy and consistency of the estimates obtained from
the model (Fig. 3D).

After analyzing the grand mean VEPs, we investigated the
source signal propagation timing of the individual’s VEP. Con-
sistent with group responses in Figure 3, subjects generally pro-
vided similar evidence for the dominance of dorsal over ventral
pathways and right over the left hemisphere. Figure 4 shows the
estimated VEP source activities of 4 of 12 subjects during stimu-
lation condition. As evident in Subjects 1, 7, and 12, the activity of
right sources in the visual cortex as well as in two streams is
greater than the contralateral side (left). This effect can be also
seen in the results of the Subject 3, but with the direction reversal.
In total, we found a dominance of the right hemisphere in the
results of 9 of 12 subjects.

Effective connectivity analysis

In addition to analyzing the source signal propagation, we inves-
tigated the effective connectivity among the considered brain re-
gions. Specifically, based on the inverted optimal model for grand
mean VEPs, we evaluated the effective couplings among cortical
regions and the posterior correlations. Figure 5 summarizes the
results in terms of the percentage change in coupling gains (val-
ues in bold with yellow background), the occurrence probability
for each modulated connection (values in parentheses with yel-
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Modeled pattern reversal VEPs. 4, B, Time course source activities obtained from DCM analysis of grand mean VEPs. Results representing neural source activities with one zoomed area.

€, Sensor level responses representing the first principle components (spatial modes) of estimated (solid), observed (broken) VEP responses to stimulation condition. D, 3-D topographical maps of
observed and estimated VEP responses within checkerboard condition from the optimal DCM model.

low background), and interdependency among extrinsic connec-
tions that are overlaid on the structural model hypothesis (values
with orange background). The conditional probability >0.95 is
approximately equivalent to a significant p value of 0.05 (Stephan
etal., 2008). It should also be noted that, when discussing about a
modulation or gain of a connection, the modulation is in relation
to the prior expectation. In DCM, effective connectivity param-
eters are modeled as log-scale parameters, which we report in
terms of a proportional increase or decrease, relative to the prior
mean.

In terms of forward connections or feedforward process, the
strongest coupling was that from thalamus to right and left visual
cortices with gains of G = 3.61 and 2.21, respectively. This was
followed by two coupling gains, of G = 1.91 with occurrence
probability of 1.00 from RVC to RPP, and G = 1.60 (0.82) from
LVC to LPP, where both were stronger than the coupling gains of
left and right VC to RIT (G = 0.93 (0.94)) and LIT (G = 0.82
(0.91)) on the ipsilateral sides. Next, we analyzed the conditional
correlation (normalized auto-covariances) matrix among the
forward connections. A positive conditional correlation suggests
that the mirror pathways between the two hemispheres are sym-
metrical, whereas a negative conditional correlation indicates

asymmetry. We found positive values in connections between
RVC-RPP and LVC-LPP (r = 0.45). Hence, this may infer the
equal propagation of signals between the hemispheres for the
VC-to-PP pathway. In contrast, a negative correlation was found
for the VC-to-IT pathway (r = —0.30), suggesting asymmetrical
signal flow along the ventral streams between the hemispheres.

In terms of “top-down” or backward connectivity effects, en-
hanced effective connectivities were found from PPs to VCs in
both right (G = 1.61 (1.00)) and left hemispheres (G = 1.42
(0.95)). These backward connectivities were stronger than those
from IT to VCs (to right VC, G = 0.71 (0.63); to left VC, G = 0.73
(0.68)) and more probable on both sides. This implies a greater
contribution of dorsal than ventral pathways perhaps due to at-
tentional top-down process (Corbetta and Shulman, 2002). The
backward connectivity is generally weaker than the forward con-
nectivity, consistent with previous works (Felleman and Van Es-
sen, 1991; Bastos et al., 2015).

We further examined the differences in extrinsic connectivity
parameters of the most likely model at the group level under
Bayesian parameter averaging (Stephan et al., 2010). Table 2
shows the average connectivity estimate of forward and backward
connections along with their SDs and posterior or conditional
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Figure4. Reconstructed sources of four representative VEPs of 12 subjects. The results were obtained in separate runs with the
similar model structure as in Figure 2C.

correlations. The Bayesian parameter averaging generally gave
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corresponding coupling on the left hemi-
sphere. Moreover, both forward and back-
ward (or feedback) connections from the VC
to PP areas were stronger than that of VC to
IT areas. However, it is important to note
that one should not overinterpret the con-
ditional or posterior correlations in terms
of underlying neurophysiology. This is
because they reflect conditional depen-
dencies that can be introduced by ineffi-
cient estimation. In other words, if two
model parameters change to produce
very similar differences in sensor space,
they generally have negative posterior
correlations.

Discussion

We have validated, in an integrated way, the
relative timing of long-range signal propa-
gation of neural sources along the human
visual pathways. This was achieved by ap-
plying a DCM approach to simultaneous
EEG-fMRI data under a pattern reversal
VEP task. The computational model was
constrained by known neurobiology and
the EEG-fMRI data. The specific brain re-
gions were modeled based on the inverse
EEG source localization aided by fMRI spa-
tial priors.

Our source estimation and connectivity
model approaches to VEPs characterized
the temporal profile of the neural activities
of visual processing in the human cortex. In
particular, we made use of the temporal
profile of the reconstructed thalamic activity
as inputs to the cortical neural models. This
provides a more realistic inputs than typi-
cally used in DCM (David et al., 2006). In
addition, the activities of VCs at the source
level showed consistency in terms of the
temporal characteristics with the first prin-
cipal component of estimated scalp mea-
surements (both peaked at 125 ms; Fig.
3A,C), confirming the VC sources as the
major contributors to the scalp measure-
ments. Importantly, the model quantified
the timing of propagation of signals from
thalamus to the primary VCs, followed by
the PPs (dorsal pathway) and the ITs
(ventral pathway). This sequence of
activated signals was also found to be att-
enuated, which is expected in signal prop-
agation within neural networks (Vogels et
al., 2005). Therefore, our current study
provides an integrated large-scale picture
of visual signal propagation within the
human brain.

Using effective connectivity analysis,
we have shown that the simple visual pas-
sive stimuli, such as pattern reversal

rise to consistent results with the effective connectivity analysis of ~ (checkerboard), activates the dorsal pathway while suppressing
grand mean VEPs in Figure 5. For instance, the coupling gains of ~ the ventral pathway. This ventral pathway inhibition may also
the connections on the right hemisphere were stronger than the  arise from higher level cognition (e.g., from the frontal cortex),
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although our EEG-fMRI analysis only
picked up weak frontal activation (Fig.
1D). This confirms that the frontal cortex
is less involved in passive stimulus-driven
(e.g., pattern reversal) than active task-
driven experiments (e.g., controlling the
location of attention or memory acti-
vity) (Corbetta and Shulman, 2002). The
model also showed that backward interac-
tions or “top-down” influences are higher
in the dorsal than ventral pathways, per-
haps hinting the presence of “top-down”

N
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processing in the former than the latter. i
This is consistent with previous experi- LvC - I;PP :1.60 (0.82) S = R L

mental studies on humans and monkeys,
where the parietal cortex was shown to
be generally involved in attentional “top-
down” processing whereas temporal cor-
tex contributes more to object recognition
processing (Kastner and Ungerleider, 2000;
Corbetta and Shulman, 2002).

Based on our GLM-fMRI and DCM-
EEG analyses (Fig. 5), we found a bias favor-
ing the right hemisphere, which can be
originated from nondominant (left) hemi-
field. This functional attentional asymmetry
has been linked to “pseudoneglect” (Bowers
and Heilman, 1980). This behavior (i.e., vi-
sual right hemisphere cerebral lateraliza-
tion or leftward spatial bias) has also been
observed in recent neuroimaging studies
(Hougaard et al.,, 2015; Loughnane et al.,
2015). However, we suggest that such be-
havior may potentially be more systemati-
cally investigated using model-driven connectivity analysis
techniques used in this study.

The results and approaches in this work have several impor-
tant implications. The computational model, which was tied
closely to experimental (neuroimaging and neurobiological)
data, has helped to validate and quantify the specific timing and
propagation of brain activity, and provides an important funda-
mental step toward an improved understanding of human vis-
ual processing. Based on the effective connectivity analysis, the
model not only indicates bottom-up sensory processing but also
suggests top-down processing, despite the simplicity and passiv-
ity of the task.

There are previous studies using the DCM approach to inves-
tigate the hierarchical processing of sensory stimuli in the human
cortex, wherein the interactions among forward and backward
(reciprocal) connections are used to explain the underlying
mechanism of a cognitive phenomenon. Earlier works by Biichel
and Friston (1997) and Friston et al. (2003) attempted to explain
the attentional modulation of evoked responses in early visual
cortices based on connectivity changes in fMRI sources. Later,
Garrido etal. (2008) used the DCM for evoked potentials to show
that the mismatch negativity responses during an auditory odd-
ball task can be explained by a message-passing hypothesis called
predictive coding. Under this hypothesis, neural responses to
unpredictable stimuli are enhanced (relative to responses due to
predictable stimuli) due to larger prediction error caused by feed-
back loops in higher level sensory hierarchies. In another study,
Chen et al. (2009) applied DCM for induced (spectral) responses
measured with MEG during face perception. Based on evidence

Figure 5.

areas.

LPP — LVC: 1.42 (0.95)
LIT — LVC: 0.73 (0.68)

----- .
RVC — RIT : 0.93 (0.94)

Lve

RPP — RVC: 1.61 (1.00)
RIT — RVC: 0.71 (0.63)

[ Conditional correlation
Conditional mean (probability)

Effective connectivity analysis of VEPs. The conditional means (bold values with yellow background) represent the
percentage change in coupling gains of the extrinsic connections. The conditional probabilities of the modulated connections
(values in parentheses with yellow background) indicate the occurrence of the nonzero effect of stimulation (checkerboard)
condition. The conditional correlations of extrinsic connections (values with orange background) indicate the symmetry among
connections between hemispheres. The positive conditional correlation of 0.45 indicates a rather hemispheric symmetrical flow
from VCto PP areas, whereas the negative conditional correlation of —0.3 indicates asymmetrical information flow from VCto IT

Table 2. Connectivity parameters provided by Bayesian parameter averaging over
12 subjects’

Source Target Estimate SD p
Forward connections
RVC RPP 2.51 0.59 1.00
LvVC LPP 1.61 1.01 0.95
RVC RIT 1.12 0.32 0.90
LvC LIT 0.91 0.41 0.81
Backward connections
RPP RVC 1.75 0.31 0.91
LPP LvC 131 0.12 0.95
RIT RVC 0.65 0.15 0.65
LIT LVC 0.45 0.10 0.75

“Estimate, Parameter magnitude estimate; p, conditional probability.

for functional asymmetries between forward and backward con-
nections, they concluded that the forward connections in the
lower cortical area led to higher (7y) oscillations, whereas their
interactions with backward connections in higher cortical areas
led to lower (B) oscillations.

However, an important aspect missing in the above and
related studies is the signal timing of source activities, which
along with connectivity change, can provide a better un-
derstanding of the spatiotemporal dynamics of signal pro-
pagation across large-scale brain networks. Such timing
information could potentially be important to delineate cog-
nitive mechanisms and identify brain disorders. Also, our ex-
perimental task is sufficiently simple and passive without
involving complex higher cognitive processing, which may
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mask the bottom-up visual processing. Hence, this can pro-
vide a “baseline template” for investigating more complex vi-
sual tasks. Another advantage of our work is making use of
multimodalities (simultaneous EEG and fMRI) to improve
source localization, which leads to better model accuracy. Fur-
thermore, the input signals to our cortical neural models are
based directly from the source (i.e., thalamic) activity and not
model-based, thus, more realistic input temporal profile while
reducing the number of model parameters.

In general, the DCM and effective connectivity analysis
approaches can generally be extended to other data types (e.g.,
MEG), other stimuli, and cognitive processing, especially
when timing and signal propagation are crucial (David et al.,
2006). A relevant area to be applied would be visual perceptual
decision-making tasks (Philiastides and Sajda, 2007; Ostwald
et al., 2012), where cortical neural mass or mean-field
decision-making models have already been developed (e.g.,
Wong and Wang, 2006; Niyogi and Wong-Lin, 2013). As men-
tioned above, dysfunctions in signal propagation have been
implicated in neurological and neuropsychiatric disorders
(Nédtanen et al., 2011). For example, multimodal sensory in-
tegration has been suggested to be important in falls in elderly
people (Lewkowicz and Ghazanfar, 2009). Our approach,
which can elucidate the temporal profiles and propagation of
cortical and subcortical source activities (Fig. 3), together with
the coupling gains among the brain regions (Fig. 5), may po-
tentially be useful for detecting signal processing disruptions
caused by brain disorders (or lesions), such as visuospatial
neglect (Kastner and Ungerleider, 2001; Corbetta and Shul-
man, 2011) or schizophrenia (Lalor et al., 2012).
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