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Visual Landmark Information Gains Control of the Head
Direction Signal at the Lateral Mammillary Nuclei

Ryan M. Yoder, James R. Peck, and X Jeffrey S. Taube
Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755

The neural representation of directional heading is conveyed by head direction (HD) cells located in an ascending circuit that includes
projections from the lateral mammillary nuclei (LMN) to the anterodorsal thalamus (ADN) to the postsubiculum (PoS). The PoS provides
return projections to LMN and ADN and is responsible for the landmark control of HD cells in ADN. However, the functional role of the
PoS projection to LMN has not been tested. The present study recorded HD cells from LMN after bilateral PoS lesions to determine
whether the PoS provides landmark control to LMN HD cells. After the lesion and implantation of electrodes, HD cell activity was recorded
while rats navigated within a cylindrical arena containing a single visual landmark or while they navigated between familiar and novel
arenas of a dual-chamber apparatus. PoS lesions disrupted the landmark control of HD cells and also disrupted the stability of the
preferred firing direction of the cells in darkness. Furthermore, PoS lesions impaired the stable HD cell representation maintained by
path integration mechanisms when the rat walked between familiar and novel arenas. These results suggest that visual information first
gains control of the HD cell signal in the LMN, presumably via the direct PoS¡ LMN projection. This visual landmark information then
controls HD cells throughout the HD cell circuit.
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Introduction
Most mammals are able to reliably perceive their momentary
directional heading relative to the environment. In rodents, this
directional perception is thought to be encoded by head direction
(HD) cells, which are located throughout the limbic system (for
review, see Taube, 2007). This HD cell signal appears to be gen-
erated from self-movement information that arrives from the
vestibular system, but proprioceptive and/or motor efference
cues also play a major role in updating the signal during move-
ment (Taube and Burton, 1995; Blair et al., 1997; Stackman and
Taube, 1997; Frohardt et al., 2006; Yoder et al., 2011a). Although
these idiothetic cues are important for generating and updating
the signal, visual landmarks dominantly control the preferred
firing direction of the HD cell when these cues are available (Goo-
dridge and Taube, 1995; Zugaro et al., 2003). The neural circuit
responsible for providing this “landmark control” to the HD
signal is not fully understood but is particularly important for our
understanding of navigation and spatial learning.

HD signal generation appears to occur within the reciprocal
connections between the dorsal tegmental nuclei and the lateral
mammillary nuclei (LMN), in which vestibular, motor efference

copy, and optic flow information arrive from the medial vestib-
ular nucleus, nucleus prepositus hypoglossi, supragenual nu-
cleus, and paragigantocellular reticularis nucleus (Taube and
Bassett, 2003; Song and Wang, 2005; Biazoli et al., 2006). From
the LMN, the HD signal is projected bilaterally to the anterodor-
sal thalamus (ADN), which projects to various cortical areas,
including the postsubiculum (PoS), retrosplenial cortex, and me-
dial entorhinal cortex (MEC; Shibata, 1993; Van Groen and
Wyss, 1995; Blair et al., 1999). This ascending HD cell circuit
appears to provide idiothetic information to higher brain struc-
tures, which may use this information to guide navigation when
necessary.

Idiothetic cues can guide navigation, but most mammals (and
many birds, fish, and other invertebrates) rely on visual land-
marks when they are perceived as reliable indicators of position
(Gallistel, 1990). Accordingly, visual information dominantly
controls navigation and HD cells when landmarks are perceived
as stable (Goodridge and Taube, 1995, Knierim et al., 1995), sug-
gesting that a descending projection may provide visual input to
HD cells. This visual input presumably originates in area 17,
which may influence the HD signal via a direct projection to the
PoS (Vogt and Miller, 1983). The PoS projects directly to ADN,
and removal of the PoS disrupts landmark control of ADN HD
cells (Goodridge and Taube, 1997), suggesting that the PoS may
influence ADN HD cells via the direct PoS ¡ ADN projection
(van Groen and Wyss, 1990a). However, visual information also
controls the HD signal upstream from ADN, in the LMN (Blair et
al., 1998; Stackman and Taube, 1998), and this visual input may
arrive via the unilateral PoS ¡ LMN projection (Shibata, 1989;
van Groen and Wyss, 1990a; Yoder and Taube, 2011b). To test
this hypothesis, we evaluated the response of LMN HD cells to
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visual cue manipulations after bilateral excitotoxic lesions of the
PoS. To determine whether the PoS also contributes to path in-
tegration, we evaluated the stability of HD cells during darkness
and in the dual-chamber apparatus where animals walk between
familiar and novel arenas.

Materials and Methods
Subjects and training
All experimental procedures were approved by the Dartmouth College
Institutional Animal Care and Use Committee and conformed to the
standards outlined in the National Institutes of Health Guide for the Care
and Use of Laboratory Animals. Female Long–Evans hooded rats were
used (n � 19; age, 3–12 months; weight, 255– 414 g at the time of sur-
gery). All rats were pair-housed preoperatively and housed individually
postoperatively in the same colony room with a 12 h light/dark cycle.

Electrodes
A movable multielectrode microdrive was constructed as described pre-
viously (Kubie, 1984). Each microdrive consisted of ten 25-�m insulated
nichrome wires (California Fine Wire) encased by a 26 gauge stainless
steel cannula. Each wire contacted one gold pin of a modified 11-pin
Augat connector. Dental acrylic was used to encase the cannula, wires,
and connector and to hold the heads of three drive screws. The finished
electrode drive provided connections for 10 recording electrodes (tip
impedance, �2 M�) and one ground connection. After construction,
the tips of the drive screws were threaded into custom-built plastic cuffs,
which would later be cemented to the skull. These cuffs provided a fixed
base into which the screws were advanced to lower the electrodes into the
brain. Before surgical implantation, the electrode bundle was sterilized
and coated (except for the tips) with polyethylene glycol (Carbo wax) to
provide stability to the electrode wires as they were positioned in the
brain.

Surgery
Rats were anesthetized with sodium pentobarbital (Nembutal; 50 mg/kg
body weight) and positioned in a stereotaxic apparatus (David Kopf
Instruments) with bregma and lambda on the same plane. Some rats
received only electrode implants (n � 6), whereas other rats received
excitotoxic injections of 100 mM NMDA into the PoS (n � 11). Because
excitotoxic injections produced some damage to visual and retrosplenial
cortical areas overlying the PoS, two additional animals received excito-
toxic injections into the overlying cortex and were compared with non-
lesion controls.

A glass pipette was used for all injections. Each pipette was pulled to a
point, and the tip was broken (�50 �m). The pipette was then backfilled
with 100 mM NMDA dissolved in 0.9% saline. The scalp was retracted,
and holes were drilled above the PoS. Dura mater was removed, and the
glass pipette was lowered into the PoS or the overlying cortex. Coordi-
nates and volume for the PoS and cortex injections were based on a
stereotaxic atlas (Paxinos and Watson, 1998) and are listed in Table 1.

Rats received an electrode implant immediately after NMDA injection
during the same surgery. A hole was drilled through the skull over the

LMN, and the dura mater was removed. Six additional holes were drilled
in the frontal, parietal, and occipital bones, and a small screw (Small
Parts) was threaded into each hole to provide a secure anchor for the
electrode. The electrode bundle was then lowered into the brain until the
wires were dorsal to the LMN (bregma, �4.55 mm anteroposterior, �1.0
mm mediolateral, �8.5 mm dorsoventral). The plastic screw cuffs were
then fastened to the skull with Grip Cement (DENTSPLY International).
The scalp was sutured around the implant, and buprenorphine (0.015 mg/
kg) was administered as a postoperative analgesic. The animal was allowed to
recover at least 1 week before commencing recording procedures.

Apparatus
Tracking and signal processing. All recording procedures were conducted
in a dedicated recording room. This room included a black curtain that
extended from the ceiling to the floor around the arena (�2.5 m diame-
ter) to discourage the detection of visual cues outside of the arena. A
white-noise generator produced white noise that was played through an
overhead speaker to discourage the detection of random auditory cues.

A head stage containing a 10-channel unity gain operational amplifier
and two light emitting diodes (LEDs; red for anterior and green for
posterior) was connected to the electrode drive. The two LEDs were
separated by 11 cm along the longitudinal axis of the rat with the red LED
positioned above the rat’s snout and the green LED positioned above the
rat’s back. The head stage was connected to a flexible 25-conductor cable,
which transferred the electrode signals to an overhead commutator. Af-
ter the commutator, electrical signals were amplified (P5 series; Grass
Instruments) and bandpass filtered (300 –10,000 Hz) before auditory
and visual display on a loudspeaker and oscilloscope (model 2214; Tek-
tronix), respectively. A dual time–amplitude window discriminator
(model DDIS-1; BAK Electronics) was used to isolate single-unit spikes
from background noise and produced an electrical square-wave pulse
during spike detection. An overhead video camera (SONY XC-711) was
used to monitor the positions of the red and green LEDs at 60 frames/s.
Signals generated by the window discriminator at the occurrence of
single-unit spikes and the concurrent LED positions were acquired by
a computer (MacIntosh G4; Apple) running Labview software (Na-
tional Instruments).

Arenas and screening/recording procedures. We used two recording are-
nas and procedures. The first arena consisted of a gray cylinder (diame-
ter, 76 cm; height, 51 cm). A polarizing white cue card that subtended
�100° of arc along the wall surface was taped to the inside wall of the
cylinder (Taube et al., 1990a). The cylinder was positioned on matted
gray floor paper, which was replaced between recording sessions. Rats
were screened daily for HD cells as reported previously (Taube, 1995a).
Briefly, electrodes were connected to the head stage, and the rat was
placed in the cylindrical recording arena. During screening and record-
ing sessions, rats foraged for 20 mg sugar pellets (Bio-Serve) dropped
from an overhead food dispenser at pseudorandom time intervals
around a 30 s average. Each of the 10 recording channels was evaluated
for single-unit activity with �2:1 signal-to-noise ratio (SNR). During
detection of single-unit action potentials, the window discriminator was
adjusted to isolate these waveforms from background noise. The occur-
rence of single-unit spikes was assessed visually for directional modula-
tion, during which cell activity was recorded using a cue rotation
procedure (Fig. 1A; Yoder and Taube, 2009). Briefly, this procedure in-
cluded monitoring HD cell activity during five consecutive sessions: (1)
standard (8 min), in which the white cue card is positioned in the stan-
dard position; (2) rotation (8 min), in which the white cue card is rotated
90° clockwise (CW) or counterclockwise (CCW) from the standard lo-
cation; (3) standard (8 min), in which the white cue card is returned to
the standard location; (4) darkness (16 min), in which the white cue card
is removed from the cylinder and the overhead lights are extinguished;
and (5) standard (8 min), in which the white cue card is replaced at the
standard location and the lights are turned on. Before the beginning of
each session, the rat was placed in an opaque container, and the experi-
menter slowly carried the animal around the outside of the arena in both
directions while rotating the container to disorient the animal.

The second arena was the dual-chamber apparatus, which consisted of
a cylinder (diameter, 76 cm; height, 43.5 cm) connected to a rectangular

Table 1. Stereotaxic coordinates for NMDA injection into the PoS and overlying
cortex

Site
Anteroposterior
(mm)

Mediolateral
(mm)

Dorsoventral
(mm)

Volume/
site (�l)

PoS �6.7 2.7 �4.0 0.3
�6.8 2.8 �3.5 0.3
�7.3 2.8 �3.5 0.3
�7.3 3.5 �4.2 0.3
�7.6 3.2 �4.2 0.3

Cortex �6.7 2.7 �2.5 0.2
�6.8 2.8 �2.5 0.2
�7.3 2.8 �2.5 0.2
�7.3 3.5 �2.5 0.2
�7.6 3.2 �2.5 0.2
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chamber (51 � 68.5 cm) with slanted walls via a passageway (width: 15
cm; center axis length of the long runway: 40.5 cm). The cylinder con-
tained a manually operated door that opened into the passageway. The
rectangular chamber contained a white visual cue card that was shifted
90° CCW relative to that of the cylinder. The dual-chamber apparatus
procedure was conducted as described previously (Taube and Burton,
1995). Briefly, after HD cell assessment in the five sessions described
above, the rat was placed in the dual-chamber apparatus where three
recording sessions were conducted: (1) standard cylinder (8 min), in
which the rat was placed in the cylindrical compartment with the cue
card in the standard position; (2) novel rectangle (8 min), in which the
door of the cylinder was opened to allow the rat to enter the passageway
and rectangle, at which point the door of the cylinder was closed to
prevent reentry to the cylinder; and (3) return cylinder (4 min), in which
the door of the cylinder was opened and the rat was permitted to enter the
cylindrical compartment, at which point the door was closed to confine
the rat to this compartment.

Data analysis
HD tuning curves. The rat’s HD was determined by calculating the angle
between the positions of the anterior (red) and posterior (green) LEDs
within a 256 � 256 pixel field at 60 frames/s. HD during each 16.667 ms
epoch was then sorted into 60 6° bins. The average firing rate as a function
of HD within a session was calculated by dividing the total number of
spikes by the amount of time the HD was within the angular limits of each
bin. Data from cells that appeared to exhibit an increased firing rate as a
function of HD were subjected to a Rayleigh test (Batschelet, 1981) to deter-
mine whether firing occurred randomly or clustered in a particular direc-
tion. Although a criterion of r � 0.20 indicates significant directionality,
these cells were not classified as HD cells because their tuning curves did not
resemble those of “classic” HD cells, which have Rayleigh values �0.40.

Quantitative HD cell characteristics. Cell discharge characteristics were
derived from the raw data using a triangular model (Taube et al., 1990a).
For the triangular model, linear positive and negative slopes were man-
ually fit to the raw data of the firing rate versus HD function to form a
triangle with the x-axis as base. Using the triangular model, we calculated
four characteristics of cell activity: (1) background firing rate (mean
firing rate in all directions 18° away from the x intercept of each triangle
leg); (2) peak triangular firing rate (y coordinate of the apex of the trian-

gle); (3) triangular preferred firing direction (x coordinate of the apex of
the triangle); and (4) directional firing range (the difference in degrees
between the x coordinates of the base of triangle legs). The signal-to-
noise ratio was computed as the peak firing rate divided by the back-
ground firing rate. Cell discharge characteristics were derived from the
raw data obtained during the first recording session (cylinder arena).
Group comparisons for directional firing range and angular shift were
based on individual cell values, except when multiple HD cells were
recorded simultaneously. In this case, the mean value was calculated and
reported as an individual cell value. For all other measures, each HD cell
was computed as an individual case. For comparison with data from the
triangular model, observed peak firing rate and preferred firing direction
were also calculated. A Gaussian curve was fit to the raw data with the
Gaussian mean corresponding to the preferred firing direction. A corre-
lation coefficient was then calculated between a Gaussian curve and the
raw data (Zhang, 1996).

Anticipatory time interval. The anticipatory time interval (ATI) was
calculated for each HD cell using a time–shift analysis, as reported pre-
viously (Blair and Sharp, 1995). Cellular activity during angular head
velocities �60°/s were used for ATI analyses. Cells that were recorded
simultaneously with other cells on the same electrode were excluded
from the ATI analysis.

Directional information content. Directional information content (IC)
was calculated for each cell (Stackman and Taube, 1998): IC � �pi (�i/�)
log2(�i/�), where pi is the probability of the head pointing in the ith bin,
�i is the firing rate when the head is pointed within the ith bin, and � is the
overall mean firing rate of the cell for all bins. An IC value of 0 indicates
no relation between HD and firing rate, and a value �1 indicates a strong
relation between HD and firing rate. In cases in which multiple HD cells
were recorded on the same electrode, directional IC scores were not
calculated because � is potentially biased by the spikes of additional
cell(s).

HD cell drift analysis. To determine the amount of drift exhibited by
the preferred firing direction of an HD cell within a recording session, we
plotted the directional heading that was associated with �75% of the
maximum within-session firing rate of the cell in 1 s time samples. A
best-fit regression line was then applied to the HD � time plot, and the
absolute value of the slope was used as an index of stability in the pre-

Figure 1. HD cell recording procedure. A, The rotation procedure was conducted in a cylindrical arena containing a white polarizing cue card. HD cells were recorded across five consecutive
sessions: (1) standard; (2) rotation; (3) standard; (4) darkness; and (5) standard. B, The dual-chamber apparatus allowed assessment of HD cell activity as rats walked from a familiar arena (standard
cylinder) to a novel rectangular arena, as well as during the rats’ return to the familiar arena.
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ferred firing direction within the recording session. In the event of bidi-
rectional drift, the session was separated into segments that
corresponded to CW and CCW drifts. The distribution of absolute drift
values from control and PoS lesion rats was compared with a hypothet-
ical normal distribution with a Kolmogorov–Smirnov (K–S) one-sample
test with Lilliefors correction (SPSS; IBM). Group drift values were then
compared with a t test or with a Mann–Whitney U test if the distribution
was not normal (SPSS).

HD cell shift analysis. To determine the amount of angular shift exhib-
ited by an HD cell between sessions, we performed a correlation between
the HD cell activity recorded in each session (Taube et al., 1990b). Briefly,
the firing rate/HD functions for two recording sessions were shifted in 6°
steps, and the correlation between the curves was recalculated at each
step. The angular shift of the cell was defined as the angle at which the
correlation was maximal. For recording sessions during which multiple
HD cells were recorded, the average shift of the preferred firing directions
for simultaneously recorded cells was used for statistical calculations.
This averaging method was used because previous studies indicate that,
when multiple HD cells are recorded simultaneously, the preferred firing
directions for all HD cells rotate in register (Taube et al., 1990b). Circular
statistical evaluations of shifts in the preferred firing direction were per-
formed on a personal computer with Oriana (Kovach Computing). A
Watson–Williams F test was used to compare distributions of shift values
between groups. A V test was used to determine whether a distribution of
preferred firing direction shifts was uniform or was clustered around a
predicted angle. The amount of dispersion in the circular data was quan-
tified using the concentration parameter �. The concentration parameter
was then compared between groups (Batschelet, 1981); the modified
analysis of Mardia (1972) was used when 0.40 � r-bar � 0.70. Linear
statistical comparisons were conducted on a personal computer with
Statview (SAS Institute).

Dual-chamber apparatus. Two analyses were conducted to determine
the HD cell response to self-movement between a familiar and a novel
environment. The first analysis evaluated the response of the HD cell to
an unfamiliar environment. The preferred firing direction of the HD cell in
the first arena (“familiar cylinder”) was compared with that of the novel
environment (“novel rectangle”). A second analysis evaluated the reliability
of the HD signal after the animal’s return to the familiar arena. The preferred
firing direction of the HD cell in the familiar cylinder was compared with
that of the second episode in the cylinder (return cylinder).

Histology
After completion of electrophysiological recordings, rats received an
overdose of sodium pentobarbital (150 mg/kg), and electrode tip loca-
tions were marked with constant anodal current (15 �A, 20 s). Rats were

killed by transcardial perfusion of normal sa-
line, followed by 10% Formalin. Brains were
then postfixed in 10% Formalin containing 2%
potassium ferrocyanide for 24 – 48 h to pro-
duce a Prussian blue reaction at the electrode
tip locations. Brains were removed from For-
malin and placed in 20% sucrose for cryopro-
tection before being sectioned at 30 �m on a
cryostat. Brain sections containing the PoS and
LMN were mounted on gelatin-coated micro-
scope slides. Brain tissue was rehydrated before
being stained with thionin and then dehy-
drated and covered with glass before examina-
tion under light microscopy. The recording
electrode position in the LMN was verified by
electrode tracks through the LMN and Prus-
sian blue reaction at the ventral boundary of
the LMN. PoS lesions were verified by visual
examination of tissue damage. The extent of
brain damage was reconstructed and manually
drawn onto brain section diagrams recreated
from Kjonigsen et al. (2011).

Results
LMN HD cells

Histological analysis revealed that recording electrodes pene-
trated the LMN of control (n � 8 including the two cortex-
lesioned animals) and PoS-lesioned (n � 11) rats (Fig. 2). In
addition to HD cells, other cell types in LMN, including head
pitch, linear velocity, and angular head velocity cells, were de-
tected. These cells are not described here because they have been
characterized previously (Stackman and Taube, 1998).

In the cortex-lesioned animals, neurotoxic damage was ob-
served bilaterally in the retrosplenial and/or visual cortical areas
overlying the PoS. In the PoS-lesioned animals, we observed
some variability in the excitotoxic damage (Fig. 3). We intended
to damage the PoS bilaterally in all rats but also included rats in
our analyses that only had PoS damage ipsilateral to the recording
site because the PoS ¡ LMN projection is unilateral (van Groen
and Wyss, 1990a). Additionally, because of the position of the
dentate gyrus relative to the PoS, it is difficult to get a complete
lesion of the PoS without damaging a small portion of the den-
tate. Eight of the PoS rats had minor damage to the dentate gyrus
at the anteroposterior level of the PoS. We used NIH ImageJ
software to estimate the percentage of the dentate gyrus that was
damaged in these animals. Across all PoS-lesioned rats, the dam-
aged areas ranged from 0 to 8.5% of the entire dentate gyrus. This
damage is unlikely to have contributed to the HD cell responses
to landmark rotations, given that complete hippocampal lesions
failed to disrupt landmark control of ADN HD cells (Golob and
Taube, 1997, 1999).

Pairs of HD cells were simultaneously recorded on one occa-
sion in a control rat, on one occasion in a cortex-lesioned rat, and
on one occasion in a PoS-lesioned rat. The preferred firing direc-
tions of simultaneously recorded HD cells remained in register
(were separated by an angular distance that remained relatively
constant across sessions), and the average directional shift from
both cells was used for all shift analyses.

We estimated the total number of cells recorded from LMN as
the number of unique waveforms encountered on all electrodes,
after the detection of an HD cell. We then used the total number
of cells with directional tuning to estimate the percentage of cells
in LMN that were categorized as HD cells. The estimated number
of HD cells includes cells for which the waveform was lost after
the first or second trial and therefore includes a greater number of

Figure 2. Histological verification of electrode position. Electrode tracks (arrows) were present in the LMN (dashed line). Scale
bar, 1.0 mm.
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cells than those used for the shift analyses.
A total of 24 HD cells (of 97 total cells;
24.7%) were recorded from control rats,
six HD cells (of 42 total cells; 14.3%)
were recorded from cortex-lesioned
rats, and 35 HD cells (of 130 total cells;
26.9%) were recorded from PoS-lesion
rats. Control and cortex-lesioned groups
were then combined as a single control
group for comparison with the PoS-
lesioned group. The percentage of HD
cells in individual rats did not differ be-
tween the control and PoS groups (Z test
for proportions, Z � �1.02, p � 0.31).
Additionally, the percentage of HD cells
in control rats (Z � 0.25, p � 0.9) and in
PoS lesioned rats (Z � 0.65, p � .52) were
similar to that reported by Stackman and
Taube (1998), who found that 20 of 87
LMN cells (23%) recorded were HD cells.
However, Blair et al. (1998) reported that
23 of 41 LMN cells (56%) recorded were
HD cells; the percentage of HD cells in the
present control rats (Z � 4.32, p � 0.01)
and in PoS lesioned rats (Z � 3.4, p �
0.01) were significantly different from this
value. These different percentages may re-
flect methodological differences in per-
centage estimation. For the total cell
count, Blair et al. included only cells on
electrodes that had at least one HD cell,
whereas Stackman and Taube, along with
the present study, included all cells iso-
lated on all electrodes after the first HD
cell was detected.

HD cell firing characteristics
Qualitatively, the tuning curves of HD
cells from PoS-lesioned rats appeared to
be similar to those from controls, al-
though some tuning curves from lesioned
rats were somewhat less smooth than
those of control rats (see Fig. 5A). It is
possible that this effect may have resulted
from instability in the preferred firing di-
rection of the cells (discussed further be-
low). Nevertheless, most of the firing
properties were similar for HD cells in
control and PoS-lesioned rats (Table 2).
The only measure that differed signifi-
cantly between groups was the directional
firing range, which was greater in PoS-
lesioned rats than in control rats (t(40) �
3.93, p � 0.01). It is possible that this in-
crease resulted from PoS-lesioned rats’ impaired use of visual
cues (discussed below).

HD cells from control and cortex-lesioned rats were com-
bined for comparison with LMN cells from previous studies.
The firing characteristics of the present LMN HD cells differed
somewhat from those reported previously for LMN HD cells
(Blair et al., 1998; Stackman and Taube, 1998). The present ATI
values (ATI � 72.5 	 13.01 ms) were similar to those reported by
Stackman and Taube (ATI � 95.8 ms; one-sample t(17) � �1.79,

p � 0.09) but were greater than the ATI values reported by Blair
et al. (ATI � 38.5; one-sample t(17) � 2.61, p � 0.02). Similarly,
the present directional firing range (156.8 	 7.9°) was consistent
with that of LMN cells in the study by Stackman and Taube
(168.2°; one-sample t(18) � �1.44, p � 0.17) but differed signif-
icantly from the range reported by Blair et al. (79.9°; one-sample
t(18) � 9.75, p � 0.01). The background firing rate of the present
LMN cells (3.11 	 0.54 spikes/s) also differed from both previous
studies, with the present mean value falling between those of Blair

Figure 3. Histological reconstruction of PoS lesion. A, B, Coronal sections showing the PoS from a control rat (A) and a PoS-
lesioned rat (B). NMDA injection into the PoS produced extensive damage to the PoS ipsilateral (left) and contralateral (right) to the
recording site in the LMN. Arrowheads depict boundaries of the PoS. Scale bar, 1.0 mm. Approximate location of images is depicted
in the inset diagram, 6.4 mm caudal to bregma. C, Diagram of the lesion area after NMDA injection into the PoS. Light gray
represents the most extensive damage, and dark gray represents the least extensive damage. Diagram sections are labeled with
approximate rostrocaudal distance from bregma (recreated from Kjonigsen et al., 2011).
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et al. (1.5 spikes/s; one-sample t(18) � 2.78, p � 0.013) and Stack-
man and Taube (5.11 spikes/s; one-sample t(18) � �3.86, p �
0.01).

HD cell stability within sessions
The preferred firing direction of an HD cell typically remains
stable and represents a single direction within a recording session
when visual cues are available. Therefore, if the PoS is necessary to
convey visual information to LMN HD cells, then PoS lesions
may cause HD cells to become unstable within a recording ses-
sion. To test whether an intact PoS is necessary for HD cell sta-
bility within a session, we compared the preferred firing direction
of each HD cell during the first 2 min of a recording session with
that of the last 2 min. In control rats, HD cells (n � 16) had a
mean vector of r(16) � 0.99 (2.61° 	 9.48°, mean 	 SD; Fig. 4,
example in A, group data are shown in C, left). A V test indicates
that these shifts were significantly clustered around 0° (V(16) �
0.99, u � 5.6, p � 0.01). In PoS-lesioned rats, HD cells (n � 22)
had a mean vector of r(22) � 0.82 (11.0° 	 36.4°, mean 	 SD; Fig.
4, example in B, group data are shown in C, right). A V test
indicates that these shifts were also significantly clustered around
0° (V(16) � 0.99, u � 5.6, p � 0.01). However, the circular histo-
grams appear to show that the PoS-lesioned group displayed
more variability than controls. Therefore, we compared the
concentration parameter between the control (� � 37.0) and
PoS-lesioned (� � 3.09) groups as a measure of variability. The
PoS-lesioned group had a significantly lower concentration than
the control group (F(15,21) � 29.2, p � 0.01). Given this greater
variability of shifts, we tested whether the shift was arbitrary or
was instead because of a gradual but steady drift in the preferred
firing direction across the session. Therefore, we quantified the
absolute preferred firing direction drift of each HD cell during
the first standard recording session, as reported previously (Yo-
der and Taube, 2009). The drift was always unidirectional, and a
regression line was fit to the data. The absolute value of the slope
served as an index of preferred firing direction drift within the
recording session. HD cells in control rats had a mean absolute
drift of 0.032 	 .006°/s (range, 0.0 – 0.093°/s), and HD cells in
PoS-lesioned rats had a mean absolute drift of 0.067 	 .014°/s
(range, 0.002– 0.249°/s; Fig. 4D). These drift values were not sig-
nificantly different between groups, although the comparison ap-
proached significance (Mann-Whitney U � 127.5, p � 0.06; K–S
test for normality, D � 0.259, p � 0.01). Thus, PoS lesions did not
markedly disrupt the ability of HD cells to represent a single
direction within a recording session.

As an additional measure of within-session stability, we eval-
uated the directional firing range of HD cells across the three
standard recording sessions (sessions 1, 3, and 5) with a mixed
group � session ANOVA. We note that this measure (as well as
other between-session measures) included only those HD cells
for which single-unit activity was isolated across all five recording

sessions. Across sessions, the control and PoS-lesioned groups
had significantly different directional firing ranges (group, F(1,37) �
15.7, p � 0.01), which is consistent with the t test reported above).
The directional firing range also increased slightly across record-
ing sessions for both groups (session, F(2,74) � 4.04, p � 0.02),
and this increase occurred between sessions 1 and 3 (Student–
Newman–Keuls test, p � 0.05). However, the rate of increase did
not differ between groups (group � session, F(2,74) � 0.56, p �
0.58). Thus, the directional firing range was greater for the PoS-
lesioned group than the control group, and both groups showed
significant variability across trials, although this variability did
not differ between groups.

HD cell stability across sessions
Three comparisons were used to quantify HD cell stability across
sessions (the ability of an HD cell to reliably represent a single
direction over time within a given environment). The first com-
parison determined the amount of shift in the cell’s preferred
firing direction between the first and second standard sessions
(session 1 vs session 3). A second comparison determined the
amount of shift in the cell’s preferred firing direction between the
second and third standard sessions (session 3 vs session 5), and a
third comparison determined the amount of shift between the
first and last standard sessions (session 1 vs session 5).

Control HD cells remained quite stable across the three stan-
dard sessions. Figure 5B (left) shows that the distribution of an-
gular shifts between sessions 1 and 3 had a mean vector of r(16) �
0.95 (mean 	 SD, 0.07° 	 19.0°). A V test indicates that this
distribution was significantly clustered around 0° (V(16) � 0.95,
u � 5.4, p � 0.01). The preferred directions of cells in the PoS-
lesioned group were also stable between sessions 1 and 3 (V(20) �
0.33, u � 2.1°, p � 0.02; Fig. 5B, right). However, despite the
significant clustering around 0°, the distribution of preferred fir-
ing direction shifts appeared to be more variable for the PoS-
lesioned group, as indicated by a smaller mean vector (r(20) �
0.36, mean 	 SD, 21.4° 	 81.7°). Therefore, we compared the
concentration parameter of the control group (� � 9.57) with
that of the PoS-lesioned group (� � 0.78). The concentration
parameter was significantly different between groups (Z � 3.74,
p � 0.01), indicating that these distributions had different angu-
lar variances.

We then compared the preferred firing direction shift between
sessions 3 and 5 (Fig. 5C). The shifts of HD cells in control rats
had a mean vector of r(16) � 0.95 (mean 	 SD, 0.39° 	 18.7°). A
V test indicates that these shifts were significantly clustered
around 0° (V(16) � 0.95, u � 5.4, p � 0.01). The shifts of HD cells
in PoS-lesioned rats had a mean vector of r(20) � 0.33 (mean 	
SD, 0.10.8° 	 85.6°). A V test indicates that these shifts were
significantly clustered around 0° (V(20) � 0.32, u � 2.0, p � 0.02).
However, as with the comparison between sessions 1 and 3, the
concentration parameter was significantly different between

Table 2. Firing characteristics of HD cells in the LMN

Parameter Control (n � 15) Cortex (n � 4) PoS lesion (n � 23)

Background firing rate (spikes/s) 3.3 	 0.68 (0.21–9.8) 2.1 	 0.16 (1.8 –2.5) 3.50 	 1.05 (0.06 –22.0)
Signal-to-noise ratio 34.5 	 21.4 (4.0 –332.0) 40.9 	 15.4 (13.3– 68.9) 59.8 	 24.6 (3.8 – 488.3)
Peak firing rate (spikes/s) 40.4 	 9.2 (6.3–150.6) 84.0 	 30.8 (23.4 –139.8) 51.7 	 8.66 (14.6 –198.0)
Directional firing range (°) 158.99 	 7.9 (107.8 –206.1) 148.5 	 25.3 (107.6 –222.5) 203.6 	 8.85 (141.2–294.3)*
Directional information content (bits) 0.75 	 0.08 (0.30 –1.6) 1.1 	 0.39 (0.43–2.3) 0.71 	 0.13 (0.19 –2.5)
Anticipatory time interval (ms) 67.9 	 13.9 (�23.8 –161.8) 88.7 	 36.0 (�3.2–148.7) 121.5 	 25.4 (�161.8 – 440.9)
Rayleigh’s r value 0.60 	 0.03 (0.39 – 0.90) 0.74 	 0.07 (0.58 – 0.86) 0.57 	 0.03 (0.30 – 0.81)

Data are shown as mean 	 SEM (range). Note that HD cells from control and cortex-lesioned animals were combined into a single control group for statistical comparison with PoS-lesioned cells. *p � 0.01.
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groups, with the lesion group displaying more variability than
controls (control, � � 9.95; PoS lesion, � � 0.70; Z � 3.89, p �
0.01).

A third comparison evaluated the preferred firing direction
shift between sessions 1 and 5 (Fig. 5D). HD cells from control
rats showed little shift in their preferred directions, with the dis-
tribution mean vector of r(16) � 0.98 (mean 	 SD, 4.3° 	 11.3°).
A V test indicates that these shifts were significantly clustered
around 0° (V(16) � 0.98, u � 5.5, p � 0.01). In contrast, for
PoS-lesioned rats, the shifts between sessions 1 and 5 had a mean
vector of r(20) � 0.19 (mean 	 SD, 57.0° 	 104.3°), and a V test
indicates that these shifts were not significantly clustered around
0° (V(20) � 0.10, u � 0.66, p � 0.26). Furthermore, the concen-
tration parameter was significantly different between groups
(control, � � 26.08; PoS lesion, � � 0.39; Z � 4.71, p � 0.01).
Thus, HD cells in control rats remained quite stable across all
three standard recording sessions, whereas those of PoS-lesioned
rats became less stable across standard recording sessions.

In summary, comparison of stability within and across stan-
dard sessions shows that there tended to be more drift of the

preferred firing direction within a session in the lesioned rats but
that the drift amount over 8 min was not sufficient to reach
statistical significance. Furthermore, the instability of the pre-
ferred firing direction was not apparent when adjacent control
sessions were compared (session 1 vs 3 and session 3 vs 5), al-
though, again, there tended to be more variance in the lesion
group. The instability of the preferred firing direction only be-
came significant when comparing across longer temporal inter-
vals (i.e., session 1 vs 5).

Cue control of preferred firing direction
With the visual cue rotated 90° from the standard position, a 90°
shift in the cell’s preferred firing direction indicates strong land-
mark control of the HD signal. In control rats, the distribution of
preferred firing direction shifts indicates that the visual cue
strongly influenced HD cell activity (mean vector of r(16) � 0.96,
mean 	 SD, 73.3° 	 15.6°; Fig. 5, example in A, left; group data
are shown in E, left). These shifts were significantly clustered
around the predicted value of 90°, V(16) � 0.92, u � 5.2, p � 0.01.
Nevertheless, the cells showed a slight under-rotation relative to

Figure 4. HD cell stability during the first standard recording sessions. A, Left, HD cells in control rats remained relatively stable, although the preferred firing direction drifted slightly for most
cells. Right, HD versus firing rate tuning curve for the depicted cell. B, Left, HD cells in PoS-lesioned rats showed greater drift in their preferred firing directions than those in control rats. Right, Tuning
curve for the depicted cell. C, Preferred firing direction shift between the first 2 min and last 2 min of the recording session. D, Preferred firing direction drift values for all cells in control and
PoS-lesioned animals. For C and D, there were no significant differences in the mean values between control and PoS-lesioned animals. Although the PoS-lesioned animals appeared to display more
variability on both measures compared with controls, the differences were not significant. Note that absolute drift values were used for statistical analyses.
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the cue; under-rotations in control ani-
mals are common and have been reported
previously (Taube et al., 1990b). In PoS
lesioned rats, HD cells showed consider-
able variability in the shift of the preferred
firing direction in response to visual cue
rotation; mean vector r(20) � 0.17, � �
125.7, SD � 108.4° (Fig. 5, example in A,
right; group data are shown in E, right). A
V test indicates that these shifts were not
significantly clustered around 90° (V(20) �
0.14, u � 0.86, p � 0.20). Thus, HD cells of
control rats showed preferred firing direc-
tion shifts that approximately corre-
sponded to the rotated cue card, whereas
the preferred firing directions of HD
cells from PoS-lesioned rats shifted ran-
domly after the card was rotated.

Path integration maintenance of
HD signal
Dark/no cue sessions
A path integration mechanism is thought
to maintain HD signal stability during
darkness or when familiar visual land-
marks are not available (Taube and Bur-
ton, 1995; Taube, 1995a; Goodridge et al.,
1998; Yoder et al., 2011a). However, this
path integration mechanism accumulates
errors over time, resulting in a drift of
the cell’s preferred firing direction through-
out a dark recording session. Figure 6, A
and B, depicts examples of preferred firing
direction drift of HD cells over time in
control and PoS-lesioned animals, respec-
tively. We quantified this spatial updating
ability by comparing the preferred firing
direction of each HD cell during the first 2
min with that of the last 2 min in a dark
recording session without the presence of

Figure 5. Stability and visual cue control of the preferred firing direction. A, Representative tuning curves from HD cells recorded
from control and PoS-lesioned rats during sessions 1–3 and 5. The cue card was in the same position for sessions 1, 3, and 5; for

4

session 2, the cue card was rotated 90° CW. The HD cell re-
corded from a control animal (left) shifted in the same direc-
tion as the cue card but showed a slight under-rotation. In
contrast, the cell recorded from a PoS-lesioned animal (right)
shifted 84° in the opposite direction of the rotated cue card.
Numbers indicate the angular shift of the preferred firing di-
rection relative to session 1. B–D, Angular preferred firing di-
rection shifts, in polar coordinates, between standard
recording sessions (sessions 1, 3, and 5) with the lights on and
cue card in the 3:00 position. HD cells in control rats showed
little preferred firing direction shift across standard recording
sessions, whereas the shifts of HD cells in PoS-lesioned rats
were uniformly distributed for session 1 versus session 3, ses-
sion 1 versus session 5, and session 3 versus session 5. Gray
data points represent cells recorded from animals with cortex
lesions. E, HD cell responses to a 90° cue rotation, with values
adjusted to depict preferred firing direction shifts on the same
scale, whether the cue card was rotated CW or CCW. Most HD
cells in control rats showed a slight under-rotation of preferred
firing direction. In contrast, cells from PoS-lesioned rats
showed a uniform distribution of preferred firing direction
shifts.
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the white cue card. Most cells were recorded for 16 min in the
dark session. However, three cells from the control group and
two cells from the PoS-lesioned group were only recorded for 8
min. To compare the shift values across all cells as a measure of
stability across 16 min, we doubled the preferred firing direction
shift for cells that were recorded for 8 min. In control rats, HD
cells (n � 15) had a mean vector of r(15) � 0.62 (mean 	 SD,
336.9° 	 55.6°; Fig. 6C, left). A V test indicates that these shifts
were significantly clustered around 0° (V(15) � 0.57, u � 3.14, p �
0.01). In PoS-lesioned rats, HD cells (n � 20) had a mean vector
of r(20) � 0.10 (mean 	 SD, 175.9° 	 121.5°; Fig. 6C, right), and
a V test indicates that these shifts were not significantly clustered
around 0° (V(20) � �0.10, u � 0.67, p � 0.75). Therefore, we

compared the concentration parameter between control (� �
1.53) and PoS-lesioned (� � 0.21) groups as a measure of vari-
ability. The PoS-lesioned group had a significantly lower concen-
tration than the control group (Z � 2.14, p � 0.05). Given the
greater variability of shifts for the PoS-lesioned group, we then
calculated the absolute value of the preferred firing direction drift
over time within dark recording sessions. HD cells in control rats
showed a mean absolute preferred firing direction drift of
0.057°/s (range, 0.002– 0.198°/s). In contrast, the preferred firing
directions from HD cells in PoS-lesioned rats had a mean abso-
lute drift of 0.211°/s (range, 0.003– 0.874°/s). Group drift values
are depicted in Figure 6D. Overall, cells from PoS-lesioned rats
drifted a greater amount than cells from control/cortex-lesioned

Figure 6. HD cell stability during dark recording sessions. A, Left, HD cells in control rats remained relatively stable in darkness, although the preferred firing direction drifted slightly for most cells.
Right, Tuning curve for the cell depicted. B, Left, Some HD cells in PoS-lesioned rats became unstable and showed considerable preferred firing direction drift during the dark recording session. Right,
Tuning curve for the cell depicted, indicating drift of preferred firing direction. C, Preferred firing direction shift between the first 2 min and last 2 min of the recording session. D, Preferred firing
direction drift values for all cells in control and PoS-lesion animals. Note that absolute drift values were used for statistical analyses. Gray data points represent cells recorded from animals with cortex
lesions.
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rats (Mann–Whitney U � 79.0, p � 0.018; K–S test for normality,
D � 0.27, p � 0.01). Therefore, the PoS appears to contribute to
HD cell stability in darkness.

Dual-chamber apparatus
The dual-chamber apparatus procedure has been shown previ-
ously to cause the preferred firing direction of ADN HD cells to
shift slightly between the standard cylinder and novel rectangle
sessions, only to return to its original orientation when the rat
returns to the return cylinder session (Taube and Burton, 1995).
Therefore, we calculated the preferred firing direction shift of
each cell between the standard cylinder session and the novel
rectangle session and between the standard cylinder session and
the return cylinder session.

For HD cells in control rats, the distribution of preferred firing
direction shifts between the standard cylinder and novel rectan-
gle had a mean vector of r(4) � 0.98 (mean 	 SD, 342.1° 	 10.4°;
Fig. 7A, left). A V test indicates that these shifts were significantly
clustered around 0° (V(4) � 0.94, u � 2.6, p � 0.01). This distri-
bution of preferred firing direction shifts was similar to that of a
previous study of ADN HD cells, in which the distribution of
shifts had a mean vector of r(7) � 0.96 (mean 	 SD, 347.9° 	
15.4°; Taube and Burton, 1995). Previous studies have indicated
that HD cells throughout the HD circuit are linked, with all HD
cells responding similarly to a particular cue manipulation (Yo-
ganarasimha et al., 2006; Taube, 2007). Because the preferred
firing direction shifts of LMN and ADN HD cells were similar
(Watson–Williams test, F(1,9) � 0.38, p � 0.55), these cells were
combined into a single control group for comparison with LMN
HD cells from PoS-lesioned rats. Overall, the distribution of pre-

ferred firing direction shifts for the con-
trol group had a mean vector of r(11) �
0.97 (mean 	 SD, 345.78° 	 14.1°). A V
test indicates that the preferred firing di-
rection shifts for the control group were
significantly clustered around 0° (V(11) �
0.94, u � 4.41, p � 0.01; Fig. 7A, left). For
cells from PoS-lesioned rats, the distribu-
tion of preferred firing direction shifts be-
tween the standard cylinder and novel
rectangle was more variable and had a
mean vector of r(9) � 0.86 (mean 	 SD,
28.5° 	 32.1°). A V test showed that the
preferred firing direction shifts for HD
cells from PoS-lesioned rats were also sig-
nificantly clustered around 0° (V(9) �
0.75, u � 3.19, p � 0.01; Fig. 7A, right).
However, the concentration parameter
for the PoS-lesioned group was signifi-
cantly different from the control group
(control, � � 12.68; PoS lesion, � � 2.61;
F(10,8) � 4.98, p � 0.05). Thus, damage to
the PoS moderately disrupted the ability
of HD cells to maintain a stable pre-
ferred firing direction during naviga-
tion into a novel environment.

We then asked whether the HD cell sig-
nal would regain its orientation after re-
turn to the familiar cylinder, after the
animal had walked to the novel rectangle.
Previous studies showed that control HD
cells reliably reorient to the familiar land-
marks when the animal returns from the
novel environment to the familiar one, re-

gardless of whether the animal is picked up and carried between
environments or whether the animal walks between environ-
ments (Taube and Burton, 1995; Yoder et al., 2011a). Similar
results were found in the present study, with the preferred firing
directions of control LMN HD cells remaining consistent be-
tween the two cylinder sessions (mean vector of r(4) � 0.99;
mean 	 SD, �3.0° 	 6.7°; Fig. 7B, left). A V test indicates that
these shifts were significantly clustered around 0° (V(4) � 0.99,
u � 2.8, p � 0.01). ADN HD cells in a previous study showed a
similar distribution of preferred firing direction shifts between
the standard and return cylinder sessions (mean vector of r(7) �
0.99; mean 	 SD, 358.3° 	 6.2°) and were significantly clustered
around 0° (V(7) � 0.99, u � 3.7, p � 0.01). The preferred firing
direction shifts of LMN cells in the present study did not differ
significantly from those of ADN cells in the previous study (Wat-
son–Williams test, F(1,10) � 3.15, p � 0.11). Therefore, we com-
bined LMN and ADN cells for comparison with cells from the
PoS-lesioned group. The distribution of preferred firing direc-
tion shifts for the combined control group had a mean vector of
r(11) � 0.99 (mean 	 SD, 357.8° 	 6.4°). A V test indicates that
the preferred firing direction shifts for the control group were
significantly clustered around 0° (V(11) � 0.99, u � 4.66, p � 0.01;
Fig. 7B, left). For PoS-lesioned rats, the preferred firing directions
of HD cells also remained relatively stable across the standard and
return cylinder sessions (V(8) � 0.68, u � 2.73, p � 0.01; Fig. 7B,
right). Nevertheless, the distribution of preferred firing direction
shifts appeared to be somewhat more variable than that of control
cells (mean vector of r(8) � 0.72; mean 	 SD, 18.6° 	 46.4°; Fig.
7B, right). Indeed, comparison of the concentration parameter

Figure 7. Preferred firing direction shift in the dual-chamber apparatus. A, HD cells in control rats showed a slight CW shift when
the animal walked from the standard cylinder to the novel rectangle, in which the cue card was rotated 90° CCW relative to the
cylinder. In contrast, HD cells in PoS-lesioned rats shifted slightly CCW. B, HD cells in both control and PoS-lesioned rats realigned
when the animal returned to the cylinder, although the PoS-lesioned group showed slightly (nonsignificant) greater variability.
Gray points represent ADN cells described previously (Taube and Burton, 1995).
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for the control group (� � 59.9) and the
PoS-lesioned group (� � 1.41) revealed
that these distributions had different an-
gular variances (F(7,10) � 46.5, p � 0.01).
We note that the low concentration for
the PoS-lesioned group may have been in-
fluenced heavily by the one outlier. Over-
all, HD cells of both control and PoS-
lesioned rats showed a relatively stable
preferred firing direction between the
standard cylinder and return cylinder ses-
sions, but the PoS-lesioned group showed
greater variability than the control group.

Discussion
The present study evaluated the role of the
PoS in providing visual landmark control
to HD cells in LMN. HD cells were re-
corded from control and PoS-lesioned
rats in a cylinder across standard, cue ro-
tation, and dark conditions, as well as in
the dual-chamber apparatus where the
animal walked between familiar and novel
arenas. In control rats, visual landmarks
dominantly controlled the preferred fir-
ing direction of HD cells. However, in
PoS-lesioned rats, visual landmarks failed
to reliably control HD cells, suggesting
that visual landmark information is pro-
vided to HD cells in the LMN via the PoS
¡ LMN projection. In the dual-chamber
apparatus and in darkness, some HD cells
of PoS-lesioned rats failed to remain sta-
ble, suggesting that, in addition to visual
information, the PoS may contribute to
directional perception based on self-
movement cues.

Processing landmark information
Previous studies have revealed that the HD signal is conveyed
from the brainstem to higher processing regions via an ascending
circuit, but no studies have indicated the point at which visual
landmark information gains control of the HD signal. The as-
cending HD cell network includes projections from dorsal teg-
mental nuclei¡ LMN¡ADN¡PoS, and the PoS then projects
directly to entorhinal and retrosplenial cortical areas (Fig. 8).
Within the HD cell circuit, the PoS provides unique descending
projections to the ADN and LMN. The PoS ¡ ADN projection
originates in the deep multiform layers V–VI, whereas the PoS¡
LMN projection originates in the deep layer IV pyramidal cells
(using the classification scheme of Lorente de Nó, 1933), which
send apical dendrites through the superficial layers (Wright et al.,
2010; Yoder and Taube, 2011b). PoS layers I and III receive direct
input from visual and retrosplenial cortices (Vogt and Miller,
1983; van Groen and Wyss, 1990a), which indicates that the PoS
¡ LMN cells are in good position to receive direct visual signals
that may contribute to the landmark control of HD cells. Our
results indicate that landmark information gains control of the
HD signal at the earliest stage within the HD circuit via the layer
IV PoS ¡ LMN pathway. Whether these layer IV PoS ¡ LMN
cells are HD cells or some other cell type that conveys visual
landmark information is not known at the present time. In either
case, landmark information appears to be integrated with sub-

cortical self-movement cues in the LMN, and this integrated sig-
nal subsequently influences all downstream HD cell-containing
structures (e.g., ADN, PoS, entorhinal cortex, retrosplenial cor-
tex, etc.) via the ascending HD cell circuit.

In addition to its projection to LMN, the PoS may provide
direct visual landmark information to many areas involved in
spatial processing, including the MEC, retrosplenial cortex,
perirhinal cortices, and parasubiculum, and it may provide visual
landmark input indirectly to the hippocampus via the MEC. The
MEC contains grid cells and HD cells, both of which are con-
trolled by visual landmarks (Fyhn et al., 2004; Hafting et al., 2005;
Sargolini et al., 2006). It is currently unknown whether PoS le-
sions impair landmark control in the MEC, but PoS lesions dis-
rupt landmark control in hippocampal place cells (Calton et al.,
2003), which presumably occurs through the PoS ¡ MEC ¡
hippocampus pathway. This finding suggests that landmark con-
trol of the MEC grid and HD cells likely arrives from the PoS.
Another region that receives input from the PoS is the retro-
splenial cortex, which contains HD cells and direction-specific
place cells (van Groen and Wyss, 1990a; Chen et al., 1994a; Cho
and Sharp, 2001). Therefore, it is possible that the PoS projec-
tions to retrosplenial cortex (both dysgranular and granular b
regions) carry visual landmark information, given that these re-
gions contribute to spatial performance (van Groen et al., 2004;

Figure 8. Working model of visual, motor, and vestibular information flow through the HD cell circuit. The HD signal (red
arrows) is generated within the reciprocal connections between the dorsal tegmental nuclei (DTN) and the LMN based on self-
movement information arriving from subcortical motor and vestibular systems (black arrow). In familiar visual environments, the
PoS receives visual landmark information (blue arrows) from visual areas and retrosplenial cortex (RSP) and provides this infor-
mation to HD cells in the LMN, in which it is integrated with self-movement information about angular head movements. From the
LMN, the integrated HD signal ascends to the ADN and then to the PoS. The PoS projects the HD signal and possible additional visual
landmark information to the RSP and MEC, in which it is integrated with information from the grid cell signal, as well as the place
cell signal from the hippocampus (HPC; dashed orange arrow). Place and grid cell signals may influence the HD signal via projec-
tions from the MEC or hippocampus (solid orange arrow). Note that not all connections are shown.
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Vann and Aggleton, 2005). The PoS also projects to the perirhinal
cortex (van Groen and Wyss, 1990a), which is not known to
contain HD cells (Taube, 2007) and is not necessary for normal
spatial learning (Aggleton et al., 1997; Burwell et al., 2004b).
However, the perirhinal cortex contributes to the stability of hip-
pocampal place cells over trials (Muir and Bilkey, 2001) and to
contextual learning (Bucci et al., 2000; Bussey et al., 2000; Burwell
et al., 2004a; Winters et al., 2004). An additional region that re-
ceives direct input from the PoS is the parasubiculum (van Groen
and Wyss, 1990b), which contains place, HD, and grid cells that
are controlled by visual landmarks (Taube, 1995b; Boccara et al.,
2010). However, the PoS involvement in the landmark control of
these cells has not been tested. Nonetheless, the PoS is well situ-
ated to provide visual landmark information to many of the dif-
ferent brain areas involved in spatial cognition.

PoS contributions to spatial updating
Evidence for the PoS playing a critical role in visual landmark
processing is quite strong, but the PoS also appears to contribute
to navigation in the absence of familiar visual landmarks. We
note that navigation in nonvisual environments can be influ-
enced by various sensory cues (e.g., olfactory, auditory, or tac-
tile), and therefore, we attempted to minimize these cues in the
present study. Assuming that these cues had little or no influence
on HD cell stability, navigation in these conditions presumably
involved the use of path integration or spatial updating. Path
integration is a complex process that likely involves the integra-
tion of information from several sources (Save et al., 2001; Taube,
2007). Information about the animal’s movements presumably
originates in subcortical regions, such as the vestibular system,
from which it is conveyed to higher brain regions involved in
navigation. One such brain region is the MEC, which contains
grid cells that are thought to contribute to path integration abil-
ities (Fuhs and Touretzky, 2006; Moser et al., 2008). One source
for angular path integration information arriving at the MEC is
most likely the HD signal (Kubie and Fenton, 2009), which is
necessary for the grid cell signal (Clark et al., 2011; Winter et al.,
2014). If true, damage at any point within the ascending HD cell
circuit should disrupt navigation via path integration. Consistent
with this view, PoS-lesioned animals were impaired at perform-
ing a food-hoarding task in darkness, in which accurate returns
depend on path integration during the outbound trip (Valerio et
al., 2011). However, there is some evidence to suggest that the HD
signal is not the sole source of path integration information to the
MEC. Frohardt et al. (2006) reported that ADN lesions failed to
markedly disrupt path integration on a food-hoarding task; im-
pairments were present, but they were generally mild compared
with lesions in other brain areas. Thus, we can conclude that the
HD signal conveys angular path integration information from
subcortical areas to higher brain regions, but other sources pro-
vide path integration information in some conditions. These
other sources presumably contributed to the maintenance of the
relatively stable preferred firing direction within each session in
the lesioned animals (Fig. 4), even when accurate spatial updating
by visual landmarks was impaired (Fig. 5A,E).

Angular path integration information generally arises from
subcortical signals, but descending projections also appear to
contribute to HD cell stability in darkness and when the animal
enters a novel environment that is devoid of familiar landmarks
(i.e., the dual-chamber apparatus). Some of this information ap-
pears to reach the HD cell circuit at subcortical levels via the PoS,
given that PoS lesions disrupt the stability of LMN HD cells in
darkness. However, many of these same HD cells remained stable

in the dual-chamber apparatus, suggesting that a different source
of path integration input is responsible for maintaining the HD
signal in this task. One candidate for providing this information
is the MEC, given the putative role of grid cells in path integra-
tion. However, MEC lesions failed to disrupt HD cell stability in
darkness or in the dual-chamber apparatus (Clark and Taube,
2011). Another candidate is the retrosplenial cortex, which is
necessary for accurate navigation on tasks that require path inte-
gration (Cooper and Mizumori, 1999; Cooper et al., 2001;
Whishaw et al., 2001). However, retrosplenial cortex damage
only mildly affected HD cell stability in darkness or in the dual-
chamber apparatus (Clark et al., 2010). A third candidate for
providing path integration information to the HD signal is the
hippocampus, given that hippocampal lesions disrupted ADN
HD cell stability in the dual-chamber apparatus (Golob and
Taube, 1999). The route by which the hippocampus influences
HD cell stability has not been tested directly but may involve the
projection from the ventral subiculum to the LMN (Shibata,
1989), given that it could not have arrived via the PoS ¡ LMN
projection in the present study. Overall, the inconsistent HD cell
responses in the dual-chamber apparatus and in darkness suggest
that these tasks involve different path integration mechanisms.
Alternatively, PoS-lesioned rats may have been able to use the
available, albeit unfamiliar, visual information to update their
perceived orientation as they entered the novel rectangle of the
dual-chamber apparatus. Visual information is known to im-
prove HD cell stability in a similar task (Yoder et al., 2011a), and
the present results suggest that this information does not arrive
via the PoS.

Conclusions
Overall, the PoS appears to be an important component of the
circuit responsible for providing landmark control to the HD
signal and for providing self-movement information to higher
brain structures. Landmark information is first integrated with
the HD signal at the LMN via the PoS¡LMN projection. From the
LMN, this visual information is then conveyed throughout the as-
cending HD cell circuit. This visual information enables HD cells
throughout the HD circuit to respond similarly to landmark po-
sition. Additionally, the PoS contributes to path integration
maintenance of the HD signal in situations in which familiar
visual landmarks are unavailable. Therefore, the PoS is a critical
component of the navigation system that is ideally situated to link
the HD signal and self-movement information with entorhinal
grid cells and/or hippocampal place cells, as well as to other cor-
tical regions that contribute to navigation.
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