
Systems/Circuits

Propagating Waves Can Explain Irregular Neural Dynamics
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Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two
major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network
mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended,
conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the
network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these
patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of
irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic
explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated
membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are
non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagat-
ing waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity,
although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at
the population level.
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Introduction
Cortical neurons in vivo fire highly irregularly. Understanding
the origin of this irregularity has been a long-standing topic of
interest in neuroscience (Softky and Koch, 1993; Shadlen and
Newsome, 1994; van Vreeswijk and Sompolinsky, 1996; Stevens
and Zador, 1998). One prevalent view in accounting for this ir-
regularity is that excitatory and inhibitory synaptic currents re-
ceived by cortical neurons are approximately balanced. In this
balanced condition, membrane potential follows a random walk
and crosses the spiking threshold at random times (Shadlen and
Newsome, 1994, 1998). Importantly, it has been shown that the
balanced condition emerges naturally in randomly coupled
neural networks and that, in such balanced networks, different
neurons asynchronously emit spikes (van Vreeswijk and Sompo-
linsky, 1996). Along with variability in their spike timing, cortical
neurons show firing rate fluctuations (Churchland et al., 2010),
which can be captured by a balanced network model with clus-
tered connections (Litwin-Kumar and Doiron, 2012).

Another view proposed to account for the variability of corti-
cal firing activity is that presynaptic population activity is highly
synchronized, and such synchronized activity causes large fluctu-
ations in synaptic inputs and the resultant variability of neural

spike timing (Stevens and Zador, 1998). In this proposal, syn-
chronized synaptic inputs cause membrane potential to exhibit
large, occasional excursions in amplitude. Membrane potential
therefore has a non-Gaussian distribution instead of the Gaussian
one found in random walk models (Shadlen and Newsome,
1998). Such synchronized synaptic inputs and non-Gaussian
membrane potential dynamics have been widely observed in cor-
tical neurons (DeWeese and Zador, 2006; Tan et al., 2014). How-
ever, the network mechanisms that give rise to these dynamics
remain unknown. Furthermore, whether and how the two lead-
ing views (i.e., the view of balanced excitation and inhibition and
that of synchronized inputs) can be reconciled to gain a compre-
hensive understanding of cortical dynamics remain unresolved.

Here, we propose an alternative view on the basis of propagat-
ing wave patterns emerging from 2D, spatially extended spiking
neural networks. As these wave patterns sweep past neurons, they
generate highly synchronized synaptic inputs. Propagating wave
patterns with complex dynamics only emerge when excitation
and inhibition are balanced. Our model therefore reconciles the
two leading views regarding the variability of neural dynamics. In
addition, our model is able to account for a range of experimental
observations, including the variability of spike timing, slow fluc-
tuations of firing rates (Churchland et al., 2010), synchronized
synaptic inputs with inhibition lagging behind excitation by sev-
eral milliseconds (Okun and Lampl, 2008), and membrane po-
tentials with non-Gaussian dynamics (DeWeese and Zador,
2006) and correlated fluctuations (Gentet et al., 2010).

Evidence of the presence of propagating waves in the brain has
been rapidly accumulating (Rubino et al., 2006; Ferezou et al.,
2007; Wu et al., 2008; Sato et al., 2012). Our work relates these
widely observed population activity patterns to variable neuronal
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dynamics, indicating that structured activity patterns, such as
propagating waves, at the level of neural circuits can emerge from
the highly variable firing activity of individual neurons.

Materials and Methods
A spatially extended, conductance-based spiking neural circuit. We con-
sider a 2D network of N � N coupled, conductance-based integrate-and-
fire neurons consisting of 80% excitatory and 20% inhibitory neurons.
Both excitatory and inhibitory neurons are evenly spaced, and the spac-
ing between inhibitory neurons is twice the spacing between excitatory
neurons. We denote the voltage of a neuron at integer coordinates (i, j) at
time t as Vij(t), with dynamics given by the following:

C
d

dt
Vij�t� � �gL�Vij�t��VL��gij

E�t��Vij�t��VE��gij
I �t��Vij�t��VI�,

(1)

where the capacitance is C � 1 �F, the leak conductance is gL � 50 �S,
and the reversal potentials are VL � �70 mV, VE � 0 mV, and VI � �80
mV for the leak, excitatory, and inhibitory conductance, respectively
(Koch, 1999). If the voltage of a neuron reaches the threshold of VT �
�55 mV, a spike is generated and the voltage is reset to the reset potential
VR � �70 mV for a refractory period �ref � 5 ms. The synaptic conduc-
tances are as follows:

gij
��t� � F� � �

i	j	
Kij,i	j	

�	 �
l

G�	 �t � Ti	j	
l �, (2)

where �, �	 � E, I are the excitatory and inhibitory conductances, respec-
tively, and Ti	j	

l is the time of the l-th spike emitted by the afferent neuron
located at (i	, j	). The constant external inputs are FE � 15 �S and FI � 2
�S, but as shown in Results, our model is not sensitive to these values.
The time course of the postsynaptic conductance is given by the
following:

G��t� �
exp��t/�d

���exp��t/�r
��

�d
���r

� , (3)

withrisetimes�r
E � 0.5msand�r

I � 0.5ms,anddecaytimes�d
E � 2.0ms and

�d
I � 7.0 ms. The denominator is a normalization factor such that
�

0

G��t� dt � 1. The coupling strength between any two neurons lo-

cated at (i, j) and (i	, j	) is given by the following:

Kij,i	j	
� � � WE exp��dij,i	j	

2 /�E� if � � E,
WI if � � I, (4)

where dij,i	j	 is Euclidean distance between neurons on a square lattice
with periodic boundary conditions. Because the interactions between
neurons in real neural systems have finite ranges, connections in the
model are constrained to �dij,i	j	� 	 D�, where DE � 10 for excitatory
neurons and DI � 15 for inhibitory neurons. Empirical evidence has been
accumulating to show that neural connectivity decays with distance; for
instance, in Markov et al. (2011), it was found that the coupling strength
is an exponential function of distance; and in Levy and Reyes (2012), it
was reported that the connection probability of neurons is a Gaussian
function of distance. As a first approximation to such distance-
dependent coupling rules, excitatory neurons in our model are coupled
to all other neurons within the coupling range with a strength following
a Gaussian profile (Eq. 4). Because anatomic evidence suggests that in-
hibitory connections to pyramidal neurons are nonspecific (Fino and
Yuste, 2011), in Equation 4 we use a homogeneous inhibitory coupling
strength WI with all inhibitory neurons connected to each other within
the coupling range. We use excitatory coupling value WE � 0.23 with a
spatial scale of �E � 12, unless stated otherwise; however, as illustrated
below, our results are robust to parameter variations. The inhibitory
coupling WI is a free parameter that controls the balance of excitation and
inhibition. Each neuron receives the same number of connections (i.e.,
316 excitatory connections and 180 inhibitory connections, approxi-
mately one-tenth of the average number of connections found in the
cortex) (Braitenberg and Schüz, 1998).

We use a network size of 300 � 300 but have found that the results are
not sensitive to the size of the network. The network model is simulated
by using the Euler method with a time step dt � 0.05 ms (Press et al.,
2007). The initial membrane potentials are randomly chosen from values
between the resting potential (VR � �70 mV) and the threshold poten-
tial (VT � �55 mV). Each trial is run for 7.5 s with the first 1.5 s excluded
as transient time.

To compare our results with previous balanced networks with ran-
dom coupling topology, each connection is randomly rewired to an-
other neuron in the network. The reconnection is independent of
distance between neurons, but self-connection and multiple connec-
tions from the same neuron are excluded. For this randomly rewired
network, individual neurons receive a variable number of connections
with the average number the same as the regular network. To investigate
the effects of partial rewiring, each afferent excitatory connection is re-
wired with a probability P; for the randomly coupled network P � 100%.

To demonstrate the role of intrinsic network dynamics in generating
variable neural activity, we mostly focus on a model with deterministic
external input (i.e., F� in Eq. 2 is a constant). However, because noise is
ubiquitous in the brain (Faisal et al., 2008), we also consider noisy inputs
to individual neurons to demonstrate that propagating wave patterns can
still emerge from our model. For this case, if a neuron is not in the
refractory period, at each time step it fires with a certain probability,
resulting in random spontaneous firing activity with a rate of 2 Hz, as
found in real cortical neurons (Koch and Fuster, 1989). Noisy inputs are
also used for the randomly connected network.

Data analysis. Statistics of spike trains, firing rates, synaptic conduc-
tances, and membrane potentials of each neuron are calculated to com-
pare our modeling study with experiments. To that end, we measure the
coefficient of variation (CV) of interspike intervals, the Fano factor of
spike counts, and the cross-correlation and excess kurtosis of synaptic
conductance and membrane potential. All results are calculated by using
2400 randomly chosen excitatory neurons in each of 12 trials, unless
otherwise specified.

Let 0 
 tij
1 
 tij

2 
 … 
 tij
L 
 T denote a train of L spikes that are

emitted by the neuron at position (i, j) during a trial of duration T; then
Xij

1 , Xij
2 ,…, Xij

L�1 is the sequence of the L � 1 observed interspike intervals
(ISIs) Xij

l � tij
l�1 � tij

l where l indicates the l-th spike. Irregular spiking is
expressed by a variable length of the ISIs. To quantify this variability, we
calculate the CV of the ISIs of the neuron at (i, j):

CVij �
�var�Xij

l �


Xij
l �

, (5)

where 
Xij
l � and var�Xij

l � are the mean and variance of the ISIs, respec-
tively. A periodic process, such as the ticking of a clock, has a CV of 0; a
Poisson process, in which the timing of one event is independent of any
other, has a CV of 1. Multiple observations of neurons at different posi-
tions results in an ensemble of spike trains, each with its own CV. The
CVs can be averaged to find the overall variability of ISIs.

The CV of ISIs signifies intratrial variability on a relatively short time
scale on the order of the length of a typical ISI. By contrast, the trial-to-
trial variability is measured by the Fano factor of the spike count Nij(t),
which is the number of spikes emitted by a neuron within a fixed time
interval from t to t � �t. The Fano factor of a neuron at (i, j) is then:

FFij�t� �
var�Nij�t��


Nij�t��
, (6)

where 
Nij�t�� and var(Nij(t)) are the mean and variance of the spike
count across repeated trials with random initial conditions. The Fano
factor of a homogeneous (with a constant rate of events) Poisson
process is 1.

To measure the correlations between pairs of spiking neurons, we
calculate the cross-correlation of their spike count. The normalized
cross-correlation (cross-covariance) of the spike counts, Nij(t) and
Ni	j	(t), of two neurons at (i, j) and (i	, j	) is calculated according to the
following:
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CCij,i	, j	��� �
�l�1

L
�Nij�t

l�� 
Nij�t
l����Ni	j	�t

l � ��� 
Ni	j	�t
l���

�var�Nij�t
l�� var�Ni	j	�t

l��
,

(7)

where 
Nij�t
l�� and 
Ni	j	�t

l�� are the means of the spike counts,
var(Nij(tl)) and var(Ni	j	(tl)) are the variances, L is the total number of
samples in the time series, and tl � (l � 1)�t with �t � 1 ms. The number
of spikes are calculated over �t � 50 ms time windows. For i � i	, j � j	
(i.e., the auto-correlation), the two identical signals would have a value of
CCij,i	j	�� � 0� � 1 at zero time lag. Nonidentical traces result in values
of CCij,i	j	�� � 0� between �1 and 1, which indicates negative and
positive correlations, respectively. At zero time lag, the measured value is
identical to the Pearson product-moment correlation coefficient, which
is a measure of the instantaneous correlation between two variables. The
cross-correlation can be calculated for the membrane potential (Vij(t)
and Vi	j	(t)) and synaptic conductance (gij

E�t� and gi	j	
E �t�) of pairs of neu-

rons in the same way as described above.
To characterize the shape of the distribution of membrane potentials,

we compute their excess kurtosis. For a neuron at position (i, j), this is
given by the following:

kurtosis�Vij� �
L�l�1

L
�Vij�t

l�� 
Vij�t
l���4

��l�1

L
�Vij�t

l�� 
Vij�t
l���2�2 � 3, (8)

where 
Vij�t
l�� is the mean value of voltage, L is the total number of

samples in the time series, and tl � (l � 1)�t with �t � 1 ms. The excess
kurtosis (which we shall henceforth refer to as the kurtosis) is a measure
of the shape of a distribution compared with a Gaussian; it is 
0 for a
distribution with more outliers (i.e., it is heavy-tailed) or values close to
the mean, and �0 for distributions with more values between the mean
and the outliers (i.e., it has heavy shoulders); for a Gaussian distribution,
it is 0 (DeCarlo, 1997; DeWeese and Zador, 2006). Large, occasional
deviations from the resting membrane potential lead to a heavy-tail dis-
tribution, and we use the kurtosis to quantify this, excluding the reset
values of membrane potential that occur in the refractory period. The
kurtosis of the synaptic conductance gij

E�t� of each neuron is calculated in
the same manner.

The spatiotemporal activity of our spatially extended network exhibits
propagating wave patterns with complex dynamics, as described in Re-
sults. One of the salient features of these wave patterns is that they are
localized, meaning that neurons that are spiking in a certain interval are
adjacent, and individual patterns are clearly separated from each other.
Based on this property, we devise an automatic method to identify these
patterns. We first choose a time window of duration 5 ms to detect
enough spikes that are adjacent to each other, and we then use a flood-fill
algorithm to classify groups of adjacent neurons as one pattern (Burger
and Burge, 2008).

There are two kinds of propagating wave pattern emerging from our
network model, which are described in Results: patchy and crescent-
shaped waves. A significant difference between them is that the center of
the former contains random firing activity, which results in gaps (i.e.,
holes) between firing neurons, whereas the latter does not. This property
can be quantified by the Euler characteristic, which is the difference
between the number of connected regions and the number of their holes
(Burger and Burge, 2008); thus, for the crescent-shaped waves, the Euler
characteristic is 1; and for the patchy patterns, it is �1. The Euler char-
acteristic is calculated by the “bweuler” routine in MATLAB (Math-
Works) (Pratt, 1991) and can be used to reliably distinguish the two types
of propagating wave patterns.

After identifying these propagating wave patterns automatically, we
characterize their collective dynamics by calculating the center-of-mass
position (IM(t),JM(t)) of each pattern:

IM�t� �
1

Mf
�
L�1

Mf

iM
L �t�, JM�t� �

1

Mf
�
L�1

Mf

jM
L �t�, (9)

where iM
L �t� and jM

L �t� are the i and j positions of the Lth neuron that is
firing at time t in the Mth pattern, and Mf is the total number of firing
neurons within this pattern.

We then use the mean-squared displacement (MSD) to quantify the
motion of each pattern:

MSD��� � 
�IM�t � ���IM�t��2 � � JM�t � ���JM�t��2�

(10)

where � is the time increment, and �
 represents averaging over time. If
a pattern travels ballistically, that is, it moves in the same direction at each
time step, MSD��� � t
 where 
 � 2. If the motion of a pattern is nor-
mally diffusive (Brownian) (i.e., it is equally likely to move in any direc-
tion at each time step), then 
 � 1.

Results
Dynamic wave patterns emerging from balanced, spatially
extended networks
The balance of a neuron often refers to the approximately
equivalent amounts of inhibitory and excitatory synaptic in-
puts that it receives (van Vreeswijk and Sompolinsky, 1996,
1998; Salinas and Sejnowski, 2000; Xue et al., 2014). This
can be measured by the ratio � � 
cij

I � / 
 cij
E � where exci-

tatory current cij
E�t� � gij

E�t��Vij�t� � VE�, inhibitory current
cij

I �t� � gij
I �t��Vij�t� � VI�, 
 � indicates averaging over time

excluding refractory periods, and the overbar represents averag-
ing across neurons. When � 	 1 (i.e., excitatory and inhibitory
inputs are approximately equilibrated), we refer to this as the
balanced condition. When � 	 1, the randomly coupled net-
work (see Materials and Methods) generates asynchronous dy-
namics without any structured patterns, as found in previous
balanced networks (van Vreeswijk and Sompolinsky, 1996; Ren-
art et al., 2010). In this balanced state, individual neurons fire
irregularly (Fig. 1a), and the distribution of membrane potential
is Gaussian.

In contrast, the balanced, spatially extended network gener-
ates spatiotemporal patterns with complex dynamics. As shown
in Figure 1b, c, d, these patterns include several localized,
crescent-shaped waves that move rapidly, and localized, patchy
patterns that slowly wander around (outlined by the green
boxes). The initiation sites and subsequent trajectories of both
types of pattern are seemingly random, and the patterns interact
when they approach each other; these interactions include repul-
sive collisions, and partial and full annihilations. Because both
types of pattern can propagate over the network, we generally
refer to them as propagating wave patterns. Notably, propagating
wave patterns with random initiation sites and propagation di-
rections have been observed in the spontaneous activity of visual
cortex of rats (Han et al., 2008, their Fig. 2b) and in the sensori-
motor cortex of behaving mice (Ferezou et al., 2007). Multiple
wave patterns that sweep across the cortex have been found in the
visual cortex of cats (Arieli et al., 1995, 1996), and the coexistence
of waves and localized patchy patterns has been observed in the
barrel cortex of rodents (Petersen et al., 2003).

When the network input is unbalanced (� 	 0.95) and dis-
inhibited, wave patterns with more regular, global properties
emerge. In particular, global ring or target waves occur peri-
odically, with frequency proportional to the external input.
Alternatively, depending on the initial conditions, the network
sometimes develops plane waves that propagate in a preferred
direction, or spiral waves, the centers of which can spread across
the entire lattice (Fig. 1e). This is largely consistent with record-
ings in cortical slices and intact neocortex of rats: when neurons
were disinhibited using bicuculline to block GABA receptors,
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Figure 1. The formation of propagating wave patterns with complex dynamics depends upon a balance of excitation and inhibition, and upon spatially extended coupling. Colors in the images
represent membrane potential between inhibitory reversal VI ��80 mV (blue) and threshold VT ��55 mV (red), as indicated by the color bar. Each image is of a network of 300 � 300 neurons,
but only a 100 � 100 region is shown for clarity. a, Snapshot of spatiotemporal activity in the randomly connected, balanced network. For this case, there are no structured patterns. b– d, Snapshots
of spatiotemporal patterns in the balanced, spatially extended network. Patterns take the form of multiple, localized, crescent-shaped propagating waves and wandering patches, which are outlined
by the green boxes. The patterns may interact in a variety of ways, such as mutual or partial annihilations, in which one or both patterns disappear; deflection, in which patterns move in opposite
directions; and fission, in which a wave splits into two. e, A spiral wave formed in the unbalanced network in which excitation dominates; the center of the spiral wave drifts across the network. f– h,
Snapshot of spatiotemporal activity when the balanced condition in a network is broken so that excitation dominates. The separation between the waves decreases, and then nearby waves merge;
this effect persists until plane waves form. i, Average width of the waves as a function of time. The balanced condition is broken at 3 s, and for this case the excitation is dominant. j, Spatiotemporal
activity when balance in a network is broken so that inhibition dominates; patterns tend to dissipate quickly such that they cannot propagate over long distances. k, Propagation distances of the
wave patterns as a function of time. The balanced condition is broken at 3 s, and inhibition dominates in this case. l, Snapshot of the spatiotemporal activity of the spatially extended network when
noisy inputs are included. Despite the presence of random inputs, propagating wave patterns are still able to form from the network.
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alternative patterns of ring, plane, and spiral waves were observed
(Huang et al., 2004, 2010).

To further illustrate that balanced excitation and inhibition
are needed for the formation of propagating wave patterns with
complex dynamics, we break the balanced condition in the net-
work to study the changes in these patterns. For this purpose, the
model is run for the usual transient time and then after 3 s, the
inhibitory connection strength WI is altered to obtain either an
excitation or an inhibition dominated case. For the excitation
dominated case, the typical changes of these patterns after break-
ing the balance are shown in Figure 1f, g, h: the separation be-
tween these localized wave patterns decreases, and then nearby
waves merge with each other; this process continues until even-
tually global plane waves are formed (Fig. 1h). To quantify such
changes, we calculate the average width of the wave patterns iden-
tified by our algorithm (see Materials and Methods) as a function
of time. Figure 1i shows that the size of the waves increases rapidly
after breaking the balanced condition and continues to increase
until all the patterns are merged into a plane wave. On the other
hand, after breaking the balanced condition to obtain an inhibi-
tion dominated case, the wave patterns change from ones with
relatively long range propagation to ones tending to disappear
shortly after they are formed (i.e., they are short-lived due to the
strong inhibition) (Fig. 1j). Based on this observation, we calcu-
late the average propagation length (500 ms time windows) of
each pattern as a function of time. Figure 1k shows that, as ex-
pected, the propagation length of the waves rapidly decreases
after the balance is broken until it reaches a certain value that is
quite small relative to the size of the network.

In our network model, the balanced state and the resultant
propagating wave patterns emerge without fine tuning of param-
eters. For instance, changing the values of FE and FI still leads to
the balanced state as long as FE is high enough relative to FI such
that individual neurons can fire even without recurrent synaptic
inputs. The population-averaged firing rates increase nearly
linearly as a function of external input strength (FE), as has
been found for randomly connected, balanced networks (van
Vreeswijk and Sompolinsky, 1996). Additionally, when the neu-
rons in our network receive stochastic inputs (see Materials and
Methods), they still settle to a balanced state and the network is
able to form propagating wave patterns (Fig. 1l), as found in the
network with a constant external input. Moreover, the strengths
of recurrent excitation (WE) and inhibition (WI) have a relatively
broad range over which the balanced condition is preserved;
for instance, given WE � 0.23, the network is balanced for
0.23 	 WI 	 0.35. In a recent study of neural field models
(Rosenbaum and Doiron, 2014), it was found that, in the contin-
uum limit, balanced firing rate solutions require that the spatial
spread of external inputs be broader than that of recurrent exci-
tation, which in turn should be greater than or equal to that of
recurrent inhibition; however, this condition is not satisfied for
finite-size networks, and crucially, propagating wave activity can-
not be captured by the mean field models, as pointed out by
Rosenbaum and Doiron (2014). In our study of the finite-size
spiking neural network with emergent propagating wave pat-
terns, the balanced condition with the ratio of average excitatory
current and inhibitory current close to 1.0 is quite robust, and
these wave patterns underlie variable firing activity of neurons as
shown in the following section.

Spikes of neurons exhibit a doubly stochastic process
We next characterize the dynamics of the propagating wave pat-
terns and show that these dynamics cause the doubly stochastic

process of neural firing activity, with variability in spike timing
and slow fluctuations in firing rates (Churchland et al., 2010,
2011). First, the center of mass of each pattern is calculated and
tracked over time (see Materials and Methods). Figure 2a, b
shows the typical trajectories of crescent-shaped waves and
patchy patterns, respectively; both patterns appear to have ran-
dom initiation sites and trajectories. They have distinct dynam-
ics, with crescent-shaped waves propagating over long distances
and patchy patterns wandering around a particular area. By cal-
culating the displacement of centers of mass for each pattern, we
find that the crescent-shaped waves have a mean speed of 2.0 �
0.6 gridpoints/ms (Fig. 2c). We also change the connectivity den-
sity (i.e., the number of connections each neuron receives over a
given distance) and find that the average speed of the waves in-
creases monotonically as the density increases.

To further quantify the dynamics of these patterns, we calcu-
late their MSD (see Materials and Methods). For the crescent-
shaped waves, MSD appears to be linear on a log-log scale (Fig.
2d, red line), which implies that it is a power function of time
increment � such that MSD��� � �
. By using nonlinear least-
squares fitting via the Levenberg-Marquardt algorithm (Press et
al., 2007), we obtain an exponent of 
 � 1.9. For Brownian mo-
tion, the MSD is a linear function of time (
 � 1); when 
 � 1, a
diffusion process has a nonlinear relationship to time and is
called anomalous diffusion. In particular, if 1 � 
 � 2, it is a
superdiffusive process; and if 0 � 
 � 1, it is a subdiffusive
process (Metzler and Klafter, 2000). This result therefore indi-
cates that the crescent-shaped waves move in a superdiffusive
manner. Anomalous superdiffusion indicates that the motion of
these waves is not fully random as is the case for Brownian mo-
tion and that, instead, there are long-range correlations in their
propagations (Metzler and Klafter, 2000). For the patchy patterns
that wander around, MSD��� � �
 and 
 � 1.0 (using nonlinear
least-squares fitting) for � 
 10 ms, indicating that these patterns
move in a normally diffusive manner over long time scales and
that they move much slower than crescent-shaped waves (Fig. 2d,
blue line).

Figure 3a shows that neurons within the network exhibit dy-
namic transitions between low-activity and high-activity states.
These transitions appear to coexist with variable spike timing of
individual neurons, which is a characteristic feature of a doubly
stochastic process (Churchland et al., 2011; Churchland and Ab-
bott, 2012; Litwin-Kumar and Doiron, 2012). To quantify the
variability of spike timing, we first calculate the CV of ISIs as
outlined in Materials and Methods. The average value of CVs
across all trials is 1.1 � 0.1, which is in agreement with experi-
mental studies (Softky and Koch, 1993; Holt et al., 1996). How-
ever, a high CV may reflect fluctuations in firing rates as well as
variability in the timing of individual spikes. To quantify such
fluctuations in firing rates, we calculate the spike count Fano
factor (see Materials and Methods) for each neuron by using a
fixed time window of �t � 100 ms, which yields a mean value of
1.4 � 0.5. Fano factors with values 
1.0 have been observed in
many cortical systems (Tolhurst et al., 1983; Britten et al., 1993;
Churchland et al., 2011) and are evidence for the fluctuations of
neural firing rates. The fluctuations of firing rates over long time
scales are further demonstrated by calculating Fano factors as a
function of time window. As shown in Figure 3b, Fano factor
increases linearly as �t increases; this is because of the transitions
between high and low-activity states that happen over long time
scales (Churchland et al., 2011). A recent modeling study of bal-
anced networks with clustered connections has found similar
doubly stochastic firing activity and transitions between high and
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low firing activity states (Litwin-Kumar and Doiron, 2012), in
which such transitions are caused by spontaneous switching dy-
namics between different attractors. However, for our case, the
dynamics of the propagating wave patterns cause these transi-
tions; this mechanism is illustrated below.

Propagating wave patterns generate irregular spiking activity
We next consider the relationship between the spiking activity of
individual neurons and the collective dynamics of propagating
wave patterns. By tracking the motion of individual patterns, we
observe that, when a crescent-shaped wave front moves toward a
certain area, neurons in the area would receive synaptic inputs
from neurons that are firing in the front, and their membrane
potentials are depolarized such that they may subsequently fire.

Because the wave moves in a superdiffusive way, it leaves that
location rapidly, which means that neurons around that location
fire no more than once. To verify this, we consider a 5 � 5 subgrid
with 25 neurons, which is smaller than the area of a typical wave
pattern and thus cannot contain more than one wave trajectory at
a time. We then calculate over all trials the number of neurons
within this grid that would fire when a wave passes by. The resul-
tant distribution, shown in Figure 3c, has a mean value of 11.2,
meaning that, when a wave passes by, only a fraction of neurons
in the grid fire. The complex dynamics of the waves, namely, their
random origins and trajectories (Fig. 2a), results in the irregular
passage of these wave fronts around that location; this causes the
high variability of the spike times indicated by the CV. Because
the waves tend to leave each location rapidly and cause only a

a b

c d

Figure 2. Dynamic properties of propagating wave patterns. a, A sample of the trajectories of crescent-shaped waves. Both the initiation sites (black circles) and propagation paths (gray lines)
of these waves appear to be random. The trajectories are terminated as a result of interactions with other waves or as a result of the wave fissioning. b, Trajectory of a typical patchy pattern with
initiation site depicted by the circle. The pattern tends to “wander” around a particular area and covers a smaller region than the crescent-shaped waves (note the smaller 20�20 scale of this figure).
c, Distribution of the speeds of the crescent-shaped waves, which has a mean of 2.0 gridpoints/ms. d, Mean-squared displacement MSD(�) as a function of time increment �. Red line indicates the
MSD for crescent-shaped waves; a fit to the straight-line part in the log-log plot (indicated by the black line above) gives MSD��� � �
 with 
� 1.9 (nonlinear least-squares fitting), indicating
the superdiffusive dynamics of crescent-shaped waves. To confirm that the crescent waves propagate in a superdiffusive way rather than a ballistic way (
 � 2), we compare our fit against a
quadratic fit by calculating the Bayes factor of B � P�D � M�/P�D � M0� where P�D � M� is the likelihood of the power law fit M with 
 � 1.9 given the data D, and P�D � M0� is the
likelihood of the quadratic fit M0; we obtain B 
 1000, indicating that the superdiffusive case is much more likely than the ballistic case. Blue line indicates the MSD for patchy patterns: for t 
 10
ms, the slope of the line of best fit (the black line above) is 
 � 1.0, which indicates Brownian dynamics over long time scales.
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fraction of neurons in a grid to fire, their passage corresponds to
the relatively low-activity state. This can be illustrated by choos-
ing a neuron that has transitions between the low and high-
activity states, and we find that, during the time periods when the
neuron is not within a patchy pattern and crescent waves occa-
sionally pass the location of the neuron, the mean firing rate of
the neuron is 16 Hz. On the other hand, when a patchy pattern
moves to this location, the pattern wanders around the location
due to its normally diffusive dynamics, and drifts away slowly;
this enables the neuron within that location to fire persistently,
corresponding to the high-activity state as shown in Figure 3a.
For the time periods when the example neuron is within a patchy

pattern, we find that the mean firing rate is 137 Hz, and similar
values can be found for other neurons, which are passed by
patchy patterns. The low-activity state is therefore associated
with crescent-shaped waves, whereas the transition to the high-
activity state is caused by the approach of a patchy pattern.

Based on the above result, one would expect that the time scale
of these transitions is closely related to the density of the patchy
patterns. To test this prediction, we randomly rewire connections
in the network with a certain probability P (see Materials and
Methods). Despite the random connections, the localized pat-
terns shown in Figure 1b– d can still emerge for P 	 10%. Figure
3d shows that, for the network with random connections, the
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Figure 3. Properties of the spiking activity of network neurons. a, Raster plot showing the spike times of a subpopulation of 50 excitatory neurons. Firing activity with variable spike timing is
punctuated by dynamic transitions between high and low firing activity states. b, For the balanced, spatially extended network, Fano factors increase as a function of length of time window (blue
line). The neurons in the balanced, randomly connected network (red line) have a high Fano factor, but it is independent of time window. For the disinhibited network (green line), the Fano factor
is independent of time window and has a value of almost zero. c, Histogram of the number of neurons in a 5 � 5 subgrid that would fire when there is a crescent-shaped wave passing by the subgrid.
d, Percentage of patchy patterns as a function of random rewiring probability P. In the balanced, spatially extended network, the percentage of patchy patterns increases with P. e, Average Fano
factor as a function of random rewiring probability P. In the balanced, spatially extended network, the Fano factor increases with P. f, Raster plot showing the spike times of a subpopulation of 50
excitatory neurons in the spatially extended network with 10% of the connections randomly rewired.
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proportion of patchy patterns relative to the number of crescent-
shaped waves is greater than that in the original model; indeed,
the proportion increases monotonically as the rewiring probabil-
ity P increases. This increase in the proportion of patchy patterns
results in an increase in Fano factors (Fig. 3e). This is because the
greater the proportion of the patchy patterns, the greater the
frequency of transitions between high and low-activity states, as
shown in Figure 3f. The Fano factor asymptotically approaches a
particular value, which corresponds to an absence of the crescent-
shaped waves. Because the crescent-shaped waves are mostly re-
sponsible for the low-activity state, their absence means that
neurons exhibit high firing rates or no firing at all; this results in
greater fluctuations of firing rates.

To show that the propagating wave patterns emerging from
the balanced network are essential for doubly stochastic firing
activity, we calculate the Fano factors of the unbalanced network

and the random network. The global ring, plane, and spiral waves
(Fig. 1e,h), which occur in the unbalanced network, cannot cause
variable spike timing. In this case, the Fano factors of firing ac-
tivity are not only independent of time windows but also have
very low values (Fig. 3b, green line). The randomly coupled net-
work, which cannot generate any structured patterns (Fig. 1a),
can produce spike count variability, but it does not exhibit slow
fluctuations in firing rates; as shown in Figure 3b, whereas its
Fano factor is close to 1, it is independent of time window.

Previous models of balanced networks have shown that aver-
aged spike count correlations of pairs of cortical neurons form a
wide distribution (i.e., with a high SD) with a mean value close to
zero (Renart et al., 2010; Litwin-Kumar and Doiron, 2012). We
calculate the correlation coefficients (see Materials and Methods)
of spike counts of pairs of randomly selected neurons in the bal-
anced, spatially extended network. Figure 4a shows a wide distri-
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Figure 4. Spike count correlations between pairs of neurons in the balanced, spatially extended network. a, Histogram of the correlation coefficients of random pairs of neurons; it is wide and
centered around zero. b, Average correlation coefficients, computed over all neuron pairs, as a function of their distance. c, Histogram of spike count correlations for nearby neurons (separated by
5 gridpoints), which has a mean value of 0.66, as indicated by the arrow. d, Histogram of spike count correlations for nearby neurons (separated by 5 gridpoints) when they are in the high-activity
state; the mean value is 0.22, as indicated by the arrow. e, Histogram of spike count correlations for nearby neurons (separated by 5 gridpoints) when they are in the low-activity state; the mean value
is 0.15, as indicated by the arrow.
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bution of correlations with a mean of 0.0008 � 0.0002, similar to
that found in Litwin-Kumar and Doiron (2012). We also calcu-
late the correlation coefficients as a function of distance (Fig. 4b):
at relatively short distance, there are positive correlations that
decrease as the distance increases, which is largely consistent with
the distance-dependent neuronal correlations as observed in
Smith and Kohn (2008) and Ecker et al. (2014). The correlations
are negative at intermediate distances and approach zero when
distance is large enough; this is consistent with the negative cor-
relations found for the randomly selected neuron pairs (Fig. 4a)
(Renart et al., 2010; Ecker et al., 2014). Negative correlations have
also been observed by Vaadia et al. (1995).

As illustrated above, there are transitions between low- and
high-activity states, with the latter being produced by the slowly
propagating patchy patterns. That is, when a patchy pattern
moves to a location in the network, it drifts away from the loca-
tion slowly. This makes the neurons within the location maintain
sustained firing states for a relatively long period of time, resem-
bling the “up state” found in the cortex. To show whether the
correlations depend on the states of neuron firing activity for
nearby neurons, as observed in Ecker et al. (2014), we also calcu-
late the distribution of spike count correlations when patchy pat-
terns are over a neuron pair (high-activity state), and when they
are not (low-activity state); these are then compared with those
obtained over all trials. To do this, we classify the high firing state
as those �t � 50 ms intervals with spike counts corresponding to
a firing rate of 
50 Hz. The mean values of the spike count
correlations are 0.66, 0.22, and 0.15 for all trials (Fig. 4c), for the
case when both neurons are in a high firing state (Fig. 4d), and for
the case when they are not (Fig. 4e), respectively. The mean value
of the correlation coefficients of the high-activity state is signifi-
cantly larger than that of the low-activity state (p � 0.001), and
both are significantly smaller than that for all trials (p � 0.001).
These results therefore indicate that, in our model, the spike
count correlations depend on the states of neural firing activity.

In total, the results we have obtained show that the balanced,
spatially extended network with emergent propagating wave pat-
terns is able to capture salient characteristics of variable firing
activity of cortical neurons, including their variable spike timing,
slow fluctuations of firing rates, small spike count correlations of
randomly selected neuron pairs, and state-dependent spike count
correlations.

Synchronized synaptic inputs to individual neurons
In the input synchrony model proposed for explaining variable
neural dynamics, synaptic inputs to individual neurons consist of
large, brief, and occasional inputs or “bumpy” inputs, indicating
the synchronous arrival of many spikes of presynaptic neurons
(Stevens and Zador, 1998; Okun and Lampl, 2008). These kinds
of synchronized bumpy synaptic inputs have been found in the
cortex (Hasenstaub et al., 2005; DeWeese and Zador, 2006; Okun
and Lampl, 2008; Poulet and Petersen, 2008; Tan et al., 2014), but
the mechanisms that give rise to such inputs have not been stud-
ied. We now show that, in our balanced, spatially extended net-
work, the emergent propagating wave patterns provide a network
mechanism to generate such inputs.

Figure 5a shows the dynamics of the excitatory synaptic con-
ductance received by individual neurons in our model, which are
characterized by quiescent periods punctuated by large, brief, and
occasional excursions in amplitude, with variable magnitudes
and shapes. Figure 5b shows the distribution of the excitatory
synaptic conductance gij

E�t� received by each neuron over the
whole time course of one trial; the distribution has a heavy tail.

We use a linear-log plot because we can use it to directly compare
with empirical observations in DeWeese and Zador (2006) and
Hromádka et al. (2013), but it is evident that the distribution is
heavy-tailed if the scale of both axes is linear. It is interesting to
note that heterogeneous synaptic inputs with heavy-tail distribu-
tions have been found in the somatosensory cortex (Lefort et al.,
2009). To quantify these non-Gaussian dynamics, we calculate
the kurtosis for the distribution of the excitatory synaptic con-
ductance of each neuron within the network (see Materials and
Methods). We find that these values display a wide range of ac-
tivity with a maximum kurtosis of 17.6 and a minimum kurtosis
of �1.1. However, negative values of kurtosis are rare; most val-
ues are positive, with a population mean of 5.9 (SD 1.6). These
kurtosis values are comparable with those implied by whole-cell
recordings of auditory cortex in awake rats (Hromádka et al.,
2013). Because the kurtosis is a measure of the proportion of
samples within the peak and tail of a distribution compared with
a normal distribution, the kurtosis is positive for heavy-tail dis-
tributions (see Materials and Methods). The negative values of
kurtosis indicate that distributions of the inputs may occasionally
be bimodal; such distributions may result from periods of quies-
cence punctuated by periods of sustained input.

We next illustrate that the dynamics of propagating wave pat-
terns in our network provide a mechanistic explanation for the
bumpy, synchronized synaptic inputs, as shown in Figure 5a. It is
apparent that a wave front, which includes multiple spiking neu-
rons, provides a source of synchronized input to any neurons that
it approaches. However, the superdiffusive dynamics of the
crescent-shaped waves means that such synchronized input is
transient, as the wave will pass by and move out of range of the
neuron rapidly. We can quantify the number of spikes participat-
ing in a bumpy synaptic input by considering a planar wave front
approaching a “test” neuron. The maximum distance of excit-
atory connections is DE � 10; above this distance, the test neuron
will not receive any recurrent input (see Materials and Methods).
Therefore, we assume the initial displacement between the wave
and the test neuron to be d � �DE. If the wave approaches the test
neuron head-on, the neuron will continue to receive input until
the wave passes out of range at d � DE. Because d is in units of
neuron separation (i.e., gridpoints), the test neuron receives ex-
citatory inputs from the wave front (i.e., at 2DE � 1 locations);
this is the range over which the wave provides input to our test
neuron as it approaches and then moves away; in other words, it
is the length of the wave trajectory that affects the test neuron.
The width of a typical wave front consists of Nw 	 19 (Fig. 1i)
depolarized neurons. The number of neurons that could partic-
ipate in a bump of synaptic input is the width multiplied by the
length of the trajectory (i.e., Nw(2DE � 1) � 1), where the minus
one excludes the test neuron from receiving input from itself.
Excluding neurons, which are separated from the test neuron by a
distance greater than DE, we find that 315 neurons can participate in
the bump. This is similar to the number of synthetic excitatory post-
synaptic potentials used to generate synchronized inputs to cortical
neurons in brain slices (Stevens and Zador, 1998), but it is approxi-
mately an order of magnitude less than that found in vivo (DeWeese
and Zador, 2006). This discrepancy is likely due to the scaling of our
network (see Materials and Methods).

The model of a typical wave front approaching a test neuron
can also be used to explain the shape of the bumps of synaptic
conductance. Consider the wave front moving at the average
speed of 2 gridpoints/ms (Fig. 2c) head-on toward a test neuron
and then away from it. As excitatory coupling strength has an
exponential dependence on distance (Eq. 4, see Materials and
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Methods), the amplitude of the excitatory inputs first increases
and then decreases. The resultant time course of the input pro-
duced in this model is similar to the time course (full width at
half-maximum is 4.4 ms) and amplitude (�2000 �S) of the
bumps of largest amplitude in the network model (Fig. 5c, solid
line). Bumpy synaptic inputs in our network usually have diverse
profiles, but such variations can arise from differences in the sizes
of firing wave fronts and the complex trajectories of these waves,
which often do not approach a neuron head-on but move within
its proximity. In summary, the crescent-shaped waves with su-

perdiffusive dynamics can produce bumpy, synchronized inputs
with short durations, to individual neurons.

Bumpy synaptic inputs in the balanced, spatially extended
network occasionally have longer durations. For instance, the
bumpy synaptic conductance centered around 200 ms in Figure
5a has a relatively longer duration, during which the neuron
receives synchronized inputs for a sustained period (i.e., up
states), similar to intracellular recordings in the auditory cortex
of awake rats (Hromádka et al., 2013). These inputs are caused by
patchy patterns because, when these patterns move toward a par-
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Figure 5. Properties of synaptic inputs to neurons in the balanced, spatially extended network. a, Time series of excitatory synaptic conductance gij
E�t� received by a neuron over 1 s; it consists

of quiescent periods punctuated by brief excursions in conductance, indicating the arrival of highly synchronized inputs of many neurons. The time courses of gij
E�t�have variable shape and duration;

for instance, at �200 ms, the bump in synaptic conductance has a relatively longer duration. b, Histogram of excitatory synaptic conductance gij
E�t� received by each neuron over the whole time

course of one trial (i.e., the trace of the conductance as shown in a). The bumpy synaptic input results in a heavy-tail distribution of conductances. Note the logarithmic scale of the coordinate; this
is used for direct comparison with relevant empirical data, but the heavy tail is still evident for a plot with both axes linearly scaled. c, Excitatory (solid line) and inhibitory (dashed line) inputs received
by a test neuron in the model of a wave front of width Nw 	 19 approaching a test neuron head-on. d, The conductances received by two nearby neurons in the network, shown as red and blue
lines, as a wave passes by. Solid lines indicate excitatory conductance. Dashed lines indicate inhibitory conductance. e, Average cross-correlation of synaptic inputs received by neuron pairs separated
by an interneuron distance of 5. There are high cross-correlations of 0.69 (SD 0.04) for excitatory-excitatory (E-E), 0.56 (SD 0.05) for inhibitory-excitatory (I-E), and 0.91 (SD 0.02) for inhibitory-
inhibitory (I-I) conductances, respectively. Red bars represent maximum cross-correlation. Blue bars represent cross-correlation at zero time lag. f, The conductances received by two nearby neurons
in the network as a wave approaches them from the opposite direction to that for d. g, Cross-correlation between the inhibitory input and the excitatory input found for nearby neurons in the network
(black line) and the cross-correlation calculated for the model of a wave approaching a test neuron (red line).
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ticular neuron, they wander around the neuron and drift away
from it slowly in a normally diffusive manner, providing rela-
tively sustained synchronized inputs to the neuron. To further
quantify the bumpy, synchronized synaptic inputs, we study their
durations, which we define as the time intervals during which
excitatory conductance exceeds some threshold. We choose this
threshold to be the leak conductance (i.e., gij

E�t� � gL), but as long
as the threshold level is not too small, its precise value is not
critical; choices near this value yield similar results. Using this
definition, we classify bumpy inputs with long duration as those
of duration 
500 ms, as was used by Hromádka et al. (2013). We
find that bumpy inputs of long duration are rare, comprising only
0.05% of all bumps. Furthermore, most time spent away from
rest is spent in short bumps; only 1.2% of total simulation time is
spent in bumpy inputs with duration 
500 ms. Indeed, bumpy
inputs of long duration constitute 3.6% of the duration of all
bumpy, synchronized inputs, despite, on average, being approx-
imately an order of magnitude longer than bumpy inputs of short
duration (Fig. 5a). This is in agreement with experimental results,
which suggest that sustained bumps (up states) in inputs are rare
in the awake cortex (Hromádka et al., 2013).

Synaptic inputs are correlated and inhibition lags
behind excitation
We now demonstrate that our model is also able to capture the
cross-correlations of synaptic inputs to pairs of nearby neurons,
as measured by using dual-cell recording in Okun and Lampl
(2008). Figure 5d shows the typical excitatory (solid lines) and
inhibitory (dashed lines) conductances received by two neurons
separated by a small distance of 5 gridpoints, as a wave passes by;
conductance is positive (Eq. 2 in our model). We calculate the
cross-correlations of these inputs over pairs of neurons and over
trials and find that there are large peak values of cross-correlation
with 0.69 (SD 0.04) for excitatory-excitatory, 0.56 (SD 0.05) for
inhibitory-excitatory, and 0.91 (SD 0.02) for inhibitory-
inhibitory conductances, respectively (Fig. 5e). This is compara-
ble with the cross-correlations of excitatory and inhibitory inputs
found in nearby cortical neurons (Okun and Lampl, 2008; Gentet
et al., 2010).

As shown in Figure 5d, excitatory inputs to the nearby neu-
rons reach their peak values at almost the same time; this is also
the case for the inhibitory inputs. In contrast, inhibition lags
excitation significantly (p � 0.001). As in Okun and Lampl
(2008), such lags between inhibition and excitation are then mea-
sured based on the peak values of their cross-correlations aver-
aged over neuron pairs and trials; these cross-correlations attain
their peak value at non-zero lag, which is 2.3 � 0.4 ms. This lag is
comparable to the lag of 3.8 � 4.9 ms as found in Okun and
Lampl (2008). We also calculate the cross-correlation of excit-
atory and inhibitory conductances arriving at the same neuron
and obtain a lag of 2.2 � 0.5 ms, comparable with the lag of 2.4 �
3.6 ms reported by Wehr and Zador (2003) for such inputs re-
ceived by the same neuron. Our model is therefore able to repro-
duce a characteristic feature observed in cortical neurons,
namely, that inhibition lags behind excitation by several millisec-
onds. This supports the hypothesis that inhibition controls the
integration time window of excitation, enabling neurons to act as
coincidence detectors.

In our model, the bumpy excitatory synaptic inputs are always
ahead of inhibitory inputs, as shown in Figure 5d, regardless of
which direction the approaching wave moves; Figure 5f shows
such inputs when there is a wave moving in the opposite direction
to that in Figure 5d. This effect is a result of the distance-

dependent coupling and the distinct synaptic time scales of excit-
atory and inhibitory dynamics (�d

E � 2.0 ms and �d
I � 7.0 ms in

Eq. 3). To illustrate this, we consider the model mentioned ear-
lier, of a propagating wave front consisting of Nw � 19 firing
excitatory neurons, and extend it to include inhibitory neurons.
Because inhibitory neurons only constitute 20% of the neurons
in the network, there are half as many inhibitory neurons as there
are excitatory neurons along both dimensions. Therefore, the
firing wave front consists of �Nw/2 inhibitory neurons, which
occur at d � �DI�DI �2, . . . , �1, 1, . . . , DI �2, DI, where
DI � 15 is the spatial range of inhibitory neurons. Using this
extended model, we obtain the time course of inhibitory input
received by our test neuron, shown by Figure 5c (dashed line);
this is similar to what is observed in our balanced network (Fig.
5d,f). When we calculate the cross-correlation between excit-
atory and inhibitory bumps, we find that it obtains its peak value
at 3.9 ms (Fig. 5g, red line), similar to the lag found when a wave
passes a neuron in the balanced, spatially extended network (Fig.
5g, black line). Based on the model of a wave front approaching a
test neuron, we also find that the time lag remains the same for a
wave moving in an opposite direction (i.e., starting at d � DI and
ending at d � �DI). However, if we run the model with the same
synaptic time scales (�d

E � 2.0 ms and �d
I � 2.0 ms), no lag exists

in the cross-correlation function; if we run the model with the
same distance-dependent coupling for excitatory and inhibitory
neurons (Kij,i	j	

E � Kij,i	j	
I in Eq. 4), the lag is only 2.3 ms. These

results therefore suggest that the lags between excitation and in-
hibition are dependent on the interplay of the synaptic time scales
and the distance-dependent coupling but are independent of the
propagation direction of the wave patterns. We also find that this
lag is not evident for the balanced, randomly connected network,
in which no wave patterns can form.

Membrane potential dynamics are non-Gaussian
In previous models with balanced excitation and inhibition,
membrane potential follows a random walk and its distribution is
Gaussian (Shadlen and Newsome, 1998); this is also the case for
our randomly connected network, in which the membrane po-
tential has a Gaussian distribution with a kurtosis near zero.
However, for the balanced, spatially extended network, the syn-
chronized bumpy inputs cause occasional large excursions of
membrane potential from rest; this results in a heavy-tail distri-
bution of membrane potential (Fig. 6a). This non-Gaussian dy-
namic is confirmed by calculating the kurtosis, which has a mean
value over all neurons of 5.9 (SD 1.2), close to the kurtosis found
in DeWeese and Zador (2006). The distribution of kurtosis values
for the membrane potential of each neuron shows that there is a
great diversity in membrane potential dynamics, with a maxi-
mum kurtosis of 11.8 and a minimum kurtosis of �0.3 (Fig. 6b).
We find similar distributions for the synaptic inputs (Fig. 5b),
which indicates that there are bumpy dynamics for both synaptic
input and membrane potential. This coincides with the passing of
waves, which causes highly synchronized synaptic inputs and a
resultant sudden increase in membrane potential.

Finally, we consider the correlation properties of membrane
potential. We calculate the auto-correlation of the membrane
potential of each neuron and then calculate the average. As shown
in Figure 6c, there are oscillations in auto-correlation as a func-
tion of time lag with a frequency of 33 Hz. Applying the same
procedure to the excitatory synaptic inputs received by each neu-
ron (Fig. 6d) yields a similar auto-correlation, with a character-
istic frequency of 33 Hz. We also calculate the cross-correlation of
the membrane potentials of nearby neurons. The averaged cross-
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correlation has the same frequency as the averaged auto-
correlation but has a smaller amplitude of 0.5, as shown in Figure
6e; this is due to the dependence of excitatory connection
strength upon distance (Eq. 4, see Materials and Methods). These
correlated functions of membrane potential produced in our model
are similar to those found in previous experiments of awake animals
(Poulet and Petersen, 2008; Gentet et al., 2010). The frequency is,
however, an order of magnitude greater than that found experimen-
tally (Poulet and Petersen, 2008; Gentet et al., 2010), a discrepancy
that is likely due to the scale of our network (see Materials and Meth-
ods). Suppose that the speed of the wave patterns is v and the spatial
separation between them is l; then on average, the interval between
waves approaching a certain area would be l/v. The corresponding
frequency of synaptic inputs to the neurons around the area would
therefore be v/l, meaning that increasing wave separations can po-

tentially decrease the frequency. Indeed, when the network is scaled
up to 600 � 600 with larger synaptic coupling ranges (DE � 20 and
DI � 30 in Eq. 4), we find that the average frequency decreases from
33 Hz to 21 Hz.

Discussion
In this study, we have shown that propagating wave patterns with
complex dynamics can emerge from spatially extended, spiking
neural circuits with balanced excitation and inhibition. These
patterns provide a mechanistic explanation for a range of neural
dynamics, including the variability of spike timing, slow fluctua-
tions of firing rates, and non-Gaussian dynamics of membrane
potential. Additionally, these propagating wave patterns enable
individual neurons to have highly synchronized synaptic inputs,
as found previously (Stevens and Zador, 1998; DeWeese and Za-
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Figure 6. The dynamics of membrane potential in the balanced, spatially extended network. a, Distribution of the membrane potential of all neurons over the time course of one trial is heavily
tailed. Note the logarithmic scale of the coordinate; this is used for direct comparison with empirical data, but the heavy tail is still evident if the scale of both axes is linear. b, Distribution of kurtosis
values of membrane potentials of each neuron for all trials. c, Average auto-correlation of membrane potential of neurons within one trial. It has a frequency of 33 Hz, and the envelope of the
auto-correlation decays as time lag increases. d, Average auto-correlation of excitatory synaptic inputs received by neurons within one trial. It has a frequency of 33 Hz, and the envelope of the
auto-correlation decays as time lag increases. e, Average cross-correlation of membrane potential of pairs of nearby neurons within one trial. It also has a frequency of 33 Hz, and it decays with time
lag but has a smaller amplitude (maximum cross-correlation is 0.5).
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dor, 2006; Okun and Lampl, 2008). Our model therefore recon-
ciles the model of balanced excitation and inhibition, and that of
synchronized inputs, to account for irregular neural dynamics.

A unified account of irregular neural dynamics
Neural firing activity in vivo can be approximated as a doubly
stochastic process (Churchland et al., 2011) because, in addition
to the variability of spike timing, the firing rates of cortical neu-
rons fluctuate over long time scales. A recent study, by extending
conventional balanced networks with random uniform connec-
tions to those with clustered connections, is able to explain such
doubly stochastic processes (Litwin-Kumar and Doiron, 2012).
As in Litwin-Kumar and Doiron (2012), our model exhibits slow
firing rate fluctuations while retaining the fast spiking variability.
In Litwin-Kumar and Doiron (2012), the mechanism underlying
the fluctuations of firing rates is spontaneous switching between
two attractors, with one attractor representing the low-activity
state and the other one representing the high-activity state.
However, as we have demonstrated in our model, firing rate fluc-
tuations are caused by the complex collective dynamics of prop-
agating wave patterns, including their normally diffusive and
superdiffusive dynamics. The dynamics of membrane potential,
as found by whole-cell recordings, impose another set of con-
straints for theoretical accounts of variable neural activity, in-
cluding their correlated fluctuations (Poulet and Petersen, 2008;
Gentet et al., 2010) and non-Gaussian distributions (DeWeese
and Zador, 2006; Hromádka et al., 2013; Tan et al., 2014). These
important empirical observations have not been addressed in
previous modeling studies but are captured by our model.

Our propagating wave-based model is able to reconcile the
view of balanced excitation and inhibition and that of synchro-
nized inputs to account for variable neural dynamics. On the one
hand, propagating wave patterns with complex dynamics only
emerge when excitatory and inhibitory synaptic currents are bal-
anced. On the other hand, the emergent wave patterns provide
individual neurons with large, synchronized inputs. In our
model, when a propagating wave pattern moves toward a neuron,
this neuron receives synaptic inputs from the firing neurons
within the pattern. However, this pattern eventually leaves that
neuron, resulting in a bump of large synaptic inputs. Because
these patterns move in a seemingly random way, they produce
synchronized, bumpy inputs that are randomly distributed in
time for individual neurons. Such inputs have been synthesized
and injected into cortical neurons in brain slices to account for
the variability of spike timing (Stevens and Zador, 1998) and have
also been found in the auditory cortex (DeWeese and Zador,
2006; Hromádka et al., 2013) and the somatosensory cortex of
rats (Okun and Lampl, 2008). Aside from unraveling the network
mechanism of these synchronized inputs to individual neurons,
our propagating wave-based model can reproduce the cross-
correlations of excitatory and inhibitory synaptic inputs to
nearby neurons, and the time lag of several milliseconds between
them, as observed in Okun and Lampl (2008).

In our model, the synchronized synaptic inputs cause non-
Gaussian membrane potential dynamics, consisting of quiescent
periods that are interrupted by short intervals of high-amplitude
depolarization. Such non-Gaussian fluctuations of membrane
potential have been observed in cortical neurons (DeWeese and
Zador, 2006; Tan et al., 2014) but are inconsistent with the exist-
ing random walk models (Shadlen and Newsome, 1998) and the
existing balanced network models (van Vreeswijk and Sompolin-
sky, 1998), which instead predict Gaussian dynamics of mem-
brane potential. The main mechanism of the non-Gaussian

dynamics of membrane potential in our model is the synchro-
nized synaptic inputs with a heavy-tail distribution, indicating
that synaptic inputs have heterogeneous magnitudes instead of
homogeneous ones. Although the classical random walk model
has served as a simple but powerful framework to understand the
variability of neural dynamics, our study suggests a significant
extension, in which balanced synaptic inputs with heterogeneous
magnitudes should be considered.

Propagating wave patterns in balanced, spatially extended
neural networks
The balanced networks studied here consist of conductance-
based, integrate-and-fire neurons that are uniformly distributed
over a 2D lattice. A key feature considered in these models is that
the neurons, particularly excitatory neurons, receive inputs from
neurons that are in physical proximity to them and that coupling
strengths decrease as distance between neurons increases. Such a
distance-dependent rule has been found in the connections of
neurons and those of interareal networks; this coupling rule was
recently hypothesized to be a general design principle applying
over multiple scales of neural systems (Ercsey-Ravasz et al.,
2013). Inhibitory coupling, however, is homogeneous, in accord
with other modeling studies (Litwin-Kumar and Doiron, 2012);
such homogeneous inhibitory connectivity, with less tuning
specificity than that of excitatory neurons, has been reported in
experimental studies (Fino and Yuste, 2011). We have mainly
studied the intrinsic dynamics of propagating wave patterns that
emerge from the network with regular structure and constant
external inputs. However, we have found that such emergent
dynamics are still preserved when some connections of the net-
work are randomly rewired and when neurons receive noisy in-
puts. Another key feature in our network is that it is 2D; for the
randomly coupled version of our model, we have shown the net-
work only generates variable spike trains, but it cannot produce
the non-Gaussian dynamics of membrane potential and highly
synchronized synaptic inputs, mainly due to a lack of emergent
propagating waves. We have studied similar networks with a ring
structure and found no evidence of such wave patterns with com-
plex dynamics, which suggests that 2D spatial extension is impor-
tant for the emergence of complex propagating wave patterns.
This is similar to other complex physical systems where such
spatial extension is essential for the emergence of complex spa-
tiotemporal patterns (Bak et al., 1988).

Our work links the propagating wave patterns that have been
widely observed in the cortex (Rubino et al., 2006; Benucci et al.,
2007; Han et al., 2008; Wu et al., 2008; Sato et al., 2012) with
variable neural dynamics. As demonstrated in our study, propa-
gating waves exhibit complex dynamics: they originate from ran-
dom locations and propagate in a seemingly random way. If the
network is out of balance in the excitation dominated state, the
network exhibits more regular, global wave patterns, such as spi-
ral waves, as have been found in pharmacologically manipulated,
disinhibited neural circuits (Huang et al., 2010); if the network is
in an inhibition dominated state, these patterns disappear shortly
after they are formed, without any long-range propagation. In
our study, we have shown that the collective dynamics of
crescent-shaped propagating waves in the balanced network is
anomalous superdiffusion, suggesting that there are long-range
correlations in wave pattern dynamics. This prediction can be
tested by analyzing propagating waves found in experiments in
the same way as we have done in our modeling study.
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Computational implications of propagating wave patterns
Our model shows that structured activity such as propagating
wave patterns at the level of neural circuits can arise from highly
variable firing activity of individual neurons, therefore bridging
such seemingly contrasting dynamics at different neural levels.
This property of spiking neural networks makes the cortex, a
paradigmatic example of a complex system, analogous to other
complex physical systems, such as turbulent fluids. In turbulence,
coherent structures, such as vortices, similarly emerge from mol-
ecules that behave irregularly (Hussain, 1986). Our work, there-
fore, indicates that drawing on analogies between cortical circuits
and turbulent fluids may bring novel insights into understanding
complex spatiotemporal dynamics of the cortex (Wang, 2010).

What are the computational implications of the existence of
propagating wave patterns in the cortex? Spiking waves, when
propagating across neurons, would result in concerted synchro-
nized volleys of activity from one subpopulation to the next, so
that spike timing sequences can be formed. These sequences are
an emergent property of our balanced networks rather than a
product of propagation of synchronized volleys along feedfor-
ward networks, as in the framework of synfire chains (Abeles,
1991). Contrary to spike sequences propagating along feedfor-
ward chains with regular dynamics, the emergent spiking wave
patterns in the balanced network have complex dynamics, in-
cluding the presence of multiple, interacting waves distributed
over space simultaneously. These dynamics may be necessary for
neural systems to assemble different spiking sequences to achieve
“neural syntax” (Buzsáki, 2010). The multiple, spatiotemporally
distributed properties of localized propagating patterns also ap-
pear to be well suited for distributed parallel information pro-
cessing; recently, it has been proposed that these patterns and
their interactions can perform distributed dynamic computation
in neural circuits (Gong and van Leeuwen, 2009). By showing
that propagating wave patterns provide a unified account of a
range of neural dynamics, our work suggests that it is important
to explore their potential computational roles in the brain.

Notes
Supplemental material for this article is available at http://www.physics.
usyd.edu.au/~gong (Video of Propagating Wave Patterns). This material
has not been peer reviewed.
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Buzsáki G (2010) Neural syntax: cell assemblies, synapsembles, and readers.
Neuron 68:362–385. CrossRef Medline

Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A, Shadlen MN
(2011) Variance as a signature of neural computations during decision
making. Neuron 69:818 – 831. CrossRef Medline

Churchland MM, Abbott LF (2012) Two layers of neural variability. Nat
Neurosci 15:1472–1474. CrossRef Medline

Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado
GS, Newsome WT, Clark AM, Hosseini P, Scott BB, Bradley DC, Smith
MA, Kohn A, Movshon JA, Armstrong KM, Moore T, Chang SW, Snyder
LH, Lisberger SG, Priebe NJ, et al. (2010) Stimulus onset quenches neu-
ral variability: a widespread cortical phenomenon. Nat Neurosci 13:369 –
378. CrossRef Medline

DeCarlo LT (1997) On the meaning and use of kurtosis. Psychol Methods
2:292–307. CrossRef

DeWeese MR, Zador AM (2006) Non-Gaussian membrane potential dy-
namics imply sparse, synchronous activity in auditory cortex. J Neurosci
26:12206 –12218. CrossRef Medline

Ecker AS, Berens P, Cotton RJ, Subramaniyan M, Denfield GH, Cadwell CR,
Smirnakis SM, Bethge M, Tolias AS (2014) State dependence of noise
correlations in macaque primary visual cortex. Neuron 82:235–248.
CrossRef Medline

Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroc-
zkai Z, Kennedy H (2013) A predictive network model of cerebral cor-
tical connectivity based on a distance rule. Neuron 80:184 –197. CrossRef
Medline

Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system. Nat
Rev Neurosci 9:292–303. CrossRef Medline

Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CC (2007) Spa-
tiotemporal dynamics of cortical sensorimotor integration in behaving
mice. Neuron 56:907–923. CrossRef Medline

Fino E, Yuste R (2011) Dense inhibitory connectivity in neocortex. Neuron
69:1188 –1203. CrossRef Medline

Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Mem-
brane potential dynamics of GABAergic neurons in the barrel cortex of
behaving mice. Neuron 65:422– 435. CrossRef Medline

Gong P, van Leeuwen C (2009) Distributed dynamical computation in neu-
ral circuits with propagating coherent activity patterns. PLoS Comput
Biol 5:e1000611. CrossRef Medline

Han F, Caporale N, Dan Y (2008) Reverberation of recent visual experience
in spontaneous cortical waves. Neuron 60:321–327. CrossRef Medline

Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA
(2005) Inhibitory postsynaptic potentials carry synchronized frequency
information in active cortical networks. Neuron 47:423– 435. CrossRef
Medline

Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge
variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol
75:1806 –1814. Medline

Hromádka T, Zador AM, DeWeese MR (2013) Up states are rare in awake
auditory cortex. J Neurophysiol 109:1989 –1995. CrossRef Medline

Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu JY (2004) Spiral
waves in disinhibited mammalian neocortex. J Neurosci 24:9897–9902.
CrossRef Medline

Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu JY (2010) Spiral wave
dynamics in neocortex. Neuron 68:978 –990. CrossRef Medline

Hussain AKM (1986) Coherent structures and turbulence. J Fluid Mech
173:303–356. CrossRef

Koch C (1999) Biophysics of computation: information processing in single
neurons. Oxford: Oxford UP.

Koch KW, Fuster JM (1989) Unit activity in monkey parietal cortex related
to haptic perception and temporary memory. Exp Brain Res 76:292–306.
Medline

Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neu-
ronal network of the C2 barrel column in mouse primary somatosensory
cortex. Neuron 61:301–316. CrossRef Medline

Levy RB, Reyes AD (2012) Spatial profile of excitatory and inhibitory syn-
aptic connectivity in mouse primary auditory cortex. J Neurosci 32:5609 –
5619. CrossRef Medline

Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in
balanced cortical networks with clustered connections. Nat Neurosci 15:
1498 –1505. CrossRef Medline

Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA,
Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C,
Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight

1604 • J. Neurosci., January 28, 2015 • 35(4):1591–1605 Keane and Gong • Propagating Waves Explain Neural Dynamics

http://www.ncbi.nlm.nih.gov/pubmed/7623099
http://dx.doi.org/10.1126/science.273.5283.1868
http://www.ncbi.nlm.nih.gov/pubmed/8791593
http://dx.doi.org/10.1103/PhysRevA.38.364
http://www.ncbi.nlm.nih.gov/pubmed/9900174
http://dx.doi.org/10.1016/j.neuron.2007.06.017
http://www.ncbi.nlm.nih.gov/pubmed/17610820
http://dx.doi.org/10.1017/S0952523800010269
http://www.ncbi.nlm.nih.gov/pubmed/8257671
http://dx.doi.org/10.1016/j.neuron.2010.09.023
http://www.ncbi.nlm.nih.gov/pubmed/21040841
http://dx.doi.org/10.1016/j.neuron.2010.12.037
http://www.ncbi.nlm.nih.gov/pubmed/21338889
http://dx.doi.org/10.1038/nn.3247
http://www.ncbi.nlm.nih.gov/pubmed/23103992
http://dx.doi.org/10.1038/nn.2501
http://www.ncbi.nlm.nih.gov/pubmed/20173745
http://dx.doi.org/10.1037/1082-989X.2.3.292
http://dx.doi.org/10.1523/JNEUROSCI.2813-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17122045
http://dx.doi.org/10.1016/j.neuron.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24698278
http://dx.doi.org/10.1016/j.neuron.2013.07.036
http://www.ncbi.nlm.nih.gov/pubmed/24094111
http://dx.doi.org/10.1038/nrn2258
http://www.ncbi.nlm.nih.gov/pubmed/18319728
http://dx.doi.org/10.1016/j.neuron.2007.10.007
http://www.ncbi.nlm.nih.gov/pubmed/18054865
http://dx.doi.org/10.1016/j.neuron.2011.02.025
http://www.ncbi.nlm.nih.gov/pubmed/21435562
http://dx.doi.org/10.1016/j.neuron.2010.01.006
http://www.ncbi.nlm.nih.gov/pubmed/20159454
http://dx.doi.org/10.1371/journal.pcbi.1000611
http://www.ncbi.nlm.nih.gov/pubmed/20019807
http://dx.doi.org/10.1016/j.neuron.2008.08.026
http://www.ncbi.nlm.nih.gov/pubmed/18957223
http://dx.doi.org/10.1016/j.neuron.2005.06.016
http://www.ncbi.nlm.nih.gov/pubmed/16055065
http://www.ncbi.nlm.nih.gov/pubmed/8734581
http://dx.doi.org/10.1152/jn.00600.2012
http://www.ncbi.nlm.nih.gov/pubmed/23343898
http://dx.doi.org/10.1523/JNEUROSCI.2705-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15525774
http://dx.doi.org/10.1016/j.neuron.2010.11.007
http://www.ncbi.nlm.nih.gov/pubmed/21145009
http://dx.doi.org/10.1017/S0022112086001192
http://www.ncbi.nlm.nih.gov/pubmed/2767186
http://dx.doi.org/10.1016/j.neuron.2008.12.020
http://www.ncbi.nlm.nih.gov/pubmed/19186171
http://dx.doi.org/10.1523/JNEUROSCI.5158-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22514322
http://dx.doi.org/10.1038/nn.3220
http://www.ncbi.nlm.nih.gov/pubmed/23001062


consistency specifies regularities of macaque cortical networks. Cereb
Cortex 21:1254 –1272. CrossRef Medline

Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffu-
sion: a fractional dynamics approach. Phys Rep 339:1–77. CrossRef

Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhi-
bition during ongoing and sensory-evoked activities. Nat Neurosci 11:
535–537. CrossRef Medline

Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of
sensory responses with spontaneous depolarization in layer 2/3 barrel cortex.
Proc Natl Acad Sci U S A 100:13638–13643. CrossRef Medline

Poulet JF, Petersen CC (2008) Internal brain state regulates membrane po-
tential synchrony in barrel cortex of behaving mice. Nature 454:881– 885.
CrossRef Medline

Pratt WK (1991) Digital image processing. New York: Wiley.
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical

recipes: the art of scientific computing. Cambridge: Cambridge UP.
Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD

(2010) The asynchronous state in cortical circuits. Science 327:587–590.
CrossRef Medline

Rosenbaum R, Doiron B (2014) Balanced networks of spiking neurons with
spatially dependent recurrent connections. Phys Rev X 4:021039.

Rubino D, Robbins KA, Hatsopoulos NG (2006) Propagating waves medi-
ate information transfer in the motor cortex. Nat Neurosci 9:1549 –1557.
CrossRef Medline

Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on out-
put firing rate and variability in simple neuronal models. J Neurosci 20:
6193– 6209. Medline

Sato TK, Nauhaus I, Carandini M (2012) Traveling waves in visual cortex.
Neuron 75:218 –229. CrossRef Medline

Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical orga-
nization. Curr Opin Neurobiol 4:569 –579. CrossRef Medline

Shadlen MN, Newsome WT (1998) The variable discharge of cortical neu-
rons: implications for connectivity, computation, and information cod-
ing. J Neurosci 18:3870 –3896. Medline

Smith MA, Kohn A (2008) Spatial and temporal scales of neuronal correla-
tion in primary visual cortex. J Neurosci 28:12591–12603. CrossRef
Medline

Softky WR, Koch C (1993) The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J Neurosci 13:
334 –350. Medline

Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of
cortical neurons. Nat Neurosci 1:210 –217. CrossRef Medline

Tan AY, Chen Y, Scholl B, Seidemann E, Priebe NJ (2014) Sensory stimula-
tion shifts visual cortex from synchronous to asynchronous states. Nature
509:226 –229. CrossRef Medline

Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of sig-
nals in single neurons in cat and monkey visual cortex. Vision Res 23:775–
785. CrossRef Medline

Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A
(1995) Dynamics of neuronal interactions in monkey cortex in relation
to behavioural events. Nature 373:515–518. CrossRef Medline

van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with
balanced excitatory and inhibitory activity. Science 274:1724 –1726.
CrossRef Medline

van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model
of cortical circuits. Neural Comput 10:1321–1371. CrossRef Medline

Wang XJ (2010) Neurophysiological and computational principles of corti-
cal rhythms in cognition. Physiol Rev 90:1195–1268. CrossRef Medline

Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharp-
ens spike timing in auditory cortex. Nature 426:442– 446. CrossRef
Medline

Wu JY, Xiaoying H, Chuan Z (2008) Propagating waves of activity in the
neocortex: what they are, what they do. Neuroscientist 14:487–502.
CrossRef Medline

Xue M, Atallah BV, Scanziani M (2014) Equalizing excitation-inhibition
ratios across visual cortical neurons. Nature 511:596 – 600. CrossRef
Medline

Keane and Gong • Propagating Waves Explain Neural Dynamics J. Neurosci., January 28, 2015 • 35(4):1591–1605 • 1605

http://dx.doi.org/10.1093/cercor/bhq201
http://www.ncbi.nlm.nih.gov/pubmed/21045004
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1038/nn.2105
http://www.ncbi.nlm.nih.gov/pubmed/18376400
http://dx.doi.org/10.1073/pnas.2235811100
http://www.ncbi.nlm.nih.gov/pubmed/14595013
http://dx.doi.org/10.1038/nature07150
http://www.ncbi.nlm.nih.gov/pubmed/18633351
http://dx.doi.org/10.1126/science.1179850
http://www.ncbi.nlm.nih.gov/pubmed/20110507
http://dx.doi.org/10.1038/nn1802
http://www.ncbi.nlm.nih.gov/pubmed/17115042
http://www.ncbi.nlm.nih.gov/pubmed/10934269
http://dx.doi.org/10.1016/j.neuron.2012.06.029
http://www.ncbi.nlm.nih.gov/pubmed/22841308
http://dx.doi.org/10.1016/0959-4388(94)90059-0
http://www.ncbi.nlm.nih.gov/pubmed/7812147
http://www.ncbi.nlm.nih.gov/pubmed/9570816
http://dx.doi.org/10.1523/JNEUROSCI.2929-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19036953
http://www.ncbi.nlm.nih.gov/pubmed/8423479
http://dx.doi.org/10.1038/659
http://www.ncbi.nlm.nih.gov/pubmed/10195145
http://dx.doi.org/10.1038/nature13159
http://www.ncbi.nlm.nih.gov/pubmed/24695217
http://dx.doi.org/10.1016/0042-6989(83)90200-6
http://www.ncbi.nlm.nih.gov/pubmed/6623937
http://dx.doi.org/10.1038/373515a0
http://www.ncbi.nlm.nih.gov/pubmed/7845462
http://dx.doi.org/10.1126/science.274.5293.1724
http://www.ncbi.nlm.nih.gov/pubmed/8939866
http://dx.doi.org/10.1162/089976698300017214
http://www.ncbi.nlm.nih.gov/pubmed/9698348
http://dx.doi.org/10.1152/physrev.00035.2008
http://www.ncbi.nlm.nih.gov/pubmed/20664082
http://dx.doi.org/10.1038/nature02116
http://www.ncbi.nlm.nih.gov/pubmed/14647382
http://dx.doi.org/10.1177/1073858408317066
http://www.ncbi.nlm.nih.gov/pubmed/18997124
http://dx.doi.org/10.1038/nature13321
http://www.ncbi.nlm.nih.gov/pubmed/25043046

	Propagating Waves Can Explain Irregular Neural Dynamics
	Introduction
	Materials and Methods
	Results
	Spikes of neurons exhibit a doubly stochastic process
	Propagating wave patterns generate irregular spiking activity
	Synchronized synaptic inputs to individual neurons
	Synaptic inputs are correlated and inhibition lags behind excitation
	Membrane potential dynamics are non-Gaussian

	Discussion
	A unified account of irregular neural dynamics
	Computational implications of propagating wave patterns
	Notes
	References

