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Neurobiology of Disease

Internalized Tau Oligomers Cause Neurodegeneration by
Inducing Accumulation of Pathogenic Tau in Human
Neurons Derived from Induced Pluripotent Stem Cells

Marija Usenovic, Shahriar Niroomand, Robert E. Drolet, Lihang Yao, Renee C. Gaspar, Nathan G. Hatcher,
Joel Schachter, John J. Renger, and Sophie Parmentier-Batteur
Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486

Neuronal inclusions of hyperphosphorylated and aggregated tau protein are a pathological hallmark of several neurodegenerative
tauopathies, including Alzheimer’s disease (AD). The hypothesis of tau transmission in AD has emerged from histopathological studies
of the spatial and temporal progression of tau pathology in postmortem patient brains. Increasing evidence in cellular and animal models
supports the phenomenon of intercellular spreading of tau. However, the molecular and cellular mechanisms of pathogenic tau trans-
mission remain unknown. The studies described herein investigate tau pathology propagation using human neurons derived from
induced pluripotent stem cells. Neurons were seeded with full-length human tau monomers and oligomers and chronic effects on
neuronal viability and function were examined over time. Tau oligomer-treated neurons exhibited an increase in aggregated and phos-
phorylated pathological tau. These effects were associated with neurite retraction, loss of synapses, aberrant calcium homeostasis, and
imbalanced neurotransmitter release. In contrast, tau monomer treatment did not produce any measureable changes. This work sup-
ports the hypothesis that tau oligomers are toxic species that can drive the spread of tau pathology and neurodegeneration.
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Several independent studies have implicated tau protein as central to Alzheimer’s disease progression and cell-to-cell pathology
propagation. In this study, we investigated the ability of different tau species to propagate pathology in human neurons derived
from induced pluripotent stem cells, which to date has not been shown. We demonstrated that tau oligomers, but not monomers,
induce accumulation of pathological, hyperphosphorylated tau. This effect was accompanied with neurite degeneration, loss of
synapses, aberrant calcium homeostasis, imbalanced neurotransmitter release, and ultimately with neuronal death. This study
bridges various tau pathological phenotypes into a single and relevant induced pluripotent stem cell neuronal model of human
disease that can be applied to the discovery of the mechanisms of tau-induced neurodegeneration. j

ignificance Statement

(NFTs) is a pathological hallmark of Alzheimer’s disease (AD).
The principle of tau propagation in AD has emerged due to tem-
poral and spatial progression of tau pathology observed in AD
patients’ brains that also correlated with patients’ cognitive de-
cline (Arriagada et al., 1992). In addition, recent preclinical stud-
ies have shown that exogenously applied misfolded tau protein

Introduction
Abnormal accumulation of tau protein into intracellular hyper-
phosphorylated aggregates known as neurofibrillary tangles
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can be internalized by cells (Frost et al., 2009; Guo and Lee, 2011,
2013; Wu et al., 2013) and can gradually propagate via intercon-
nected brain regions in animal models (Clavaguera et al., 2009,
2013, 2014; Lasagna-Reeves et al., 2012b). Moreover, in vitro
studies have shown that tau can be released from different cell
lines, including rat primary neurons (Kfoury et al., 2012; Simén
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et al., 2012; Pooler et al., 2013). Therefore, it was hypothesized
that transmission of tau pathology is mediated by the release,
uptake, and trafficking of pathogenic tau within synaptically con-
nected neurons. Once internalized within cells, pathogenic
misfolded tau proteins act as a “seed” that recruits soluble endog-
enous tau into larger pathological conformations (Jucker and
Walker, 2013). A better understanding of the steps of tau trans-
mission and intracellular aggregation could lead to the discovery
of novel therapeutic strategies that would inhibit the spread of tau
pathology and its consequences, including neurodegeneration
and cognitive dysfunction. However, the use of non-neuronal or
neuronal in vitro models that overexpress wild-type or mutant
tau (Guo and Lee, 2011; Kfoury et al., 2012; Saman et al., 2012;
Falcon etal., 2015) may mislead and limit the exploration of these
processes.

Using neurons from human induced pluripotent stem cells
(hiPSCs), we here developed a cellular model that recapitulates
tau pathology and its long-term effect on neuronal degeneration.
The model consists of seeding hiPSC-derived neurons with prep-
arations of tau monomers or tau oligomers made from wild-type,
full-length recombinant human tau. Tau oligomers are formed
before tau assembly into mature insoluble NFTs (Mandelkow
and Mandelkow, 2012). We used tau oligomers rather than tau
fibrils because these tau species have been identified at the early
stages of tau aggregation in the brains of patients with AD before
NEFTs can be detected (Maeda et al., 2006; Lasagna-Reeves et al.,
2012a). Moreover, accumulation of tau oligomers, before the
formation of NFTs, is associated with the development of cogni-
tive and motor deficits during the pathogenic progression of
tauopathy in animal models (Berger et al., 2007; Lasagna-Reeves
etal., 2011).

The use of human neurons enabled a long-term evaluation of
tau-induced toxicity and its relationship to tau pathology, neu-
ronal dysfunction, and neurodegeneration. The human neurons
used in this study are a highly purified population of forebrain
neurons with active GABAergic and glutamatergic receptors
(Dage et al., 2014). These neurons have been previously used to
explore the toxicity of B-amyloid 1-42 (Xu et al., 2013) and tau
release (Chai et al., 2012). They can grow and mature in culture
for a period of several weeks to months, so they represent a rele-
vant cellular system to study chronic neurodegenerative diseases,
such as AD.

In the present study, tau oligomers were shown to be capable of
entering human neurons and triggering the formation of aggregated
and hyperphosphorylated pathological tau. These effects were asso-
ciated with long-term defects in neurite outgrowth, synaptic loss,
neuronal loss, abnormal neurotransmission, and intracellular cal-
cium mobilization. Whereas neurons treated with tau monomers
did not demonstrate alterations in the above measurements.

Materials and Methods

hiPSC neurons. hiPSC neurons (iCell neurons) were purchased from
Cellular Dynamics International (CDI). Fibroblasts from healthy male
individuals were reprogramed and differentiated into iCell neurons.
These neurons were previously characterized as cortical forebrain human
neurons (Haythornthwaite et al., 2012; Xu et al., 2013; Alhebshi et al.,
2014; Dage et al., 2014). The cells were seeded on plates precoated with
poly-p-lysine and laminin following CDI protocol. The neurons were
kept in vitro for =28 d with half media change every 7 d. For the exami-
nation of the pathological effect of tau seeds, neurons were treated with
preparations of tau monomers and oligomers for 24 h, and then exten-
sively washed to remove the nonabsorbed seeds.

Preparation of tau oligomers and fibrils. Recombinant human 4R2N
T40 was expressed by bacterial cultures. Cells were harvested following a
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10 min centrifugation at 5000 X g. Cell paste was resuspended in 5X lysis
buffer (50 mm Tris-HCI, 1 mm EGTA, 1 mm MgSO,, 2 mm DTT, 750 mm
NaCl, 20 mm NaF, 1 mm PMSF, 20 mm imidazole and proteinase inhib-
itor tablet), and lysed using a microfluidizer. Cell lysate was boiled by
immersion in boiling water (20 min at 95°C), then crash cooled on wet
ice. Lysate was then clarified by centrifugation at 40,000 X g, 1 h at 4°C.
Tau protein purification was performed by fast protein liquid chroma-
tography on a HiTrap SP HS column. The column was washed with
buffer A (20 mm PIPES, pH 6.5, 1 mm EGTA, 1 mm MgSO,, 2 mm DTT,
10 mm NaCl, 20 mm NaF, 0.1 mm PMSF) and eluted with buffer B (buffer
A with 1 mm NaCl). The resulting fractions with the highest tau content
were pooled and formulated into 100 mm Na-acetate, pH 7.0, using a G25
desalting column. Aliquots of recombinant tau were snap-frozen and
stored at —20°C. To prepare tau oligomers, 5 um recombinant tau, dis-
solved in MES buffer (4-morpholineethanesulfonic acid hydrate), pH
6.5, was mixed with 10 um DTT (BioShop) and incubated for 10 min at
55°C. Subsequently, 5 uM heparin (Fisher, H19) was added to the solu-
tion to induce aggregation and incubated with shaking (1000 rpm) for 4 h
at 37°C. Formation of tau fibrils was also induced in the presence of
heparin, but incubation times were increased (5, 10, and 15 d). Tau
monomers, used as a control in this study, were prepared through an
identical protocol without the addition of heparin.

Western blot analysis and sarkosyl extractions. For the characterization
of tau oligomers by Western blot, the same amounts (0.1 pg) of tau
monomer and oligomer of 4 h preparations were separated on 4-12%
NuPAGE Bis-Tris gels (Novex, Life Technologies), without reducing
agent. Tau was detected using rabbit anti-tau primary antibody (Dako,
A0024;1:4000) and goat anti-rabbit secondary antibody (Li-Cor;
1:10,000). For detection of hyperphosphorylated tau aggregates, iCell
neurons were plated on six-well plates (1,000,000 cells/well) and treated
with 50 and 200 nM tau oligomers and monomers. On day 6 after treat-
ment, neurons were lysed in 2% sarkosyl buffer (50 mm Tris, 150 mm
NaCl, 1 mm EDTA, 1 mm EGTA, pH 7.4) with protease and phosphatase
inhibitor mixture and subjected to three freeze—thaw cycles. Cell lysates
were then incubated for 1 h with constant shaking (700 rpm) at 4°C.
Lysates were centrifuged at 100,000 X g for 1 h at 4°C. Supernatants were
collected as sarkosyl-soluble fractions. The pellets were washed in sarko-
syl buffer and centrifuged at 100,000 X g for 45 min at 4°C. Supernatants
were discarded while pellets were resuspended in 2% SDS bulffer, soni-
cated, and boiled for 10 min. After centrifugation at 16,000 X g for 30
min at room temperature (RT), supernatants were collected and used as
sarkosyl-insoluble fractions. Fractions were analyzed by SDS-PAGE fol-
lowed by Coomassie blue staining of the gel to visualize total proteins. An
immunoblotting was performed using PHF1 (1:1000; from Dr. Peter
Davies) and GAPDH (1:500; Millipore) primary antibodies. Odyssey In-
frared Imaging System (Li-Cor) and Odyssey software V2.1 was used to
scan and analyze the blots.

Determination of tau oligomers by high-mass matrix-assisted laser de-
sorption/ionization time-of-flight mass spectrometry. Tau oligomer and
monomer sample sets were shipped to CovalX for analysis by high-mass
matrix-assisted laser desorption/ionization time-of-flight mass spec-
trometry (MALDI-TOF MS). Sample sets included tau monomer prep-
arations (5 uM), tau oligomer preparations (5 uM), and heparin (5 um).
A single sample set was subjected to cross-linking using the CovalX K200
cross-linking kit. Briefly, oligomer complexes were covalently linked at
free amine groups via bis-azabenzotriazole ester containing molecules
with differing carbon chain lengths (Bich et al., 2010). Tau and heparin
solutions were incubated with K200 cross-linking stabilizer for 3 h at 4°C,
after which both cross-link-treated and nontreated sample sets were sub-
jected to methanol—chloroform liquid-liquid extraction. Tau and hepa-
rin precipitates were separated by centrifugation (10,000 X g for 5 min),
and supernatants were removed and dried under vacuum. Dried sample
pellets were each reconstituted in 5 ul of formic acid and diluted 1:3 into
a saturated solution of sinapinic acid MALDI matrix (10 mg/ml mixed in
a 50% solution of acetonitrile and 0.1% trifluoroacetic acid). Samples
were spotted at 1 ul onto a 384 Anchorchip MALDI target (Bruker) and
allowed to crystalize at RT. MALDI-TOF MS analyses were performed
following sample crystallization. MALDI is a soft ionization approach
that, unlike electrospray ionization, tends to favor the formation of singly
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charged analyte ions, thus simplifying charge state deconvolution in full
scan data and subsequent peak identification by mass. Additionally, the
mass range of conventional linear time-of-flight instruments can be ex-
tended to 1-2 MDa through the incorporation of modified ion detectors,
and when used in concert are referred to as high-mass MALDI-TOF MS
(Nazabal et al., 2006). MALDI-TOF MS was performed using Reflex IV
MALDI-TOF mass spectrometer (Bruker) equipped with an add-on
HM2 TUVO high-mass detector (CovalX). Mass spectra were acquired
in linear-positive mode at 20 kV with the HM2 detector gain set to 3.24
kV. Mass spectral data represent the summation of 300 laser shots ac-
quired by automated raster positioning within sample spots, and masses
are represented as average mass values given linear TOF detection mass
resolution limitations. MS data were analyzed using Complex Tracker
analysis software (version 2.0, CovalX), and tau and heparin analytes
were determined by m/z values in full scan mass spectrum with external
calibration.

Atomic force microscopy. A solution of tau monomers and oligomers (5
M) was applied to a freshly cleaved muscovite mica substrate (Ted Pella)
and incubated for 1 min. The mica surface was then washed six times
with double-distilled water to remove salts and unbound proteins.
Atomic force microscopy images were taken on a MultiMode SPM (Dig-
ital Instruments) equipped with an e-scanner using etched silicon nano-
probes (Veeco Instruments). All measurements were performed in the
tapping mode with scan rates of ~0.5 Hz. Images were processed using
NanoScope software (Digital Instruments).

Fluorescence polarization assay. Fluorescence polarization (FP) assay
was used to characterize the formation of tau oligomers. This assay re-
quired production of small tau fragment K18. This truncated tau consists
of the four repeat microtubule-binding region of the wild-type T40 tau
(starting from Q244 and ending with E372, numbering according to the
amino acid sequence of T40). This region was cloned into the Ndel and
EcoRI restriction sites of the bacterial expression vector pET30a. After
confirmation of correct reading frame by DNA sequencing, the tau
protein was purified as previously described (Li and Lee, 2006). Five
nanomole K18-tau labeled with Texas red (Alexa Fluor 594, Life Tech-
nologies) was spiked into the tau aggregation reaction (described above)
to measure a change in FP at different times, which represents the bind-
ing kinetics of truncated K18 to full-length T40 tau. The change in FP [A
millipolarization value (Amp)] was measured between reaction mixture
with heparin (oligomerization reaction) and without heparin (negative
control monomer) at each time point (0, 2, 4, 6, 8, 24 h) using an EnVi-
sion multiplate reader (PerkinElmer) equipped with the Texas Red FP
filter and dichroic mirror sets.

Thioflavin T-binding assay. Thioflavin T (ThT; Sigma-Aldrich) dye
fluorescence was used to quantify the formation of tau fibrils. The change
in ThT fluorescence was measured at different time points (0, 1, 5, 10,
and 15 d) after the preparation of tau oligomer seeds kept under agitation
at 37°C as described above. Briefly, in a black 96-well plate, 10 ul of
tau seed preparation was added to 90 ul of ThT diluted in 100 mum glycine
such that the final concentration of ThT was 5 um when mixed with
sample. The reaction was thoroughly resuspended to avoid sedimenta-
tion and clumping of the filaments. The intensity of fluorescence was
measured using a SpectraMax fluorometer (excitation, 450 nm; emis-
sion, 550 nm; cutoff, 475 nm).

Internalization assay of Cy3-tau conjugates. Tau monomers were con-
jugated to Alexa Fluor 555 (Cy3) with final degree of labeling 3.2 (3.2
moles of dye/mole of protein) (Life Technologies, outsourcing facilities).
From Cy3-tau monomers, we produced oligomers and fibrils (10 d prep-
aration) using the protocol described above. For internalization assay,
hiPSC neurons on day in vitro (DIV) 7 were treated for 1 h with 50 nm
labeled tau monomers, oligomers, or fibrils at 37°C, 5% CO,, in a me-
dium with Hoechst 33342 (Life Technologies; 1:1000) to label nuclei.
After 1 h of incubation, cells were rinsed two times followed by addition
of red background suppressor (Life Technologies). Immediately after,
live-cell imaging was performed using the Operetta high-content imag-
ing system (PerkinElmer) with a 20X objective. To test the effect of
heparinase III (Sigma-Aldrich, H8891, SLBN5069V) on tau uptake,
hiPSC neurons were treated with the 1.5 mIU/ml enzyme for 3 h before
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the addition of Cy3-tau oligomers and together with the oligomers
for 1 h.

Microfluidics and tau trafficking. Microfluidic standard neuronal de-
vices (with 450 wm microgroove barriers; Xona Microfluidics) were han-
dled as suggested by the manufacturer’s protocol. Each device was
mounted on cover glass (24 X 24 mm, Gold Seal, #1) coated with poly-
D-lysine (0.5 mg/ml, Sigma-Aldrich). Before cell plating, each assembled
device was additionally coated with laminin (3.3 pg/ml; Sigma-Aldrich).
Twenty microliters of cell suspension (2—3 million cells/ml) were added
to one compartment of each device (somal side). To detect exogenous
tau, monomers were conjugated with aminoreactive fluorescent dye
O-succinimidylester, Alexa Fluor 647 (Cy5), with the final degree of
labeling 3.7 (3.7 moles of dye/mole of protein) (Life Technologies, out-
sourcing facilities). From Cy5-monomers we produced Cy5-oligomers.
On DIV 10, once the axons fully crossed the microgrooves (450 wm
distance) into the axonal compartment of a device, 5 ul of 5 um Cy5-tau
oligomers or monomers was added into the somal side for 2 h. A 60 ul
difference in media volume was maintained to prevent spontaneous dif-
fusion of Cy5-tau species from the somal to the axonal compartment.
Following 2 h of incubation, cells were washed and subsequently imaged
after 18 h using fluorescence microscope at 40 X objective (EVOS FL, Life
Technologies).

Immunocytochemistry. hiPSC neurons were plated in 96-well plates
(Corning) at the density of 25,000 cells/well, which was the optimal
density for the both long-term survival of iCell neurons and for the
accuracy of high-content image analysis. At indicated time points after
tau treatment, cells were fixed in 4% paraformaldehyde for 15 min at RT
followed by three washes with Dulbecco’s PBS (DPBS). Fixed cells were
kept in DPBS and stored at 4°C until immunocytochemistry staining.
Cells were incubated in blocking and permeabilization buffer (0.2% Tri-
ton X-100, 2% goat serum, and 0.1% BSA in DPBS; all Sigma-Aldrich)
for 1 h shaking at RT. After blocking, cells were incubated with primary
antibodies diluted in antibody solution (2% goat serum, 0.1% BSA in
DPBS) overnight at 4°C. The day after, plates were washed three times (5
min each) with DPBS (200 ul/well). The following antibodies were used
for immunostaining: MC-1 (from Dr. Peter Davies; 2 ug/ml), CP17
(from Dr. Peter Davies, phospho-T231; 2 ug/ml), PHF1 (from Dr. Peter
Davies, phospho-S396/404; 2 ug/ml), total tau (Dako, A0024; 1:2000),
microtubule-associated protein 2 (MAP2; Millipore, AB5622; 1:100),
B-II-tubulin (TUJ-1; neuron-specific class IIT B-tubulin, Covance, PRB-
435P; 1:1000), synapsin (Synaptic Systems, 106 001; 1:500), synaptophy-
sin (Synaptic Systems, 101 011; 1:100), LC3 (Cell Signaling Technology,
2775; 1:50), HT7 (ThermoScientific, MN1000; 1:1000), and anti-Flag
(Sigma-Aldrich, F7425; 1:500). Staining for heparan sulfates was per-
formed without cell permeabilization using anti-heparan sulfate anti-
body (USBiological, H1890; 1:50). Secondary antibodies (Invitrogen,
A11029, A21245; A10680) diluted in antibody solution (1:600) were in-
cubated for 1 h at RT, and subsequently washed three times in DPBS.
Hoechst 33342 solution was used to stain nuclei (Anaspec, 83218; 1:5000
in DPBS; 100 ul/well). High-content imaging was performed using an
Operetta system (PerkinElmer) with a 20X objective. To examine the
colocalization of HT7, anti-Flag staining, and localization of MCl1-
positive tau aggregates, hiPSC neurons were plated on coverslips and
imaged with Nikon TE2000-U eclipse microscope with a PerkinElmer
UltraViewERS Nipkow Spinning Disc Confocal imaging system, using
Volocity acquisition software.

Thioflavin S staining. Cells previously stained with total tau (Dako,
A0024; 1:2000) were permeabilized with 0.1% Triton X-100 for 15 min
and washed two times with PBS. Thioflavin S (ThS) 0.01% (Sigma-
Aldrich) was added for 5 min at RT, followed by washing steps in 70%
ethanol (1 X 10 min, then 2 X 5 min) and final addition of PBS. High-
content imaging was performed using an Operetta system (PerkinElmer)
with a 20X objective.

High-content image analysis. The Operetta system was used for the
high-content imaging. To cover a good portion of the surface of the well,
=9 fields per well were imaged, analyzed, and averaged. A total of 3—6
wells was used per treatment condition (n = 3—6) and each experiment
was repeated =3 times. Image analyses and calculations were performed
using Harmony 3.1.1 software (PerkinElmer). Hoechst staining was used
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to label cell nuclei. Single-cell identification was performed using the cell
mask algorithm based on total tau staining that labeled both the cell
cytoplasm and neurites. Within the cell mask, we quantified the average
intensity of MC1, PHF1, CP17, or ThS staining. To investigate the neu-
ronal population affected by tau pathology, we counted the cells positive
for the above markers. Cells were determined positive if they presented a
fluorescence intensity of markers staining higher than a defined thresh-
old. The threshold was established based on the distribution of the fluo-
rescence intensity measured in vehicle-treated cells. Defined thresholds
calibrated and standardized the analyses based on the background fluo-
rescence of MC1 and ThS staining, and also on the endogenous levels of
phospho-tau labeling with PHF1 and CP17. Results were expressed as
percentage of positive cells per well. Neuronal morphology was analyzed
using neurite outgrowth module of Harmony 3.1.1 software (PerkinEl-
mer), which detected all neurites. Neurites were detected based on total
tau, TUJ-1, and MAP2 immunostaining. These markers enabled detec-
tion of neuronal processes, including both axons and dendrites. Nuclei
detected based on Hoechst staining were enlarged to cover the size of
neuronal cell body and to reach the neurites attached to each individual
cell body. A neurite mask was refined to detect all neurites starting from
enlarged nuclei (see Fig. 5A4). Total neurite length and number of seg-
ments, defined as part of the neurites between neurite intersecting points,
were analyzed per cell and averaged per well. To examine the synaptic
integrity, we counted the number of puncta per cell identified by either
synapsin I or synaptophysin staining located on tau-labeled neurites
(used as a mask). Number of autophagosomes was analyzed by counting
the number of LC3-positive puncta per cell.

Time-lapse imaging and neurite outgrowth analysis. For long-term,
continuous, neurite-outgrowth analysis, hiPSC neurons plated in 96-
well plates were incubated in an IncuCyte Zoom live-cell imaging instru-
ment (Essen Bioscience). Images of four fields per well were acquired
every 6 h for 19 d (starting at DIV 3 till 14 d after seeding). For analyses,
NeuroTrack software (Essen Bioscience) was used to automatically de-
fine neurite processes and cell bodies based on phase contrast (see Fig.
6A). Total neurite length (in millimeters) and number of branch points
were quantified and normalized to the image field area (in square milli-
meters). Total neurite length presents the summed length of neurites that
extend from the cell bodies and number of branch points presents the
number of intersections of the neurites in image field.

AlphaLISA assay. An AlphaLISA assay was developed to detect the
recruitment of endogenous neuronal tau by the exogenous tau seeds in
forming intracellular tau aggregates. For this experiment, tau seeds were
prepared using the full-length T40 human tau protein (4R2N) that
was mutated for the epitope of anti-tau HT7 monoclonal antibody
(P159S+G161A) and tagged with Flag-6xHis. The introduction of the
Flag tag and the mutation in the epitope for the HT7 monoclonal anti-
body enabled us to differentiate exogenous tau seeds detected with anti-
Flag antibody from endogenous tau detected with HT7 antibody. hiPSC
neurons plated in 12-well plates (300,000 cells/well) were treated at DIV
7 with two concentrations of tau-AHT7-Flag oligomers and tau-AHT7-
Flag monomers (50 and 250 nMm). On day 4 after seeding, cells were lysed
in PhosphoSafe Extraction Reagent (Novagen) with protease inhibitor
mixture (Roche) and centrifuged at 15,000 X g for 15 min at 4°C. Ten
microliters of cell lysates were incubated for 2 h at RT with 20 ul of
HT7-acceptor beads [0.05 ug/ul final in 50 ul; HT7 (ThermoScientific,
MN1000) conjugated in house] and 20 ul of Flag-biotinylated antibody
(0.15 ul/well; Cell Signaling Technology) in a 96-well OptiPlate
(PerkinElmer). AlphaLISA immunoassay buffer (PerkinElmer) was used
as a dilution buffer. Last, 50 ul of diluted AlphaScreen streptavidin-
coated donor beads (40 pg/ml final in 100 ul; PerkinElmer, 6760002)
were added and incubated for 1 h at RT while gently shaking. Lumin-
escence signal was measured using an EnVision multiplate reader
(PerkinElmer).

Meso Scale Discovery sandwich ELISA. To confirm that recombinant
tau protein with a mutation in the epitope for HT7 antibody cannot be
recognized with HT7 antibody, we performed Meso Scale Discovery
(MSD) sandwiched ELISA (Meso Scale Diagnostics). High-bind multi-
array 96-well MSD plates (Meso Scale Diagnostics, L15XB-3) were
coated overnight at 4°C with 25 ul/well solution of anti-human tau an-
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tibody (Dako, A0024) diluted 1:1000 in PBS. The day after, plates were
washed three times with MSD wash buffer (Meso Scale Diagnostics,
R61TX-1) and incubated with 150 ul/well of casein blocking buffer
(ThermoScientific, 37528) for 2 h at RT. After wash with MSD bulffer,
plates were incubated with different concentrations of recombinant tau
proteins diluted in blocking buffer (25 ul/well) for 1 h at RT, followed by
three washes with MSD buffer. Plates were incubated for 1 h at RT while
being shaken with HT7 antibody (ThermoScientific, MN1000) diluted
1:1000 in blocking buffer, followed by three washes with MSD buffer.
Incubation with secondary detection antibody (Sulfotag, MSD R32AC-1;
anti-mouse antibody) diluted 1:1000 in blocking buffer was performed at
RT while shaking for 1 h. Plates were washed four times with MSD wash
buffer and MSD read buffer was added last (Meso Scale Diagnostics,
R29TC-3; 150 ul/well). Quantification was performed using the MSD
plate reader.

Cell viability and toxicity assays. To examine cell viability, cells were
treated with calcein AM (Life Technologies), a live cell-permeable dye
that produces green fluorescence when cleaved with intracellular
esterase. Fluorescence intensity was analyzed in the cells detected with
Hoechst 33342 using a high-content image analysis program (PE-
Harmony 3.1.1 software, PerkinElmer). Results were expressed as dye-
intensity percentage of vehicle-treated cells. Small Hoechst-positive
spots, which do not likely represent cell nuclei, were excluded from the
analysis. Cell toxicity was quantified based on the measurement of activ-
ity of lactated dehydrogenase (LDH) in cellular supernatant using the
LDH Cytotoxicity Detection Kit (Roche).

Quantification of neurotransmitter release. The measure of the neu-
rotransmitter release was performed in hiPSC neurons (24-well plates;
150,000 cells per well) 14 d after the addition of tau oligomer seeds. Cell
media was replaced with warm cell buffer (130 mm NacCl, 5 mm KCl, 20
mum HEPES, 5 mm NaHCO;, 1.2 mm Na2HPO, 1 mm MgCl, 100 nm
glycine, 10 mum glucose, 2.5 mm CaCl,) for 45 min. After this first incu-
bation, the buffer was replaced with a fresh cell buffer (complemented
with 100 nm NO-711 to block GABA reuptake) and cells were incubated
for an additional 3 min. The buffer was collected for analysis of extracel-
lular GABA and glutamate concentrations. GABA and glutamate con-
centrations were quantified using a Waters Acquity UPLC system
coupled with tandem MS (MS/MS). The sample (30 wl) was first deriva-
tized using the Waters Amino Acid ACCQ Tag Ultra Kit (Waters) based
on manufacturer’s suggested procedure with a slight modification. The
derivatized sample was dried down using Speed Vac followed by recon-
stitution to 15 pl using mobile phase A. Ten microliters of the sample
were used for separation using a Waters ACCQ Tag Ultra C18 (2.1 X 100
mm; 1.7 um) column (Waters) with a gradient mobile phase containing
Waters ACCQ Tag Ultra solution A (10% used in actual sample analysis)
and B. The mobile phase was held on the A/B ratio of 99.9:0.1 for 0.54
min. The linear gradient was changed over the next 5.2 min to an A/B
ratio 0f 90.9:9. The gradient was further changed to A/B ratio 0f 78.8:21.2
over next 2 min, followed by another change to A/B ratio of 40.4:59.6 for
0.26 min. The gradient was then changed and held at A/B ratio of 10:90
for next 0.6 min before being returned to initial condition at A/B ratio of
99.9:0.1 for 1.4 min. The total run time was 10 min, and flow rate was 0.5
ml/min. MS/MS detection was performed on an API4000 mass spec-
trometer (AB Bioscience Instruments) in the positive ion mode (electro-
spray ionization) by multiple-reaction monitoring (GABA m/z, 274/
171). Deuterated GABA (d6 GABA; m/z, 280/171) was used as the
internal standard. Concentration of GABA was determined by compar-
ing the ratio of peak areas for unknowns versus internal standard (d6
GABA) to standard curves generated from known amounts of GABA
(using ratio of standard peak areas vs internal standard). Linear regres-
sion curves were plotted for GABA. Absolute concentration of GABA is
calculated based on linear regression curve.

Calcium imaging. The measure of intracellular calcium levels was per-
formed in hiPSC neurons (96-well plates, 25,000 cells per well) 14 d after
the addition of tau oligomer seeds. Neurons were incubated for 2 h with
a calcium-sensitive dye (EarlyTox Cardiotoxicity Kit, Molecular Devices)
and Hoechst 33342 nuclear stain (Life Technologies; 1:1000) at 37°C, 5%
CO, in a cell buffer [HBSS (without Ca** and Mg?™"), 20 mm HEPES, 2
mum CaCl, 5 mm p-glucose, 0.1% BSA]. Neurons were treated with 30 um
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Figure 1.

Characterization of tau oligomers. A, Graph represents a time course of formation of tau oligomers based on change of FP. Results are expressed as a change of FP (Amp) between

oligomerization reaction (with heparin) and negative control reaction (without heparin) at indicated time points. B, Fluorescence intensity of ThT bound to T40-tau during the aggregation process
of 15din presence of heparin that led to a tau fibril formation. All values are expressed as mean == SEM. C, High-mass MALDI-TOF MS comparing cross-link-stabilized (red) and untreated (blue) tau
oligomers demonstrates that our preparations consist of a heterogeneous, multimeric population of tau monomers, dimers, trimers, and tetramers that include noncovalent binding with heparin.
D, Immunoblot probed with total tau antibody shows the presence of tau monomers, dimers, and trimers in our oligomerization reaction of 4 h. E, Images of atomic force microscopy of 4 h oligomer
preparation show the formation of majority spherical oligomeric structures or elongated tau threads. Tau monomers (from the preparation that contains no heparin and therefore does not cause

oligomerization) do not bind to mica surface.

NMDA for 10 min (Sigma-Aldrich). High-content imaging of live cells
was used to detect the fluorescence produced by the Ca>™ dye (Operetta,
PerkinElmer). Image analysis consisted of quantifying the intensity of
Ca** dye per cell identified by Hoechst 33342 nuclear staining (PE-
Harmony 3.1.1 software, PerkinElmer).

Statistical analysis. All data were expressed as mean * SE. Statistical
analyses were performed using Student’s ¢ test for comparison between
two groups or one-way ANOVA followed by post hoc Dunnett’s test for
multiple comparisons. GraphPad Prism 6 software was used to perform
statistical analyses.

Results

Production and characterization of tau oligomers

Recent data suggest that small tau oligomeric species might be
involved in the spread of tau pathology and neurotoxicity (Kayed
et al., 2003; Lasagna-Reeves et al., 2011, 2012b; Patterson et al.,
2011). Therefore, to study tau transmission and propagation we
tested the seeding abilities of recombinant full-length tau oligom-
ers in hiPSC neurons, using recombinant full-length tau mono-
mers as controls. Most protocols for tau oligomer preparation
use cofactors, such as polyanions or fatty acids, to induce aggre-
gation and the formation of B-sheet structures around tau
microtubule-binding repeat domains (MTBDs). These prepara-
tions led to the formation of synthetic fibrils similar to those
detected in the brain of AD patients (Gerson and Kayed, 2013).
Such fibrillar aggregates can be detected using the fluorophore
thioflavin that upon binding to 3-sheet-rich structures displays
enhanced fluorescence intensity (LeVine, 1999; Santa-Maria et
al., 2006). Thioflavin has been reliably used to measure protein
aggregation across a number of proteinopathies. However, a lim-

itation of this detection method is that it is unable to measure the
initial kinetic stages of aggregation, such as the oligomerization of
amyloidogenic proteins.

To overcome this problem, we developed a tau oligomeriza-
tion assay using FP-based detection, a method routinely used in
high-throughput screening applications for the measurement of
ligand binding. The FP method is based on the detection of a
small fluorescently labeled peptide binding to a protein of inter-
est. This binding results in detectable FP, which is proportional to
the fraction of bound ligand (Jameson and Seifried, 1999; Jame-
son and Croney, 2003; Moerke, 2009).

In our experiments, the truncated form of tau consisting of
the MTBD K18 was the small ligand labeled with Alexa 594 fluo-
rophore, while the binding protein of interest was full-length
4R2N T40. When unbound monomeric K18-tau-Alexa 594 is
excited by polarized light at the appropriate wavelength, the li-
gand reorients to a significant degree due to molecular tumbling,
causing the emitted light to be largely depolarized. However,
when K18-Alexa 594 is bound to the higher molecular weight T40
tau, during the process of oligomerization, the resulting larger
complex tumbles much more slowly, and emitted light retains
polarization. To induce tau oligomerization, heparin was added
to the preparation mixture. We measured a difference in FP
(Amp) between the oligomerization reaction (with heparin) and
the negative control (without heparin) at each indicated time
point of the aggregation process (Fig. 1A). This approach enabled
us to measure the binding kinetics of K18 to tau T40 and to follow
oligomerization. The signal revealed a rapid formation of tau
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oligomers during the first 6 h of reacting with heparin, and then
the process of oligomerization stabilized while the formation of
fibrils began. In contrast to the rapid detection of tau oligomers
by EP, the formation of fibrillar tau cannot be detected using ThT
fluorescence until after 1 d. Increased ThT binding was shown 5 d
after the initiation of tau aggregation by heparin and increased
further at 10 and 15 d (Fig. 1B).

Since FP measures have inherent limitations in terms of dis-
tinguishing the specific tau oligomer species present in solution,
we used a combination of other approaches to characterize the
tau oligomeric species present in our heparin-induced tau oli-
gomers. These approaches included MS, atomic force micros-
copy, and Western blot analyses.

MALDI-TOF MS offers a number of advantages in the direct
analysis of macromolecules, such as protein complexes (Nazabal
et al.,, 2006). Noncovalent interactions do not remain intact
during MALDI ionization process, and thus analysis of protein
complexes by high-mass MALDI-TOF MS requires chemical
cross-linking stabilization at the stage of sample preparation
(Bich et al., 2010). Figure 1C overlays high-mass MALDI TOF
mass spectra comparing cross-link-treated and untreated tau oli-
gomers formed following 4 h incubation with heparin. Untreated
oligomers readily dissociate during ionization, thus analytes ob-
served represent single molecules of heparin, observed at 5.83
kDa, and tau monomer, observed at 45.88 kDaj; notably, no gas-
phase ion clustering artifacts are observed. Mass spectra obtained
from cross-link-stabilized tau oligomers show the presence of tau
monomers, dimers, trimers, and tetramers. Additionally, the
mass values observed for each tau monomer and oligomer
complex are elevated by increments consistent with the mass
equivalents of two heparin molecules, indicative of a heparin-
tau-specific binding stoichiometry of 2:1. Additional analyses
comparing cross-link-stabilized and untreated tau monomer
preparations did not detect the presence of tau oligomer analytes
(data not shown).

The Western blot analysis of tau oligomers (4 h preparation)
demonstrated the heterogeneous population of tau species, as
observed by the presence of three bands of molecular weight for
tau monomers, dimers, and trimers (Fig. 1D). Images of atomic
force microscopy further confirmed the structures of the tau oli-
gomer preparation (Fig. 1E). While the monomeric tau protein
would not bind to the mica surface, the oligomeric species taking
the shapes of either compact spheres or elongated threads were
found at the 4 h time point. Together, these data demonstrate that
tau seeds prepared by 4 h of aggregation in the presence of hep-
arin contained a mixture of tau oligomers.

Tau monomers and oligomers were internalized and
transported along the axons

To investigate whether tau monomers, oligomers, or fibrils are
internalized by hiPSC neurons, tau seeds were prepared using tau
recombinant protein conjugated to Cy3-fluorophore. Extracellu-
lar Cy3-fluoresence signal was fully quenched by the noncell-
permeable red background suppressor (Fig. 2B), allowing
detection of only internalized Cy3-tau. Live-cell imaging of neu-
rons at 1 h after seeding with Cy3-tau seeds showed intense in-
tracellular fluorescence in cells treated with monomers and
oligomers, but not in cells treated with tau fibrils, reflecting the
uptake of both monomers and oligomers, but not tau fibrils (Fig.
2A). Recently, it was shown that reduction of heparan sulfate
proteoglycans (HSPGs) with enzymatic treatment of heparinase
III decreased the internalization of aggregated tau species, sug-
gesting that cellular uptake of tau occurs via HSPG-mediated
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macropinocytosis (Holmes et al., 2013). Interestingly, the uptake
of Cy3-tau oligomers was significantly reduced by the cell
treatment with heparinase III for 3 h before and during the 1 h
exposure to tau seeds (Fig. 2C). Treatment with heparinase sig-
nificantly reduced the fluorescence of intracellular Cy3-tau oli-
gomers (p < 0.0001; Fig. 2C), without causing neuronal loss (Fig.
2D). This further suggests the involvement of HSPGs in tau in-
ternalization and supports use of the Cy3-tau conjugate, with a
background suppressor, as a tool to study tau uptake. Analysis of
the area positive for heparan sulfate immunostaining showed
that heparinase III successfully reduced the heparan sulfates
from neuronal surface [vehicle: 591.35 * 10.43 um?/cell;
heparinase IIT (1.5 mIU/ml): 397.14 * 9.21 wm?/cell, p <
0.005, Student’s ¢ test].

To examine the intracellular distribution of tau seeds within
the neuronal soma and axonal projections, we seeded tau mono-
mers and oligomers labeled with Cy5-fluorophore on hiPSC neu-
rons plated inside a microfluidic device. The microfluidic device
enables neuronal cell bodies to be in a different chemical envi-
ronment than their axons via hydrostatic pressure, thus prevent-
ing the spontaneous diffusion of molecules from somal to axonal
compartment (Taylor et al., 2005; Wu et al., 2013). Figure 2E
demonstrates the fluidically isolated compartments. Note that
there was no leakage of Cy5-tau monomer fluorescent signal
from compartment 1 into the microgrooves of the device, con-
firming the efficacy of the hydrostatic pressure to isolate the two
regions (Fig. 2E).

Tau seeds were applied to the microfluidic cultures in the
somal compartment after the neurons’ axons transversed the en-
tire length of the device’s microgrooves (DIV 10). Using live-cell
imaging 18 h after treatment with tau seeds, fluorescent Cy5
granular signal in the axons was detected, suggesting that both
tau monomer and oligomeric seeds were internalized and actively
transported along the axons (Fig. 2F). The fluorescence intensity
from the axonal compartment of neurons receiving the mono-
meric seeds was weaker compared with the signal coming from
the axons after treatment with oligomeric seeds. This difference
in the signal may be due to the lower fluorescence intensity of
Cy5-conjugated monomeric seeds compared with oligomer
seeds, since the oligomer seeds may incorporate the label with
higher density and may therefore be easier to detect.

Internalized tau oligomer seeds but not monomer seeds
induced pathological tau conformation and aggregation, and
enhanced tau phosphorylation in hiPSC neurons
Having shown that exogenous tau monomers and oligomers were
internalized by neurons (Fig. 2A, F), we further investigated the ef-
fect of these tau seeds on tau conformation and aggregation. Neu-
rons were seeded with 50 nM tau monomer seeds or tau oligomer
seeds for 24 h, and then washed with media. After 7 d, cells were
stained with MC1 antibody, a marker of pathological tau conforma-
tion (Jicha etal., 1997; Weaver et al., 2000), and ThS, a marker for tau
aggregation (LeVine, 1999; Santa-Maria et al., 2006). High-content
imaging analysis was used to measure the percentage of cells positive
for these markers. The percentage of MC1 and ThS-positive cells
significantly increased (11.70 = 1.42-fold increase in MC1 cells, p <
0.0001; 2.24 = 0.25-fold increase in ThS cells, p < 0.005) in the cells
treated with tau oligomer seeds compared with vehicle-treated cells.
There was no change between the tau monomer-treated and vehicle-
treated cells (Fig. 3A, B).

We also measured tau phosphorylation levels, which is an-
other indicator of tau pathology (Ballatore et al., 2007; Man-
delkow and Mandelkow, 2012). Intracellular intensity of the
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phosphorylation levels of tau proteins at phospho-epitopes T231
(Fig. 3C) and $396/404 (Fig. 3D) were measured 7 d after tau
seeding using high-content imaging. There was a significant in-
crease in the percentage of cells with hyperphosphorylated tau
(6.35 = 0.96-fold increase in cells positive for phospho-epitope
T231, p < 0.05; 2.14 = 0.18-fold increase in cells positive for
phospho-epitope $396/404, p < 0.05) after treatment with tau
oligomer seeds compared with vehicle-treated cells. Cells seeded
with monomeric tau did not show any difference in hyperphos-
phorylated tau versus vehicle-treated cells (Fig. 3C,D).

To further investigate whether tau oligomers can induce
the formation of insoluble aggregated species, we performed
sarkosyl extraction of the hiPSC neurons treated with 50 nm of
tau seeds. To ensure the detection of intracellular tau, we used
the anti-phospho tau antibody (PHF1) in our Western blots,
as recombinant tau seed preparations are not phosphorylated.
Treatment with 50 nm did not show evident difference
between the vehicle-treated, monomer-treated, and oligomer-
treated cells (data not shown). To test whether this lack of
effect was due to the sensitivity of Western blot method versus
high-content image analysis, which enables analysis at the
single-cell level, we repeated the experiment with the addition
of 200 nM tau seeds. Treatment with this higher concentration
of tau oligomers caused significant increases (p < 0.05) in the
levels of phospho-tau in sarkosyl-insoluble fraction, while the

levels of phospho-tau in the soluble fraction was not increased
compared with vehicle and monomer treatment. Tau mono-
mer seeding did not affect the levels of phospho-tau in either
the sarkosyl-soluble or the sarkosyl-insoluble fraction (Fig.
3E). These data confirmed that tau oligomers can induce ag-
gregation of insoluble, hyperphosphorylated tau species in
hiPSC neurons. Numerous reports have demonstrated that
autophagy is a major process involved in the clearance of in-
tracellular tau aggregates in various in vitro and in vivo models
of tau pathology (Berger et al., 2006; Frederick et al., 2015;
Friedman et al., 2015). Rapamycin is a well known activator of
autophagy (Berger et al., 2006). We examined the effect of
rapamycin (100 nM) by adding it to neurons 24 h before seed-
ing with tau oligomers. Rapamycin pretreatment significantly
decreased (p < 0.005) the percentage of cells positive for MC1
staining, suggesting that activation of autophagy was able to
promote the clearance of the induced aggregated tau (Fig. 3F).
To verify that rapamycin pretreatment activated autophagy,
we performed immunostaining against LC3 protein, a reliable
marker of autophagosomes (Kabeya et al., 2000; Mizushima,
2011; Klionsky et al., 2012). The number of intracellular LC3-
positive puncta measured by high-content image analysis was
increased (p < 0.05) in cells treated with rapamycin compared
with vehicle (DMSO), providing evidence for the induction of
autophagy in the hiPSC neurons (Fig. 3G).
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Tau oligomers induce accumulation of pathological tau. A-D, High-content image analyses of the hiPSCneurons 7 d after seeding with tau monomers and oligomers, and

stained for pathological tau using MC1 antibody (A), ThS staining (B), and anti-phospho T231 tau (C) and anti-phospho $396/404 tau antibody (D). All graphs represent the percentage
of cells positive for markers of pathological tau expressed as fold change versus vehicle. Representative images show cells positive for MC1 (4, red), ThS (B, green), and phospho-tau
staining (C, D, green). Hoechst was used to stain nuclei (blue). Scale bar, 50 m (n = 6 wells per condition, 9 fields, ANOVA with post hoc Dunnett’s test vs vehicle, *p << 0.05, **p <
0.005, ***p < 0.0001). E, Images of Western blot analysis of sarkosyl-soluble and sarkosyl-insoluble fractions. PHF1 antibody (anti-phospho $396/404) was used to detected
phospho-tau; GAPDH and Coomassie blue protein stain were used as a loading control. Molecular weight in kilodaltons is indicated along the blot. Western blots were quantified by
densitometric analysis (graphs; n = 3, ANOVA with post hoc Dunnett’s test vs vehicle; insoluble fraction, *p < 0.05; soluble fraction, p = 0.19). F, Graph represents the percentage of
cells positive for MCT staining 7 d after seeding after treatment with rapamycin. Rapamycin was added 24 h before tau seeding. DMSO was used as a vehicle (n = 6 wells per condition,
9 fields, ANOVA with post hoc Dunnett’s test, *#p << 0.0001 vs vehicle **p < 0.005 vs oligomer). G, Graph shows the number of LC3-positive autophagosomes per cell after rapamycin
pretreatment (n = 3 wells per condition, 9 fields, Student’s ¢ test, *p << 0.05). All values are expressed as mean =+ SEM.
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Exogenous tau oligomers recruit endogenous tau protein. 4, lllustration of tau protein tagged with Flag-6xHis and mutated at the binding site of the HT7 antibody. B, lllustration of

AlphaLISA assay principle; interaction between exogenous (Flag detected) and endogenous (HT7 detected) tau proteins brings acceptor and donor beads in very close proximity, which enables
energy transfer from one bead to another, generating luminescence signal. C, Graph represents the Flag-HT7 AlphaLISA luminescence signal (fold change vs vehicle) from hiPSC-neuronal lysates
seeded with two concentrations (50 and 250 nm) of tau monomers and oligomers. Lysates were harvested 4 d after seeding (n = 3 per condition, ANOVA with post hoc Dunnett’s test, *p << 0.05 vs
vehicle, **p < 0.005 vs vehicle). D, Graph shows sandwich ELISA signal with HT7 and total tau antibody used to detect HT7-mutant tau and wild-type (wt) tau. RU, Relative units. All values are
expressed as mean == SEM. E, High-resolution confocal images show the colocalization of Flag (exogenous tau) and HT7 (endogenous tau) staining in hiPSCneurons 4 d after treatment with tau-Flag
oligomers. Higher magnification shows three-dimensional reconstruction of the Z-stacked images processed with Volocity program. Scale bar, 50 m.

Tau oligomer seeds recruited endogenous tau protein
To differentiate endogenous tau from seeded tau oligomers, we
mutated the HT7 antibody recognition site of our tau recombi-
nant protein and conjugated it with Flag-6xHis (Fig. 4A). We
used AlphaLISA technology to detect the formation of protein
aggregates. An increase in HT7-Flag AlphaLISA signal revealed
the close proximity between endogenous tau (labeled with HT7
antibody conjugated to acceptor beads) and tau seeds (labeled
with biotinylated anti-Flag antibody and streptavidin-coated do-
nor beads; Fig. 4B). The addition of 50 or 250 nM tau oligomer
seeds to the hiPSC neurons for 4 d resulted in a significant in-
crease (p < 0.05) in AlphaLISA signal compared with vehicle-
treated neurons (Fig. 4C). No change was observed when cells
were treated with tau monomer seeds compared with vehicle
treatment (Fig. 4C). In addition, a sandwich ELISA using total tau
antibody (Dako) as a capture antibody and HT7 antibody for
detection showed a complete loss of signal from the HT7 mutant
tau oligomer seeds compared with the wild-type tau oligomer
seeds, confirming the mutation of the HT7 antibody recognition
site (Fig. 4D). High-resolution confocal microscopy showed co-
localization of Flag and HT?7 staining, providing additional evi-
dence that tau-Flag-6xHis seeds are interacting with endogenous
tau to promote further pathological assembly (Fig. 4E).
Together, these data suggest that tau oligomers are internal-
ized and are able to seed hiPSC neurons recruiting endogenous
tau protein to induce pathological changes and aggregation.

Tau oligomer seeds caused neurite degeneration and
neuronal loss

To investigate the outcomes of tau oligomer seed-induced intra-
cellular tau aggregation on neuronal survival, we determined the
effect of increasing concentration of tau oligomers on MCI stain-
ing, neurite outgrowth, and neuronal count 7 d after seeding in
hiPSC neurons. Neurite outgrowth of all neuronal processes was
used as an indicator of neurite degeneration. Neurite outgrowth
was measured using high-content image analysis software (Har-
mony 3.1.1, PerkinElmer), which detects neurites extending
from a cell body based on immunofluorescence. A representative
image demonstrating the detection of the neurites and cells using
this algorithm is shown in Figure 5A. Neurite outgrowth was
quantified by measuring total neurite length per cell and number
of segments per cell (neurites between two intersecting points),
averaged per well. The analyses showed a concentration-
dependent increase in the number of MCl-positive neurons
starting at 50 nMm tau oligomeric seeds (Fig. 5B). This increase in
pathological tau conformation was associated with a significant
reduction in neurite length and segments (based on total tau
immunostaining; Fig. 5C), as well as a decrease in the number of
healthy nuclei stained with Hoechst dye (Fig. 5D). At 50 nM tau
oligomer treatment, 8.3 * 0.8% (p < 0.0001) of the cells were
MCI1 positive. Compared with vehicle, there was a 27.4 + 2.4%
(p <<0.0001) reduction in neurite length and 12.9 * 3.7% reduc-
tion in the number of healthy nuclei. The highest concentration
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of tau oligomers tested at 125 nM resulted in 64.5 * 6.3% (p <
0.0001) of the cells positive for MC1, and further reduced neurite
outgrowth and the percentage of healthy nuclei, lowering them
by 50.9 = 1.3% (p < 0.0001) and 34.5 + 2.9% (p < 0.0001),
respectively. The effect of tau oligomer seeds on neuronal viabil-
ity was further confirmed using a live-cell dye, calcein AM, and
the measure of LDH activity, an indicator of cell death, in the cell
medium. At the concentration of 50 nM tau oligomers, 7 d after
seeding, hiPSC neurons exhibited a 25.2 £ 1.9% (p < 0.0001)
decrease in the intensity of calcein AM and a 33.2 = 0.9% (p <
0.005) increase in LDH activity compared with vehicle (Fig.
5EF).

In addition, increasing concentrations of tau monomers had
no effect on MCI staining, neurite outgrowth, and neuronal
count 7 d after seeding in hiPSC neurons (Fig. 5B,G,H).

Together, these data imply that tau oligomers, but not tau
monomers, are neurotoxic for hiPSC neurons, setting the basis
for the neurodegenerative process that causes neurite retraction
and, ultimately, cell death.

Tau oligomers induced long-term progressive degeneration of
neurites accompanied with neuronal death

The study of the long-term effect of tau oligomers on neurite
morphology and viability was performed using continuous, 3
week live-cell imaging. The NeuroTrack module was used to
measure neuronal processes and number of cell bodies of live
cells based on phase-contrast imaging. Representative image of
detection masks of the NeuroTrack module is shown in Figure

6A. These analyses revealed that neurons treated with 50 nm tau
oligomers exhibited progressive neurite degeneration deter-
mined by the reduction in both neurite length and branching
over the course of 2 weeks after tau seeding (Fig. 6B). In contrast,
vehicle-treated and monomer-treated neurons showed a contin-
uous increase in neurite growth and branching. From the day of
treatment (day postseeding 0) until the last time point (day post-
seeding 14) both vehicle-treated and monomer-treated neurons
exhibited significant increases in neurite length of 32.96 * 6.54
mm/mm? (p < 0.005) and 25.82 * 3.46 mm/mm? (p < 0.0001),
respectively, suggesting a dynamic growth of neurites. The
oligomer-treated cells had a significant decrease of 13.40 = 4.27
mm/mm? (p < 0.05) in neurite length, suggesting neurite retrac-
tion during this 2 week period. Of note, the three treatment
groups started with a similar neurite outgrowth profile from the
beginning of the imaging until the time of treatment (day 0). In
addition, the quantification of the cell bodies revealed a time-
dependent decrease in cell number in the three treatment groups,
indicative of a progressive loss of human neurons during the 3
weeks of culturing. Importantly, greater cell loss was observed in
the tau oligomer-seeded neurons (29.71 = 7.07%, p < 0.0001)
compared with vehicle-treated neurons (10.33 * 10.23%),
whereas tau monomer-seeded neurons (10.74 + 10.17%) did not
show any difference from vehicle-treated neurons (Fig. 6B).
Acute differences in cell number between day 0 and 1 after seed-
ing are a treatment artifact induced by removal of the plate from
the imaging system and extensive wash steps (Fig. 6C, arrow on
graph). The percentage change of cell number was then calcu-
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lated based on the cell number after the wash. Interestingly, in
oligomer-treated neurons, the significant loss of cell bodies com-
pared with a vehicle-treated and monomer-treated groups, was
detected 7 d after seeding (Fig. 6C), while modest, though signif-
icant, neurite degeneration started at the earlier time points (Fig.
6B). This observation further supports the importance of neurite
outgrowth as an indication of neurodegeneration that precedes
the cell death. Together, these data indicate that treatment with
tau oligomers causes long-term neurite degeneration and neuro-
nal loss.

hiPSC neurons affected with pathological tau aggregates
exhibited neuronal death and neurite degeneration

We next investigated the relationship between the induction of
tau pathology and the neurodegenerative processes. For this anal-
ysis, hiPSC neurons were seeded with 50 nm tau oligomers or
monomers, and neurite outgrowth was measured at 0, 7, 14, and
21 d after seeding. Consistent with the previous results of live-cell
imaging, these analyses of neurite outgrowth based on total tau
immunostaining showed a time-dependent decrease in neurite
length and number of segments of neurons treated with tau oli-
gomers, compared with vehicle-treated neurons at all time points
(Fig. 7A). In contrast, there was no difference between monomer-
seeded and vehicle-treated cells (Fig. 7A). To confirm induction
of neurodegeneration, we measured neurite outgrowth using im-
munostaining with two neuronal-specific proteins, MAP2 and
TUJ-1. Fourteen days after oligomer seeding, neurons showed a
significant reduction in length and branching of TUJ-1-labeled
(p < 0.0001, p < 0.005) or MAP2-labeled (p < 0.05) neurites
compared with vehicle-treated cells (Fig. 7 B, C), consistent with
the previous results obtained using tau staining. Together, these
results demonstrate the toxic effect of tau oligomer seeds on the
neurite network. In parallel, we performed double staining to
detect neurites, using tau or MAP2, and tau aggregates, using
MC1. Based on the MC1 labeling, we were able to differentiate
neurons with significant tau aggregates and to measure neurite
outgrowth in MCl-positive population of neurons. Fourteen
days after tau oligomer seeding, we observed a significant reduc-
tion in neurite length in the MC1-positive cells compared with
non-MC1 cells (Fig. 7D,E). The neurite outgrowth of the
non-MC1 tau oligomer-treated cells was similar to that of the
vehicle-treated cells (Fig. 7D,E). For example, in the tau
oligomer-treated neurons, the length of neurites of non-MCl1
cells, based on tau staining, was 586.59 * 15.70 um, whereas in
MC1-positive cells, the length was significantly shorter (388.39 =
56.99 um, p < 0.005; Fig. 7D). Neurite length of the non-MCl1
tau oligomer-treated cells did not significantly differ from that of
vehicle-treated cells (642.89 * 18.60 wm; Fig. 7D). In addition,
high-resolution confocal images showed the localization of MC1-
positive pathological tau in both neuritic and somatoneuritic cell
compartments. These specific areas of MC1 accumulation are in
agreement with the effect of pathological tau on neurite degener-
ation (Fig. 7D, E).

In addition, consistent with the results of the live-cell analyses
(Fig. 6), quantification of the cell nuclei stained with Hoechst
revealed a time-dependent decrease in cell number in the three
groups of treatment, reflecting a progressive loss of human neu-
rons over the 4 weeks of culture. The reduction of cell viability
was significantly higher (p < 0.005) in the tau oligomer-seeded
neurons compared with vehicle-treated neurons at the three time
points, whereas the tau monomer-seeded neurons did not show
any difference from the vehicle-treated cells (Fig. 7F). In this
experiment, we also detected the formation of tau aggregates us-
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ing MCl staining in tau oligomer-seeded neurons. We were able
to differentiate the change in viable cell number between MC1-
positive and non-MCI cells at different time points after seeding.
We found a significant decrease (p << 0.0001) in cell number from
the MCl1-positive neuronal population 14 and 21 d after seeding
compared with the 7 d time point, whereas the number of non-
MCI1 cells was unchanged (no MC1 pathological tau was ob-
served at day 0 of seeding). These data provided evidence of a
progressive neuronal death affecting specifically the neuronal
population harboring pathological tau aggregates (MCI1-positive
neurons; Fig. 7G). These results provide evidence that patholog-
ical tau aggregation induced by exogenous tau oligomers contrib-
ute to neurodegenerative processes and lead to neuronal death.

Tau oligomers disrupted synaptic integrity and intracellular
calcium levels

Having observed the ability of tau oligomer seeds to induce neu-
rodegeneration, we next explored the functional consequences of
tau oligomers on synaptic integrity and neuronal activity. To
measure synaptic changes, we performed high-content quantifi-
cation of the puncta positive for synaptic markers synapsin I and
synaptophysin. Synapsin 1 and synaptophysin are well character-
ized markers used for immunostaining of synaptic contacts
(Fletcher et al., 1991). Fourteen days after seeding with tau oli-
gomers, hiPSC neurons showed a significant decrease (p < 0.05)
in synaptic puncta compared with vehicle-treated neurons (Fig.
8A). These iCell hiPSC neurons were characterized as predomi-
nantly GABAergic and glutamatergic (Haythornthwaite et al.,
2012; Xu et al., 2013). Therefore, neuronal activity was assessed
by determining the levels of GABA and glutamate released in the
cell media. In neuronal cultures seeded with tau oligomers, we
measured a moderate but significant increase (p < 0.05) in basal
GABA release, whereas glutamate release was unaffected (Fig.
8B). This result suggests that tau oligomer seeds may preferen-
tially affect the function of GABAergic hiPSC neurons and inhib-
itory neurotransmitter signaling.

Neuronal calcium signaling plays a crucial role in controlling
the release of neurotransmitters, membrane excitability, and
overall neuronal activity (Bezprozvanny and Mattson, 2008; Sup-
net and Bezprozvanny, 2010). High-content imaging was used to
monitor intracellular Ca®™ at single-cell level in hiPSC neuronal
culture loaded with calcium-sensitive fluorescent dye. Neuronal
stimulation with 30 um NMDA, used as a control for a Ca** dye,
resulted in an increased fluorescence as represented by Figure 8C.
Fourteen days after seeding, intensity of Ca*" fluorescence in
hiPSC neurons seeded with tau oligomers was significantly
higher (755 *= 24.24 fluorescence units, p < 0.0001) than the
levels in vehicle-treated neurons (536 = 33.43 fluorescence units;
Fig. 8C). These results suggest that tau oligomers induce altera-
tions in neuronal activity. Interestingly, in neurons seeded with
tau oligomers, the impairments in synaptic integrity, neurotrans-
mitter release, and calcium signaling occurred concurrently with
the tau aggregate-induced deficit in neurite outgrowth, thereby
correlating structural abnormalities with functional deficiency.

Discussion

It is now evident that exogenously applied aggregated tau can
induce tau pathology in cellular and animal models. However, it
is still unknown which of the various tau multimeric misfolded
species are most efficient in triggering aggregation and spreading
of tau pathology in AD. In the majority of studies, tau seeds were
prepared from either recombinant mutant tau (Guo and Lee,
2011; Iba et al., 2013) or from brain extracts of tau mutant trans-
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Figure?7. Accumulation of pathological tau causes neuronal degeneration. 4, High-content image analyses of neurite outgrowth expressed in graphs as total neurite length (in micrometers) per
cell (left) and number of segments per cell (right), during a time course of 3 weeks after seeding with 50 nm tau oligomers, monomers, and vehicle-treated hiPSC neurons. Results are expressed as
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(n= 5wells per condition, 9 fields, Student’s ttest, ***p << 0.0001). Images show an increased intracellular fluorescence intensity of Ca2* dye (green) in cells treated with tau oligomers compared
with vehicle-treated cells. Treatment with 30 M NMDA was used to validate the increase of intracellular Ca 2t dye after neuronal activation. Nuclei were stained with Hoechst (blue). Scale

bar, 50 pm.

genic mice (Clavaguera et al., 2009). In some cases, the in vitro
and in vivo models also overexpressed mutant or wild-type tau
(Clavaguera et al., 2009, 2013; Guo and Lee, 2011), rendering
these systems even more susceptible to endogenous tau aggrega-
tion. However, there are no reported MAPT (microtubule-
associated protein tau) mutations in AD or evidence of increased

<«

(Figure legend continued.)  the reduction in neurite length and reduction in number of seg-
ments of neurons treated with tau oligomers 14 d after seeding, when neurites were detected
with TUJ1 (B) and MAP2 immunostaining (C; n = 6 wells per condition, 9 fields, Student's t test,
*p<<0.05, **p << 0.005, ***p << 0.0001 vs vehicle). Representative images of neurite network
detected with TUJ1 (B, red) and MAP2 (C, red) immunostaining. Nuclei were detected with
Hoechst stain (blue). D, E, Graphs present high-contentimage analyses of total neurite length of
MC1-positive and non-MC1-positive cells 14 d after treatment with tau oligomers and vehicle,
when neurites were detected with tau (D) and MAP2 (E) immunostaining. Representative
images of MC1/tau (D, right) and MC1/MAP2 (E, right) double staining that demonstrate the
reduction of neurite network (red) in neuronal population positive for MC1 staining (green) 14d
after tau oligomer seeding. Higher-magnification images (60 <) show the localization of MC1
pathological tau on neuronal processes and somas, and also on the degenerating neurites
(arrows). Nuclei were detected with Hoechst stain (blue). Scale bar, 50 pum. F, Graph shows the
percentage of the number of healthy nuclei stained with Hoechst in neuronal cultures treated
with tau seeds compared with vehicle at indicated time points. Representative images of MC1
(red) and Hoechst nuclear stain (blue) 14 d after treatment with tau oligomers showing a
reduction in the number of Hoechst-positive nuclei in tau oligomer-treated neurons compared
with vehicle. Scale bar, 100 um (4, D—F: n = 6 wells per condition, 9 fields, ANOVA with post
hoc Dunnett's test vs vehicle, *p << 0.05, **p << 0.005, ***p << 0.0001). G, Number of MC1-
positive cells compared with number of non-MC1 cells during a time course of 3 weeks after
seeding with 50 nu tau oligomers (***p < 0.0001 vs 7 d MC1-positive cells). All values are
expressed as mean = SEM.

expression of tau during the progression of AD pathology. Nev-
ertheless, in these models, differences in the function and aggre-
gation propensity between wild-type and mutant tau may not
accurately predict the molecular and cellular mechanisms that
drive tau pathology in AD (Hong et al., 1998; Combs and Gam-
blin, 2012). Therefore, we have focused our research on the de-
velopment of a more relevant model of sporadic tauopathies to
study the specific events involved in the progression of the pa-
thology. The data presented here demonstrate that wild-type full-
length human tau oligomers induce tau aggregation in human
neurons with no tau mutations or overexpression. Additionally,
changes in phosphorylated tau and tau conformation, consistent
with AD tau pathology, were also observed. Importantly, chronic
evaluation of tau oligomer-seeded neurons revealed a progressive
deficit in neurite outgrowth, loss of synapses, deficits in endoge-
nous calcium homeostasis, abnormal neurotransmitter release,
and ultimately neuronal cell death. Notably, neurodegeneration
was exacerbated in the neuronal population exhibiting patholog-
ical tau aggregates (MCl1-positive neurons). These findings sug-
gest that the pathological changes induced by internalized tau
oligomers can lead to neurodegeneration and neuronal death in
human neurons. Together these data are consistent with previous
human studies demonstrating a correlation between the spread-
ing of tau pathology and neurodegeneration in AD (Delacourte et
al., 2002a, 2002b).

The majority of studies to date have demonstrated the seeding
property of recombinant tau fibrils, which are made of large
forms of insoluble tau aggregates (Guo and Lee, 2011; Santa-
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Maria et al., 2012; Holmes et al., 2013; Iba et al., 2013). However,
increasing evidence suggest that prefibrillar oligomers, rather
than mature tau fibrils, are the pathogenic species in AD (Kayed
et al., 2003; Lasagna-Reeves et al., 2011, 2012a, 2012b; Patterson
etal., 2011). The levels of tau oligomers were found to be signif-
icantly increased in AD brains early in disease, before the appear-
ance of NFTs or clinical symptoms (Gerson and Kayed, 2013). In
wild-type mice, injection of tau oligomers, but not tau monomers
or fibrils, induced memory impairments and synaptic dysfunc-
tion (Lasagna-Reeves et al., 2011, 2012a, 2012b; Patterson et al.,
2011).

In previous experiments, only low molecular weight aggre-
gates and short fibrils, rather than long fibrils, were taken up by
primary neurons, suggesting that tau internalization is depen-
dent on the conformation and size of the aggregates (Wu et al.,
2013). Our data are consistent with these initial findings that tau
fibrils are not readily taken up by hiPSC neurons. It is also note-
worthy that in certain tau models the fibrils were sonicated to
produce fragmented species before brain injection or cell treat-
ment (Guo and Lee, 2013; Iba et al., 2013). Therefore, it is likely
that the sonicated tau fibrils also contained tau in oligomeric
forms, which may explain why seeding and propagation of tau
aggregation was successful. Indeed, in a recent study, it was dem-
onstrated that sonication of recombinant fibrils results in a mixed
population of various sizes of tau assemblies, from which tau
trimers were the minimal-size species able to induce intracellular
aggregation. These data further confirm the pathogenic seeding
properties of small tau oligomeric species also found in our oli-
gomer preparations (Mirbaha et al., 2015). In the present study,
the pathogenic properties of tau oligomers are also supported by
the observation that even small amounts of tau oligomeric species
can be internalized and transported by the human neurons to
propagate and seed the aggregation of endogenous tau. Tau oli-
gomer trafficking through neuronal axons was demonstrated us-
ing microfluidic chambers. The recruitment of endogenous tau
was determined by using an AlphaLISA aggregation assay. The
observed intracellular tau aggregates formed after oligomer treat-
ment share key features with mature NFTs from AD brains. Ag-
gregates were intensely stained with ThS and immunostained
with specific antibodies detecting pathological tau conformation
(MC1) and tau phosphorylation. Tau oligomers also induced
accumulation of insoluble hyperphosphorylated tau species ob-
served with immunoblotting. Together, these results showed that
tau oligomers are capable of propagating tau aggregation in hu-
man neurons in a manner consistent with the hypothesis of tau
spreading in AD.

Several studies have demonstrated that exogenously applied
tau protein is internalized by cells. However, the precise cellular
and molecular mechanisms that underlie this process are not well
understood (Frost et al., 2009; Guo and Lee, 2011,2013; Wu et al.,
2013). Recently it was suggested that the internalization process
may occur through a mechanism of bulk endocytosis or macropi-
nocytosis involving HSPGs (Holmes and Diamond, 2012; Wu et
al., 2013). In the present study, tau oligomer seeds were prepared
from recombinant tau labeled with a Cy3 dye. Cy3-tau conju-
gates, in combination with a background suppressor that depletes
extracellular fluorescence, enabled us to differentiate externally
added tau oligomers, which bind to the cell surface, from those
internalized in the neurons. The increase in fluorescence at 1 h
after Cy3-tau oligomer treatment suggests that tau oligomers are
rapidly internalized by neurons. Moreover, pretreatment of the
neurons with heparinase can effectively reduce the amount of
internalized tau oligomers, suggesting the role of HSPGs in the
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process of internalization in human neurons. Recent studies have
also reported that internalized tau aggregates colocalize with en-
dosomal and lysosomal markers (Wu et al., 2013). This colocal-
ization of internalized tau recombinant protein with lysosomal
markers suggests that the autophagy pathway might be responsi-
ble for their degradation. Consistent with this, our data showed
that tau seed-induced intracellular aggregates could be reduced
by enhancing autophagy with rapamycin.

In our study, tau oligomer treatment induced a progressive
neuronal loss and deficit of neurite outgrowth that could repli-
cate the neurodegenerative process observed in animal models of
tauopathy (Lee et al., 2005; Yoshiyama et al., 2007; Lasagna-
Reevesetal., 2011; de Calignon etal., 2012; Cohen et al., 2013), as
well as in AD patients (Braak and Braak, 1995). In addition, the
loss of synapses that followed the accumulation of tau aggregates
could reflect a general impairment of neuronal function that pre-
cedes cell death. Indeed, neurons that were treated with tau oli-
gomers showed abnormal changes in GABA release, whereas
glutamate release was not changed. This finding could suggest
that GABAergic hiPSC neurons are preferentially vulnerable to
tau oligomer seeds. Similarly, it was interesting that only a certain
population of cells (~15-50% of cells depending on the concen-
tration of tau seeds) were positive for pathological MC1-tau.
Meanwhile most cells were capable of internalizing the tau oli-
gomers based on Cy3 conjugate fluorescence. Further research is
required to investigate and characterize the specific populations
of affected human neurons and may provide a better understand-
ing of cellular pathways implicated in pathogenic tau propaga-
tion and transmission.

Last, tau oligomer treatment induced changes in intracellular
Ca*" levels that coincided with neurite retraction, loss of syn-
apses, and imbalanced neurotransmitter release. These findings
suggest that pathological tau oligomers may affect regulation of
calcium homeostasis. This is consistent with previous studies that
have reported an association between tau pathology formation
and aberrant increases in Ca®" levels in the brains of AD patients
and in in vitro models (McKee et al., 1990; Nixon, 2003; Bezproz-
vanny and Mattson, 2008). Together, these data reveal several
pathological changes to intracellular functions that are capable of
compromising neuronal function and highlight the need for fur-
ther research to elucidate novel approaches for intervention.

It was notable that the administration of tau monomers did
not induce changes in tau pathology or cell morphology, despite
being internalized by neurons comparably to tau oligomers. Ad-
dition of full-length human tau to human neurons may not have
disturbed cellular homeostasis, and suggests the cells are capable
of effectively coping with the excess monomeric tau through deg-
radation. In support of this, it was recently demonstrated that
internalized recombinant tau monomers failed to induce aggre-
gation in cell lines overexpressing P301S mutant tau (Falcon et
al., 2015).

In conclusion, the findings from the present study demon-
strate that tau oligomers, and not monomeric tau, can act as
aggregation seeds that can ultimately compromise neuronal in-
tegrity and induce the accumulation of pathogenic tau. This tau-
seeding model in hiPSC neurons opens up novel avenues of
research and may be useful in uncovering the mechanisms re-
sponsible for the transmission of tau pathology and its deleteri-
ous effects on neuronal viability and function.
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