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Behavioral/Cognitive
Default Mode Dynamics for Global Functional Integration

Deniz Vatansever,? “David K. Menon,"-2 Anne E. Manktelow,'2 Barbara J. Sahakian,’ and Emmanuel A. Stamatakis! 2
1Division of Anaesthesia and 2Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, and *Department of Psychiatry, School of Clinical
Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom

The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed
paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array
of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a compre-
hensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global infor-
mation integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that
report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity
dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our
predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configura-
tion, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community
memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed
whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of

healthy brain function, as they suggest a central role for the DMN in higher cognitive processing.
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ignificance Statement

The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was
historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential
and memory-based processing. We provide robust evidence for this network’s active contribution to working memory by reveal-
ing dynamic reconfiguration in its interactions with other networks and offer an explanation within the global workspace theo-
retical framework. These promising findings may help redefine our understanding of the exact DMN role in human cognition.

~

Introduction

Recent progress in MRI data acquisition and analysis has ad-
vanced our understanding that the human brain is organized into
distinct, yet interacting large-scale brain networks (LSNs; Dam-
oiseaux et al., 2006; De Luca et al., 2006). However, one robust
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LSN comprising the posterior cingulate, medial prefrontal corti-
ces, and angular gyri continues to puzzle the scientific commu-
nity in regard to its cognitive significance (Buckner et al., 2008).
Termed default mode network (DMN; Raichle et al., 2001), this
set of regions has been reported to decrease its activity during
attention-demanding paradigms (Shulman et al., 1997; Mazoyer
et al., 2001), and it has been assumed to interfere with task per-
formance (Spreng, 2012).

Challenging this notion of the DMN's cognitive irrelevance,
emerging studies report greater DMN activity/connectivity in a
range of tasks that require self-referential processing, such as au-
tobiographical memory retrieval and future planning, as well as
in social cognitive paradigms of empathizing, moral judgment,
and narrative comprehension (Buckner et al., 2008; Spreng and
Grady, 2010; Andrews-Hanna, 2012). Additionally, there is evi-

DOI:10.1523/JNEUR0SCI.2135-15.2015
Copyright © 2015 Vatansever et al.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.


https://creativecommons.org/licenses/by/4.0

Vatansever et al. ® Default Mode Dynamics for Global Integration

dence suggesting (1) changes in the DMN's spatial extent during
task execution (Spreng et al., 2013; Vatansever et al., 2015), (2)
positive correlations between DMN connectivity and behavioral
measures (Hampson et al., 2006), and (3) DMN interactions with
other LSNs during rest (Fox et al., 2005) and task conditions
(Sprengetal., 2010). Overall, these findings point to a fundamen-
tal cognitive function for the DMN that is yet to be precisely
delineated.

Given such involvement in a wide range of tasks, extensive
communication with other networks, and its central placement
in the brain from the perspectives of both anatomical and func-
tional connectivity (Hagmann et al., 2008; Buckner et al., 2009;
van den Heuvel and Sporns, 2013), the DMN may play a role in
the global integration of information (van den Heuvel and
Sporns, 2011; Braga et al., 2013) necessary for conscious process-
ing during both unconstrained rest and controlled task condi-
tions. This concept overlaps with the theoretical account of a
global workspace originally proposed by Baars (Baars, 2002) and
may mechanistically involve the DMN and dorsal attention
network competing for limited resources facilitated by the fron-
toparietal network through long-range, flexible connections (De-
haene and Changeux, 2011; Smallwood et al., 2012). As a hub of
this global workspace, the DMN may generate the necessary as-
sociative information to be retained and manipulated by the
frontoparietal network.

From a network organization perspective, the brain is consid-
ered to be economically configured into a cost-effective, highly
modular, small-world architecture that flexibly adapts a more
expensive, yet informatically efficient and integrated global
workspace in response to environmental demands (Bullmore
and Sporns, 2012). Given our hypothesis about the potential
contribution of DMN to the global integration of information,
we investigated in this study the alterations in whole-brain
interactions in relation to performance during an n-back
working-memory task with parametric increase in difficulty,
specifically focusing on the DMN's involvement in whole-
brain reconfiguration.

For the purpose of quantifying LSN interactions, we focused
on modularity, a graph theoretical metric used to calculate the
level of integration and segregation across brain regions in a given
system (Newman, 2006; Meunier et al., 2009b), as well as global
variable connectivity (Cole et al., 2013), nodal participation co-
efficient, and nodal strength (Rubinov and Sporns, 2011), which
describe the regional contribution of network nodes to global
changes in functional connectivity.

Given the association between effortful task performance and
modular brain organization (van den Heuvel et al., 2009), we
hypothesized that modularity would decrease with increasing
cognitive effort. Additionally, based on existing literature on the
engagement of DMN regions in a diverse set of goal-directed
paradigms and their multisynaptic characteristics with extensive
structural and functional connections to the rest of the brain, we
predicted that the decrease in modularity and the expansion of
global workspace topology would be reflected by the changes in
DMNS’ interactions with other LSNs, supporting a potential role
for DMN as a global integrator of information.

Materials and Methods

Participants. After the study proposal was approved by the local ethics
committee, informed consent was obtained from 22 right-handed
healthy participants (age range, 19—57 years; mean age, 35.0 years; SD =
11.2; female-to-male ratio, 9/13), all of whom took part in the n-back
working-memory experiment as well as four other cognitive paradigms
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that are not reported in this study. The average score for the measure of
premorbid IQ via the National Adult Reading Test was 117.1 (SD =
5.76). Meanwhile, results of the Mini Mental State Exam averaged 29.33
(SD = 0.85). Thus, no signs of memory problems were detected. In
addition, no history of drug or alcohol abuse, psychiatric or neurological
disorders, or head injury was recorded in any of the participants.

Image acquisition. The experiment was conducted in a Siemens Trio 3T
scanner at the Wolfson Brain Imaging Centre, Addenbrooke’s Hospital,
Cambridge. The imaging session began with a localizer, followed by a
high-resolution, T1-weighted, magnetization-prepared, 180° radio-
frequency pulses and rapid gradient-echo structural scan [TR = 2300 ms;
TE = 2.98 ms; TA = 9.14 min; flip angle, 9°; field-of-view (FOV) read,
256 mm; voxel size, 1.0 X 1.0 X 1.0 mm; slices per slab, 176]. Whole-
brain echo planar imaging was used for the n-back paradigm (TR = 2000
ms; TE = 30 ms; flip angle, 78°% FOV read, 192 mm; voxel size, 3.0 X
3.0 X 3.0 mm; volumes, 345; slices per volume, 32).

Paradigm specifications. In the n-back working-memory paradigm,
three fixation blocks were pseudorandomly interleaved with five cycles of
four n-back blocks ranging in difficulty between 0-back and 3-back. Sin-
gle letters in white font were presented serially on a black background for
500 ms, each followed by 2500 ms fixation on a cross. While in the 0-back
trials, participants were requested to press a button with their left index
finger on the appearance of the letter Z in a string of random letters. More
difficult levels of n-back required the same button press in response to a
match between the current and one previous letter (1-back), two previ-
ous letters (2-back), or three previous letters (3-back). The participants
also responded to nontargets by pressing a button under their right-hand
middle finger. Each trial, including the fixation and task blocks, lasted
36 s, and 10-s-long instructions were presented before each block.

Spatial and temporal preprocessing. The preprocessing and image anal-
ysis were performed using Statistical Parametric Mapping (SPM) Ver-
sion 8.0 (http://www.fil.ion.ucl.ac.uk/spm/) and Matlab Version 12a
platforms (http://www.mathworks.co.uk/products/matlab/). The first
six volumes were removed to eliminate saturation effects and achieve
steady-state magnetization. The remaining data were slice-time adjusted,
motion corrected, normalized to the Montreal Neurological Institute
(MNI) space by using the segmented high-resolution gray matter struc-
tural image and a gray matter template. The final preprocessing step
involved smoothing the images with an 8 mm FWHM Gaussian kernel.
The resulting data were used for statistical modeling.

A strict temporal preprocessing pipeline of nuisance regression in-
cluded motion and CompCor components attributable to the signal
from white matter and CSF (Behzadi et al., 2007), as well as a linear
detrending term, eliminating the need for global signal normalization
(Murphy et al., 2009; Chai et al., 2012). The subject-specific six realign-
ment parameters, the main effect of task condition, and their first order
derivatives were also included in the analysis as potential confounds (Fair
etal., 2007). Moreover, a temporal filter of 0.009 and 0.08 Hz was applied
to focus on low-frequency fluctuations (Fox et al., 2005).

Functional connectivity and graph theoretical analyses. The main objec-
tives of our study were to examine the whole-brain connectivity changes
in response to increasing task difficulty and to assess the alterations in the
interaction of DMN regions with other LSNs. Thus, we initially used a
whole-brain approach, in which average correlation matrices based on
264 ROIs (Power etal., 2011), corresponding to 10 well established LSNs,
formed the basis of our functional connectivity and subsequent modu-
larity analyses. The results, visualized via circular and novel alluvial rep-
resentations (Rosvall et al., 2009), aimed to explicate the modular
organization of the brain across task difficulty, but also were intended to
clarify the change in communities formed by the LSNs and possible
behavioral correlations. While the flexibility of the 264 nodes was as-
sessed using the global variable connectivity measure, the DMN regions’
nodal participation coefficient and strength were further scrutinized for
a full characterization of DMNS’ contribution to the global connectivity
dynamics.

Definition of ROIs. We adopted a set of 264 brain regions based on both
resting (Cohen et al., 2008) and task (Power et al., 2011) functional
connectivity meta-analyses that have been shown to produce reliable
network topologies (Dosenbach etal., 2007; Power etal., 2011; Cole et al.,
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2013; Spreng et al., 2013). As opposed to voxelwise or anatomical defini-
tions, the selected set of ROIs minimize signal overlap from multiple
functional regions (Wig et al., 2011). The network partitions outlined by
Cole et al. (2013) were used to assign each one of the 264 ROIs to one of
the 14 LSNs documented in the original publication (Power et al., 2011).
These 14 network partitions included 10 well established networks: the
dorsal attention network, the ventral attention network, the salience net-
work, the cingulo-opercular network, the frontoparietal network, the
DMN, the visual network, the auditory network, the somatomotor net-
work (hand and mouth), and the subcortical network. The partitions also
included three networks within the memory retrieval network, the cere-
bellum network, and a network of uncertain function. As in the original
publication, the uncertain nodes were not related to any of the known
LSNs (Power et al., 2011).

Correlation matrices. We used the Conn functional connectivity tool-
box (Whitfield-Gabrieli and Nieto-Castanon, 2012) to construct
task-specific (Fixation, 0-back, 1-back, 2-back, 3-back) functional con-
nectivity matrices. For this purpose, the BOLD time series were first
divided into block-specific scans as indicated by the onsets and durations
of each task block. The delay in hemodynamic response was accounted
for by convolving the block regressors for each task condition with a
rectified hemodynamic response function. For each task condition, the
scans associated with nonzero effects in the resulting time series were
concatenated and weighted by the value of the corresponding time series.
This procedure not only adds the expected hemodynamic delay to differ-
ent task blocks, but also de-weights the initial and final scans within
each task block when computing functional correlation measures to
avoid spurious jumps in BOLD signal at the points of concatenation and
to minimize the potential cross talk between adjacent task blocks
(Whitfield-Gabrieli and Nieto-Castanon, 2012).

Following this concatenation procedure, undirected and weighted
matrices (264 X 264) of Fisher z-transformed bivariate correlation coef-
ficients (Pearson’s r) were constructed for each experimental condition
(Fixation, 0-Back, 1-Back, 2-Back, and 3-Back) and each subject using
the average signal from the 6 mm spheres placed on the MNI coordinates
for all 264 ROIs described above. The matrices reflected both positive
and negative correlations. The arbitrary thresholding and binarization
processes in graph theoretical analysis often lead to loss of information,
especially in the case of negative correlations (Rubinov and Sporns,
2011), which is why we focused on the fully connected weighted-
correlation matrices.

Modularity analysis and behavioral correlation. Following the ROI se-
lection and matrix construction steps, the correlation matrices with 264
ROIs as nodes and the weighted correlation coefficients as edges were
first converted from Matlab to Pajek (Program for Large Network Anal-
ysis) format (Nooy et al., 2011). For the whole-brain, group-level mod-
ularity analysis, the resulting matrices were averaged across subjects. The
aim was to quantify the partitioning of a functional network into com-
munities of dense intramodule and sparse intermodule connections
(Rubinov and Sporns, 2010). For each condition, including Fixation
and the four levels of difficulty, the average correlation matrices were
significance-clustered into modules using an Infomax community detec-
tion algorithm over 1000 bootstrap resampling and 10 partitioning iter-
ations at the 0.05 level of significance (Rosvall and Bergstrom, 2010).

To make a statistical inference on the change in modularity with in-
creasing task difficulty, the 0-Back control (low demand) and 3-Back task
conditions (high demand) were chosen for comparison. The Louvain
modularity Q score based on the Brain Connectivity Toolbox (Rubinov
and Sporns, 2010) was calculated on weighted correlation matrices
(Blondel et al., 2008; Rubinov and Sporns, 2011) for each subject at
0-Back and 3-Back conditions, over 10 iterations. The highest Q with the
greatest partitioning score was selected as the representative modularity
score (Stanley et al., 2014). Using the GraphVar toolbox (Kruschwitz et
al., 2015), a group-varying paired ¢ test was performed over 10 iterations
to test the change in modularity at the 0.05 level of significance.

Linear regression analysis between 0-back Q scores and the change in
Q scores between 0-back and 3-back highlighted the individual differ-
ences (corrected for age) in the relationship between baseline modularity
and the potential change with increasing task difficulty. Given previous
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studies on the effect of age on structural connectivity (Stamatakis et al.,
2011), functional connectivity, modularity (Meunier et al., 2009a), and
cognitive task performance (Li and Sikstrom, 2002; Meunier et al., 2014),
age was introduced as a potential confound for the linear regressions to
account for the wide age range in our sample.

For a behavioral analysis, the reaction times to correct responses were
firstaveraged across all trials and all blocks for each subject, separately for
each level of task difficulty (0-back, 1-back, 2-back, and 3-back). The data
were assessed for normality using the Shapiro—Wilk test and Q—Q plots.
One outlier was removed as identified by the outlier-labeling rule (Hoa-
glin et al., 1986). Using a linear regression analysis, we correlated the
change in modularity with the change in reaction time to correct re-
sponses between 0-Back and 3-Back conditions to assess the behavioral
significance of modularity (corrected for age). Although the reaction
times to correct responses were chosen to represent task performance, in
line with current literature (Kitzbichler et al., 2011), we have also calcu-
lated the d" metric based on the signal detection theory for performance
accuracy (Green and Swets, 1974) and performed paired ¢ tests to assess
the expected decrease in d' and increase in reaction time to correct re-
sponses between 0-back and 3-back, and to confirm greater task diffi-
culty with increasing n-back levels.

Nodal flexibility, participation coefficient, and strength. Having investi-
gated the changes in modularity and the possible behavioral correlations
across 22 subjects, our next objective was to clearly visualize the changes
in community memberships responsible for the reconfiguration of the
global brain modular architecture. The calculated communities were
represented here using an alluvial diagram (Rosvall et al., 2009), which
clearly outlines the interaction between LSNs at different difficulty levels,
thus highlighting the flexible nodes that change community member-
ships. The 264 ROIs partitioning into 10 well established networks was
color coded to aid the visualization of changes in community member-
ship across the five distinct experimental conditions.

In addition, a novel graph theoretical metric called global variable
connectivity (GVC) was used to assess each node’s flexibility score across
the five experimental conditions (Cole et al., 2013). GVC, calculated as
the SD of a given node’s connectivity strength, indicates the node’s ten-
dency to shift functional connections with other nodes across multiple
contexts. To further characterize the alterations in the DMN regions’
contribution to the reconfiguration of global functional connectivity,
we calculated the participation coefficient and nodal strength for positive
and negative weights and compared them with paired ¢ tests between
0-Back (low demand) and 3-Back (high demand) conditions, controlling
for multiple comparisons using Bonferroni’s correction. While the par-
ticipation coefficient assesses the diversity of intermodular links estab-
lished by a given node, the nodal strength metric calculates the sum of
weights and number of positive/negative connections.

Results

Global brain modularity decreases with increasing

cognitive load

The connectivity matrices of bivariate correlation coefficients
(Pearson) clearly illustrated the 10 well established LSNs with
strong intranetwork connectivity profiles (Fig. 1). However, cor-
relation matrices alone do not quantify the dynamic changes in
internetwork interactions with increasing task difficulty. When
assessing such architectural reconfiguration of brain dynamics,
modularity has been a metric of choice to characterize network
connections that transiently change their configurations in re-
sponse to task demands (Bassett et al., 2006). Using this metric,
we found that the modularity of global brain connectivity de-
creases with increasing cognitive load, in line with results from an
MEG study (Kitzbichler et al., 2011). At Fixation, 0-Back, and
1-Back conditions, the whole-brain connectivity profile revealed
four stand-alone communities. This number decreased down to
three major communities at the 2-Back condition and to two
communities at the 3-Back condition (Fig. 1). Paired ¢ tests be-
tween the 0-Back (low demand) and 3-Back (high demand) con-
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Global brain modularity decreases with increasing task demands. The correlation matrices denote bivariate (Pearson) correlation coefficients (red-blue scale, max = 1.0, min = —0.5)

for the five distinct experimental conditions of Fixation, 0-Back, 1-Back, 2-Back, and 3-Back, averaged across all subjects. The boxes with strong intranetwork correlations correspond to 10 well
established LSNs from the existing literature (Cole etal., 2013). For modularity analysis, the Fisher-transformed Z values were significance clustered (p << 0.05) over 1000 bootstrap resampling and
10 partitioning iterations. The resulting modules are displayed using the circular visualization on the right-hand corner of the correlation matrices. The circle size and the line thickness of the links

between the modules are representative of the average weights of the nodal connections.
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Individual differences in the change in modularity and their corresponding behavioral correlation. 4, Participants with higher modularity Q score at 0-Back control condition

demonstrated a smaller change in their modularity between 3-Back and 0-Back conditions (r = —0.631, R? = 0.425, p = 0.003). B, The change (3-Back minus 0-Back) in subject-level Q scores
positively correlated with the change n the reaction time to correct responses between the two selected high-demand and low-demand n-back conditions (r = 0.469,R? = 0.223,p = 0.037).Both
linear regressions were corrected for age. Using the outlier identification technique, data from one volunteer were removed, as it was higher than the upper limit of the reaction time distribution.

However, the same analyses with the outlier did not change the significance of the results (A:r = —0.617, R* = 0.405, p = 0.003; B:r = 0.558, R? = 0.313, p = 0.009).

ditions, over 10 randomized groups, suggested a significant
decrease in modularity with increasing task load (p = 0.013).
This outcome alludes to greater long-range interaction be-
tween LSNs and changes in brain topography toward a global
workspace configuration (Baars, 2002) at the 3-Back condi-
tion. In other words, the brain adopts a more efficient, yet
more costly organization in response to increasing cognitive
demands (Kitzbichler et al., 2011).

Change in modularity correlates with reaction time to

correct responses

Given the observed decrease in group-level modularity, our next
objective was to investigate the individual differences in modu-

larity changes and their potential correlation with behavioral
scores obtained during task execution. For this purpose we first
correlated the Louvain modularity Q score at 0-Back condition
with the change in Q score between 3-Back and 0-Back condi-
tions, correcting for age. The results indicated a negative relation-
ship, suggesting that the participants with higher modularity at
the 0-Back control condition showed a smaller change in their
modularity when presented with the high-demand 3-Back
condition, and vice versa (r = —0.631, R* = 0.425, p = 0.003;
Fig. 2A).

Next we attempted to establish a relationship between modu-
larity and behavior. At first, paired ¢ tests revealed a decrease in d’
(p = 9.40E-8) and an increase in reaction times to correct
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responses (p = 5.10E-5) when comparing 0-Back (mean: d’ =
3.45; reaction time, 619.26 ms) with 3-Back conditions (mean:
d’ = 2.19; reaction time, 958.12 ms), confirming greater task
difficulty at higher levels of n-back. Subsequently, the change in
modularity Q scores were correlated with the change in the reac-
tion time to correct responses between 3-Back and 0-Back con-
ditions for each subject, corrected for age. The results suggested
that the subjects who displayed a higher change in modularity
also showed a higher change in their reaction time (r = 0.469,
R? = 0.223, p = 0.037; Fig. 2B), indicating a behavioral signifi-
cance of the observed alterations in brain architecture. In other
words, slower response in the high-demand 3-Back versus low-
demand 0-Back condition was associated with greater brain
modularity. Such results imply that worse performance may be
linked to limited long-range integration among distant brain re-
gions, thus a smaller global workspace configuration. Similar cor-
relations with behavior and modularity were previously reported
using the d’ metric between 1-Back and 2-Back conditions (Stan-
ley et al., 2014).

Global brain dynamics reveal flexible default mode regions
Subsequent to the observed decrease in modularity with increas-
ing cognitive load and the corresponding correlation with perfor-
mance in the scanner, our aim was to scrutinize the exact changes
in the global brain connectivity profile and the interaction of the
DMN with other LSNs. Our hypothesis was that the DMN, in a
global integrator role contributing to the global workspace,
would show distributed interactions with a number of LSNGs, re-
flected by the changes in community memberships with increas-
ing task demands. The alluvial representation (Rosvall et al.,
2009) provides a unique and informative tool for that purpose.
The resulting diagram of whole-brain interactions indicated dy-
namic realignments in a number of default mode regions, reveal-
ing flexible nodes that switch memberships from one community
to another, depending on cognitive demands.

Using the average, group-level modularity analysis for com-
munity detection discussed above, in the Fixation condition,
Community 1 mainly comprised the salience, frontoparietal, and
dorsal attention networks; Community 2, the visual network;
Community 3, the subcortical, somatomotor, auditory, and
cingulo-opercular networks; and Community 4, the ventral at-
tention and default mode networks, respectively (Fig. 3). All 58
default mode regions were part of Community 4 except for a
middle temporal gyrus node, which was more functionally simi-
lar to Community 1. In addition to the DMN regions, Commu-
nity 4 also included all the “memory retrieval” nodes, 46% (13 of
28) of the uncertain nodes, and one salience node, namely the
dorsal anterior cingulate cortex. Around 62% (8 of 13) of the sub-
cortical nodes, which included the bilateral thalamic, but no striatal
regions, also showed functional similarity with Community 4.

However, this partitioning displayed transience with increas-
ing task difficulty. In the 0-Back condition, the four modules
remained stable relative to the Fixation condition with a number
of salience network ROIs showing greater functional similarity
with the DMN. The 1-Back condition displayed the greatest vol-
atility in community membership, in which a portion of DMN
regions from Community 4 switched to Community 1 and 2,
encompassing the salience, frontoparietal, dorsal attention, and
visual networks. In the 2-Back condition, the cingulo-opercular
network ROIs were divided between two communities domi-
nated by the frontoparietal and default mode networks, while
some subcortical regions formed a separate community. At the
3-Back condition with the highest cognitive load, 17% (10 of 58)
of initial DMN regions changed their membership to Commu-
nity 1, whereas the remaining 48 DMN regions have retained
their community membership and formed an extensive Com-
munity 2 that included a number of somatosensory, cingulo-
opercular, auditory, visual, and subcortical regions.

This qualitative investigation was also supported by the GVC
score, which assesses the flexibility of network nodes across task



Vatansever et al. ® Default Mode Dynamics for Global Integration

GVC (Flexibility Score)
0.268

0.266
0.264
) 0.262
O 026
S J
S 0258
0.256 -
0.254
0.252

0.25 -
NS SR S S S W
& © &K & X o@ @o\ ?&\"0 4\@\\\» 00(\\0
o)
Figure 4. Mean global variable connectivity (GVC) score for the 10 LSNs across the five
experimental conditions. GVC measures a given node’s tendency to switch community mem-
berships across different contexts (Cole et al., 2013). The color-coded bars illustrate the 10 well
established LSNs’ mean GVC, and the error bars show SE. The results indicate high flexibility in
the DMN nodes (above the median score of 0.257), as well as in the frontoparietal, dorsal
attention, and visual network nodes. FPN, Frontoparietal network; CON, cingulo-opercular net-
work; SAN, salience network; DAN, dorsal attention network; VAN, ventral attention network.

conditions and was previously used in a study with 64 task states
designating the frontoparietal and default mode as highly volatile
networks (Cole et al., 2013). Across the five experimental condi-
tions, the DMN regions showed high flexibility (above the
median score of 0.257), a characteristic shared with the fronto-
parietal, dorsal attention, and visual network nodes (Fig. 4),
which are commonly implicated in working-memory tasks with
visual stimuli (Owen et al., 2005).

Diversity of default mode connections decrease with
increasing positive strength

Having established that the modularity of the brain decreases
with greater task load and that the DMN regions exhibit flexi-
bility/volatility in community memberships, the subsequent aim
of our study was to characterize the changes in DMN functional
connectivity with greater task difficulty and to assess its contri-
bution to global functional integration with further graph theo-
retical measures. For that purpose, we calculated the nodal
participation coefficient and strength measures, which indicate
the diversity of intermodular links and the number of positive/
negative connections of each node, respectively. From 0-Back to
3-Back conditions, the DMN ROIs showed a significant decrease
in their participation coefficient for both positive (p = 0.0006)
and negative (p = 3.53E-10) weights (Fig. 5A). However, the
nodal strength increased for positive (p = 0.045) and decreased
for negative (p = 1.95E-10) weights, displaying a differential
change in bidirectional functional connectivity to the rest of the
brain (Fig. 5B).

Nodes with a high participation coefficient are believed
to facilitate global integration between modules of a system
(Guimera and Amaral, 2005). In this case the significant decrease
in the participation coefficient reflects the decrease of global
brain modularity for both positive and negative weights. On the
other hand, the increase in positive nodal strength alludes to a
greater number of positive connections made with DMN regions,
with a decrease in negative connections. Although the cognitive
significance of anticorrelations is still speculative, recent evidence
suggests biological relevance (Fox et al., 2009) and potential be-
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havioral significance (Kelly et al., 2008; Sala-Llonch et al., 2012);
however, further empirical evidence is needed.

Discussion

Previous studies that aimed to describe the DMNs’ contribution
to cognitive processing have reported greater DMN involvement
in a range of tasks assessing autobiographical memory retrieval,
theory of mind, social cognition, episodic recall, and imagined
scenes (Buckner et al., 2008; Andrews-Hanna et al., 2014). Im-
portant to consider in parallel are DMN activity/connectivity al-
terations observed in many neuropsychiatric conditions (Garrity
et al., 2007; Whitfield-Gabrieli et al., 2009), traumatic brain in-
jury (Sharp etal., 2011), normal aging (Damoiseaux et al., 2008),
and under anesthesia (Stamatakis et al., 2010). Such evidence
points toward a fundamental DMN function and necessitates a
theoretical framework that can provide a comprehensive expla-
nation for DMN involvement in many different forms of cogni-
tion and related disorders.

The aim of this study was to assess global brain connectivity
changes with increasing cognitive demands in a working memory
task and to determine a potential DMN involvement as a global
integrator of information. Specifically, we used graph theoreti-
cal measures of modularity, global variable connectivity, and
nodal participation coefficient and strength to assess the chang-
ing community architecture of the brain across increasing task
difficulty in an n-back paradigm. The results showed that brain
modularity decreased at higher levels of task load and this change
was related to reaction time, indicating that the functional com-
munity formation is transient and that it changes in response to
cognitive demands. Default mode ROIs displayed high flexibility
and volatility in changing community memberships, with de-
creasing participation coefficient and increasing positive connec-
tivity strength, thereby actively contributing to greater functional
integration.

Such results highlight a fine balance between network segre-
gation and integration in meeting task demands. Our findings are
not only in line with reports demonstrating functional parcella-
tion of the brain into densely intraconnected LSNs (Power et al.,
2011), but also with studies that reveal dynamic internetwork
interactions (de Pasquale et al., 2012; Spreng et al., 2013). In fact,
a variety of neuroimaging techniques have proposed the eco-
nomical organization of the brain into a small-world architecture
that minimizes the cost of wiring and metabolism by formingand
maintaining communities with a high number of local connec-
tions and few distant connections (Achard et al., 2006; Bullmore
and Sporns, 2009, 2012). In this context, the DMN regions have
been shown to represent rich clubs, i.e., areas of high global con-
nectivity (van den Heuvel and Sporns, 2011; de Pasquale et al.,
2013) that may serve as hubs for the integration of information.
Similarly, the observed decrease in modularity with higher task
load may be driven by changing DMN connectivity to the rest of
the brain, demonstrated by the alluvial diagram as well as the
significant changes in the diversity of intermodular links and the
strength of connections made by DMN regions.

The highly stable modular architecture of the brain (Achard et
al., 2006) has been previously reported to show transient network
reconfiguration in response to changing environmental demands
during simple tasks (Bassett et al., 2006). Moreover, modularity
of the brain at rest was shown to predict subsequent performance
in an n-back task (Stevens et al., 2012) and nodal flexibility was
predictive of complex motor learning (Bassett et al., 2011), thus
linking functional brain organization, learning, and memory.
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Nodal participation coefficient and strength measures for the positive and negative connections of DMN ROls at 0-Back and 3-Back conditions. A, B, While the nodal participation

coefficient (P) denotes the diversity of intermodular links (4), the nodal strength ($) represents the sum of positive and negative links made by each node (B). The bars represent the histogram of
frequency for given P and $ values. The calculations were performed over 10 iterations and the paired t tests at the 0.05 level of significance were controlled for multiple comparisons using

Bonferroni’s correction.

Together with our results, these findings also provide support
for a relationship between changes in modularity and perfor-
mance. Hence, the ability to transiently switch between a crystal-
lized modular architecture to that of a highly integrated global
workspace (Baars, 2002) with long-range connections may be
related to human cognitive performance and conscious process-
ing, such as in a working-memory task (Kitzbichler et al., 2011).
The DMN with its observed flexible nodes across increasing cog-
nitive loads may be facilitating such dynamic changes in global
brain topography. As a caveat we need to mention that our study
used a block design with low temporal resolution. To provide
more conclusive evidence for the mechanism by which DMN
nodes interact with other LSNs, future research will need to em-
ploy paradigms that occupy finer time scales. We also considered
the possibility that the age range of the volunteers in this study
may have weakened the overall impact of our findings. To this
end, we included age as a confounding variable in our analyses
where appropriate, and found that age had no effect on the asso-
ciations we established between changes in modularity and reac-
tion time to correct responses.

From a cognitive perspective, working memory constitutes a
multicomponent system that retains and manipulates informa-
tion for use in executive functions ranging from decision making
to planning (Repovs and Baddeley, 2006). Thus, it represents an
integral part of our everyday lives, allowing us to solve complex
problems. Over the years, this hypothesis has been tested with
various paradigms to assess the brain’s response to “on-line” re-
tention, updating, and manipulation of information with varying
degrees of difficulty. Frontoparietal areas have been widely
shown to activate in response to n-back tasks (Owen et al., 2005);
however, growing evidence also highlights the DMNs’ contribu-
tion to working memory.

Spreng and colleagues, for example, showed enhanced task
performance when the task required access to long-term autobi-
ographical memory stores supported by the DMN (Spreng et al.,
2014). Using a novel famous-faces version of the n-back task, they

reported greater DMN activity while participants matched fa-
mous as opposed to anonymous faces and concluded that the
DMN’s contribution may be restricted to accessing internal men-
tal representations to facilitate congruent task goals. Expanding
this hypothesis, in a perceptual version of the n-back, Konishiand
colleagues showed greater activity in DMN, as well as in salience
and frontoparietal networks, during 1-Back in comparison with
0-Back conditions (Konishi et al., 2015). These results reinforced
the assertion that regardless of autobiographical memory con-
tent, access to memory stores, as opposed to the processing of
current perceptual input, was sufficient enough to drive DMN
involvement (Smallwood, 2013). In light of these findings, the
observed increase in volatility of the DMN regions and their in-
teractions with other LSNs (e.g., salience and frontoparietal) dur-
ing 1-Back as opposed to the 0-Back condition in our study (Fig.
3) might represent the DMN's transient retrieval of memory and
integration of information for an expanded global workspace.
Overall, this evidence suggests that, especially during paradigms
that involve memory-based processing, the DMN may actively
contribute to human cognition, a role that has not yet been fully
defined.

In the context of segregation and integration in the brain,
Baars developed the global workspace model related to conscious
processing, in which the integration of information provides the
necessary associations for reasoning, decision making, and plan-
ning (Baars, 2002). The interactions between the default mode,
dorsal attention, and frontoparietal networks are hypothesized to
engage with such dynamic and integrative processing in which
the DMN is thought to provide internal information for global
amplification facilitated by the frontoparietal network (Dehaene
and Changeux, 2011; Smallwood et al., 2012). Along similar lines,
the posterior cingulate has been discussed as an area that facili-
tates integration across multiple networks (Leech et al., 2012;
Braga et al., 2013). Thus, with its extensive structural and func-
tional connections, the DMN may constitute an important global
workspace hub, providing associative information (Bar, 2007)
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for scrutiny and manipulation by the co-operating frontoparietal
network. Such a framework would not only offer an explanation
for the involvement of the DMN in a range of self-referential and
memory-based tasks (Andrews-Hanna et al., 2014), but would
also allude to its central importance in wider brain processing
(Vatansever et al., 2015) that extends to social cognition and
creativity (Wiggins and Bhattacharya, 2014).

A comparable concept was introduced by Baddeley (Baddeley,
2000), who argued for the existence of an episodic buffer, which
integrates information from the visuospatial sketchpad, the pho-
nological loop, and long-term memory stores for use by the cen-
tral executive. Although there is no consensus on the neural
correlates of the episodic buffer, the DMN's high structural and
functional connectivity, its involvement in a wide variety of cog-
nitive paradigms, and the potential contribution to the global
integration of information, make the DMN a likely candidate for
this role. Nevertheless, further research that directly investigates
these hypotheses will be required to establish whether the DMN
constitutes the neural underpinning of the theoretical global in-
tegrator and/or episodic buffer.

In conclusion, the results of our study demonstrate increasing
interactions between various LSNs, including the DMN, with
increasing cognitive effort during a working-memory task. In
contrast to the historically held view on the irrelevance of DMN
to goal-directed, attention-demanding paradigms, we propose
that the DMN actively contributes to task performance, possibly
through global integration of information, which might also ex-
plain its recently reported involvement in a diverse range of tasks.
However, the precise cognitive mechanism that facilitates these
processes remains a central question for future research.
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