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MEG Multivariate Analysis Reveals Early Abstract Action
Representations in the Lateral Occipitotemporal Cortex
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Neuroscience, University of Salzburg, 5020 Salzburg, Austria, and “Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20
0EX, United Kingdom

Understanding other people’s actions is a fundamental prerequisite for social interactions. Whether action understanding relies on
simulating the actions of others in the observers’ motor system or on the access to conceptual knowledge stored in nonmotor areas is
strongly debated. It has been argued previously that areas that play a crucial role in action understanding should (1) distinguish between
different actions, (2) generalize across the ways in which actions are performed (Dinstein et al., 2008; Oosterhof et al., 2013; Caramazza et
al., 2014), and (3) have access to action information around the time of action recognition (Hauk et al., 2008). Whereas previous studies
focused on the first two criteria, little is known about the dynamics underlying action understanding. We examined which human brain
regions are able to distinguish between pointing and grasping, regardless of reach direction (left or right) and effector (left or right hand),
using multivariate pattern analysis of magnetoencephalography data. We show that the lateral occipitotemporal cortex (LOTC) has the
earliest access to abstract action representations, which coincides with the time point from which there was enough information to allow
discriminating between the two actions. By contrast, precentral regions, though recruited early, have access to such abstract represen-
tations substantially later. Our results demonstrate that in contrast to the LOTC, the early recruitment of precentral regions does not
contain the detailed information that is required to recognize an action. We discuss previous theoretical claims of motor theories and how
they are incompatible with our data.
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It is debated whether our ability to understand other people’s actions relies on the simulation of actions in the observers’ motor
system, or is based on access to conceptual knowledge stored in nonmotor areas. Here, using magnetoencephalography in com-
bination with machine learning, we examined where in the brain and at which point in time it is possible to distinguish between
pointing and grasping actions regardless of the way in which they are performed (effector, reach direction). We show that, in
contrast to the predictions of motor theories of action understanding, the lateral occipitotemporal cortex has access to abstract
action representations substantially earlier than precentral regions. j

ignificance Statement

Introduction

How do we assign meaning to actions performed by other people?
One of the most dominant views in the literature is the idea that
action concepts are grounded in the motor system (Rizzolatti et al.,
2001; Kiefer and Pulvermiiller, 2012). By contrast, according to clas-
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sical cognitive theories (Mahon and Caramazza, 2008; Caramazza et
al., 2014), the ability to understand the meaning of other people’s
actions draws on conceptual representations stored outside the mo-
tor system, such as posterior temporal regions (Hickok, 2009).

A region involved in action understanding should be able (1)
to discriminate between different actions (action specificity) and
(2) to generalize across different possible instances of a particular
action (Dinstein et al., 2008; Oosterhof et al., 2013; Caramazza et
al., 2014). For example, grasping has the same meaning for an
observer regardless of whether the movement is performed with
the left or right hand, or toward the left or right side of visual
space. In other words, a region important for action understand-
ing should represent the action while generalizing across concrete
instantiations such as the underlying effector or reach direction.
Previous fMRI and transcranial magnetic stimulation studies in
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Figure 1.  Example of a trial sequence and experimental design. A, During MEG recording, N = 17 participants watched video

clips of simple reach-to-point or reach-to-grasp movements (duration: 833 ms). Participants were instructed to fixate on a central
fixation cross while attentively observing the entire video without performing any movements. To ensure that participants paid
attention to the videos, different types of questions were asked during occasional catch trials, which were later discarded from the
analysis (see Material and Methods). The green fixation cross indicated the period during which participants were told to blink. Eye
movements were recorded using an MEG-compatible eye tracker. B, We used a 2 X 2 X 2 design, manipulating the type of

movement (pointing/grasping), reach direction (left/right), and effector (left/right hand) .

humans reported abstract action representations in parietal,
frontal, and occipital regions (Hamilton and Grafton, 2006, 2008;
Cattaneo et al., 2010; Oosterhof et al., 2010, 2013), making it
difficult to draw firm conclusions regarding the ongoing debate
between motor and cognitive theories. One important factor not
well understood so far is the underlying temporal profile of action
representations. Such information is crucial since the two theo-
ries lead to opposite predictions: according to motor theories,
motor areas should have the earliest access to abstract action
representations (Pulvermiiller, 2005); by contrast, according
to cognitive theories, areas outside the motor system should
have the earliest access to such abstract action representations.

Here we use multivariate pattern analysis (MVPA) of magne-
toencephalography (MEG) data to examine where in the brain
and at which point in time it is possible to distinguish between
observed pointing and grasping regardless of reach direction (left
or right) or effector (left or right hand). In contrast to motor
theories of action understanding, we show that abstract action
representations are encoded in the lateral occipitotemporal cor-
tex (LOTC) earlier than in precentral regions.

Materials and Methods

We performed two separate experiments with two different groups of
participants: one behavioral experiment to identify the time point at
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which the videos contained enough informa-
tion to allow participants to discriminate be-
tween pointing and grasping, and an MEG
experiment. The same stimuli were used for the
two experiments.

Participants

Fourteen students (seven females; mean age:
23.13 years; SD: 2.253 years; all right handed)
from the University of Trento took part in the
behavioral experiment and received a reim-
bursement of €6 at the end of the session. A
different group of 17 students (11 females;
mean age: 23.3 years; SD: 2.1 years; all right
handed) from the University of Trento with
normal or corrected-to-normal visual acuity
and with no neurological disorders took part in
the MEG experiment. All participants received
a reimbursement of €25 at the end of the MEG
session. All of them gave informed consent in
accordance with the Declaration of Helsinki.
The experimental procedures were approved
by the Ethics Committee for research involving
human participants at the University of
Trento.

Stimuli

Stimuli consisted of short video clips (833 ms)
depicting simple center-out hand movements
(Fig. 1A). Each clip started with the hand of the
actor touching the central object (a polystyrene
semisphere) with the index finger resting in the
same position. After a variable amount of
time (median: 183 ms; range: 67-367 ms), a
center-out movement toward one of the other
semispheres started. Movement onset was de-
fined as the time point in which the rest posi-
tion was released and the initiation of hand
preshaping, i.e., the movement of the fingers
and palm into position for grasping. The video
ended as soon as the hand reached one of the
peripheral semispheres (for an example trial
sequence, see Fig. 1A). The actions were re-
corded from four different actors (one male)
using a digital video camera. Only the hands (and part of the forearm) of
the actors were visible in the field of view. We instructed the actors to
keep the velocity and kinematics of the movements as similar as possible
across the two different movements. We discarded, based on our percep-
tual judgment, videos in which the velocity or kinematics were too dis-
similar from the others and videos in which the preshaping of the hands
before movement onset could give information regarding the upcoming
action, keeping a total of 80 videos (five exemplars for each combination
of actor X movement type X direction). We obtained movements per-
formed with the left hand creating specular copies of the right-hand
movement videos via software (Matlab, Mathworks), for a total of 160
videos. On each video, we superimposed a small white cross (0.88 X
0.88°) above the central semisphere to enable fixation and thus avoid
possible noise in the MEG signal due to eye movements.

right

Behavioral experiment

Procedure. To identify the minimum video duration required to be able
to distinguish between observed pointing and grasping, we presented
participants with videos depicting pointing or grasping movements di-
rected toward the left or right side, performed with the left or right hand.
The duration of the videos was parametrically varied (167, 200, 233, or
333 ms). Participants had to classify the type of observed movement by
pressing one of two possible buttons while ignoring the other two dimen-
sions (reach direction, effector). A trial started with a fixation period
(white cross) of 2 s. Then the video appeared for a variable duration. As
soon as the video ended, the fixation cross appeared again, and partici-
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pants had to indicate by button press which movement they had ob-
served. Participants were instructed to respond as accurately as possible.
Video duration, type of movement, effector, and reach direction were
randomized. Each participant completed four experimental runs of ~5.5
min, for a total of 512 trials (64 repetitions per condition). Stimuli were
presented on a CRT monitor (ViewSonic Graphic Series G90B; screen
resolution: 1280 X 1024; refresh rate: 60 Hz) placed ~64 c¢m in front of
the participant.

Statistical analysis. The aim of the behavioral experiment was to indi-
viduate the point in time in which the two actions started to perceptually
diverge. To compute the accuracy for discriminating between the two
observed actions as a function of video duration, we divided the number
of correct classifications by the total number of trials, separately for each
video duration and each participant, collapsing across effector (left, right
hand) and reach direction (left, right). We then used a y? test to assess at
which video duration the accuracy was higher than chance level (50%).

MEG experiment

Procedure. We presented participants (N = 17) with short videos (833
ms) of reach-to-point and reach-to-grasp movements performed with
either the left or right hand toward peripheral targets on the left or right
side (Fig. 1A) while measuring their brain oscillatory activity. We used a
2 X 2 X 2 factorial design (Fig. 1B), varying the type of movement
(pointing/grasping), the effector (left/right hand), and reach direction
(left/right). Each trial consisted of the following events (Fig. 1A): a green
fixation cross (blink phase: 800 ms), a white fixation cross (fixation
phase: randomly jittered within 20002500 ms), the video (video phase:
833 ms), and a white fixation cross (resting phase: 1000 ms). Trial dura-
tion varied from 4633 to 5133 ms, depending on the duration of the
fixation phase. The blink phase at the beginning of each trial provided
time for participants to blink during a controlled time window and thus
reduced the probability of blinking during the fixation phase or during
video presentation. Participants were instructed to blink every time they
saw the green cross. During the fixation phase, participants had to main-
tain fixation on the white cross. We jittered the fixation phase to reduce
the chances that participants would trigger a neural response by predict-
ing the appearance of the video. When the video appeared, participants
were asked to keep fixating on the cross and to globally pay attention to
the ongoing movement. In contrast to the task used in the behavioral
experiment, we asked them in particular to attend to all three dimensions
we manipulated, i.e., movement type, effector, and reach direction. Dur-
ing the resting phase, participants had to keep fixating and to wait for the
green cross that indicated the beginning of a new trial.

To ensure that participants were paying attention to the video, we
introduced catch trials (10% of all trials), during which we presented a
question regarding one of the three dimensions (e.g., “Was the direction
to the left?”). Catch trials were presented occasionally with the following
constraints: (1) if trial N was a catch trial, trial N + 1 could not be a catch
trial; (2) the first trial of a run could not be a catch trial. A catch trial was
identical to an experimental trial except for the question that appeared at
the end of the catch trial (1 s after video offset). Since participants did not
know when a catch trial would appear and what the question would be,
they had to pay attention to each video and to each of the three dimen-
sions to perform the task correctly. The answer was always binary (yes or
no) and participants had MEG-compatible buttons for answering to the
questions. The assignment of the response to the two buttons changed
randomly for each question to avoid any potential confounds related to
motor preparation. Eye movements were monitored using the OEM
system (OEM eye tracker, SensoMotoric Instruments; 60 Hz sampling
rate). After each response, feedback was provided (a cartoon smiling or
sad face).

Each participant performed 10 runs, consisting of 64 trials, plus 6 catch
trials, for a total of 640 experimental trials and 60 catch trials. The num-
ber of repetitions for each factorial combination (movement type X
effector X reach direction) per participant was 80. Before entering the
shielded room, participants familiarized themselves with the stimuli and
the task. Each run lasted from 4.9 to 5.5 min, depending on the duration
of the fixation phase, for a total duration of the session of ~52 min. At the
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end of each run, participants were allowed to rest for a few minutes before
a new acquisition started.

Stimuli were projected on a screen (screen resolution: 1280 X 1024
pixels; refresh rate: 60 Hz) that was placed ~130 cm in front of the
participant. The screen was visible as a rectangular aperture of ~21.7 X
13.16°. We controlled visual stimulation during the behavioral and the
MEG sessions using ASF (Schwarzbach, 2011), a toolbox for Matlab
(Mathworks) based on the Psychtoolbox (Brainard, 1997).

MEG data acquisition and analysis. At the beginning of the MEG ses-
sion, the head shape of each participant was digitally acquired using the
Polhemus system (Polhemus). Moreover, we placed three coils at the
participant’s forehead and two behind the ears to acquire the head posi-
tion of each participant within the MEG helmet at the beginning of each
run. Before entering the shielded room containing the MEG system,
participants were asked to remove all magnetic materials that could dis-
tort the measurement.

We measured neuromagnetic brain activity using a 306-channel
whole-head MEG system (Neuromag, Elekta) at a sampling rate of 1000
Hz. The system consists of 204 planar gradiometers and 102 magnetom-
eters arranged in a helmet configuration. Here, we are reporting results of
the gradiometers only. Triggers were sent at video onset to synchronize
stimulus presentation with neural activity. To check for the correct tim-
ing of the stimuli, and to take into account possible delays of the stimulus
presentation with respect to the triggers, we used a photodiode on the
stimulation screen inside the shielded room.

MEG data preprocessing. We analyzed data using the open source
Matlab-based Fieldtrip toolbox (Oostenveld et al., 2011). Continuous
data were cut into epochs from —1 to 1.3 s relative to video onset. Epochs
were high-pass filtered at 1 Hz to remove very slow frequencies and direct
current offset. Frequencies due to the electrical system were also filtered
out using a band-stop filter (Butterworth IIR filter) at 50 Hz and its
harmonics (100 and 150 Hz). Trials with blinks or eye movements during
the presentation of the video or during the baseline period were dis-
carded on the basis of the information from the eye tracker. In addition,
we visually inspected trials for artifacts, blind to the condition, and re-
jected trials that were clearly affected by external noise or spike current.
On average, we rejected 13% of the trials per participant. If a sensor was
very noisy for the entire experimental session, it was rejected. To have the
same number of sensors for each participant, missing sensors were re-
constructed by interpolation of the neighbors.

Time—frequency analysis

To obtain a time—frequency representation of the oscillatory activity as-
sociated with movement observation, we applied Fourier transformation
to sliding time windows with a fixed length of 500 ms. The sliding win-
dow moved in steps of 50 ms; power was calculated for frequencies in a
range from 2 to 40 Hz in steps of 2 Hz. To avoid spectral leakage and to
control for frequency smoothing, a Hanning taper was applied before
Fourier transformation. Subsequently, for the univariate analysis only,
power was averaged across effector and reach direction, and the spectral
power was normalized relative to baseline (—0.5 to —0.3 s with respect to
the onset of the video, i.e., during a subperiod of the fixation phase).

Source analysis

Neural sources were found using dynamic imaging of coherent sources
(DICS), a frequency domain beamforming technique (Gross et al., 2001).
We chose the frequencies and times of interest based on the sensor-level
analysis. Specifically, we considered the sensor with the greatest accuracy
of the classifier (multivariate analysis) to distinguish between pointing
and grasping, generalizing across effector and reach direction, in those
frequency bands that survived the multiple-comparison tests. Note that,
given the way the sensors were selected, source analysis merely served as
a visualization of the sources.

For each participant we used a volume conductor model with the
single-shell method (Nolte, 2003). The models were built warping a di-
pole grid based on a MNI template brain to fit the individual head shape
of each participant. We proceeded with DICS for each separate condition
using a common spatial filter computed from the combination of the two
conditions. In this way, any difference between the two conditions can-
not be ascribed to differences between the filters.
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MEG statistical analysis (sensor level)

We performed both univariate and multivariate analyses in sensor space,
followed by a beamforming analysis (Gross et al., 2001) to identify
sources explaining any observed effects. Univariate analysis was con-
ducted to observe the classical decrease in power in alpha and beta bands
(Cochinetal., 1999; Pineda, 2005; Hari, 2006). Importantly, to identify at
which sensors and at which point in time it is possible to distinguish
between the two movements on the basis of the MEG signal, we used
multivariate analysis on the computed power and the sources adapting
an algorithm developed for the analysis of fMRI data (Oosterhof et al.,
2012a).

Behavioral analysis (MEG experiment)

Participants’ accuracy in answering the questions in the catch trials dur-
ing the MEG experiment was evaluated on-line by observing the feedback
provided after each catch trial. All participants were able to answer the
questions and typically made two or three mistakes within the entire
session (mostly at the beginning of the experiment). We are thus certain
that participants were attending to the videos.

Univariate analysis

Note that in contrast to the multivariate analysis, in which we specifically
targeted regions that show movement selectivity generalizing across ef-
fector and reach direction, the purpose of the univariate analysis was to
identify areas with less specific properties. In particular, as a quality con-
trol, we examined whether we obtain the typical decrease in the alpha and
beta bands during action observation (Cochin et al., 1999; Pineda, 2005;
Hari, 2006). Furthermore, we aimed to determine which frequency
bands and which sensors are modulated differently during pointing and
grasping when collapsing across effector and reach direction.

All the experimental conditions were baseline corrected by subtracting
the fixation period (from —0.5 to —0.3 s) from the poststimulus period
(from 0 to 1.3 s). To assess the difference between pointing and grasping,
we used a nonparametric method (permutation test), with a cluster
method for multiple-comparison correction (Maris and Oostenveld,
2007) with participants as units of observation. In brief, we computed ¢
scores between the two movements for each sensor—frequency—time bin.
The observed cluster-level statistic was obtained by summing the ¢ scores
of neighboring bins (in time, frequency, and sensors) exceeding an a
priori defined critical value (p < 0.05). We repeated the procedure 1000
times by swapping the condition labels and we obtained the distribution
of permuted cluster-level statistics. At each iteration, the maximum
cluster-level statistic was considered to control for type I error. The p
value was the proportion of permuted cluster-level statistics that ex-
ceeded the observed cluster-level statistic. If the p value was <0.05, the
cluster was taken as significant.

Multivariate analysis

The assumption behind multivariate analysis in MEG is that the process-
ing of each stimulus category is associated with a specific neural activity
that induces an oscillatory signal (or neural pattern) consisting of a
unique combination of sensor, time, and/or frequency. Multivariate
analyses exploit differences in terms of these patterns of activations. By
contrast, univariate analyses do not consider such patterns, but address
whether two conditions differ in terms of the average response of a single
variable (e.g., averaged frequency over time). This is why multivariate
analyses are more sensitive than univariate analyses (Haxby et al., 2001;
Kriegeskorte et al., 2006). Importantly, multivariate analysis enables an
analysis of whether the representational content of an area—examined
via the underlying neural pattern— generalizes across low-level features.
In our case, we aimed to identify regions in which the unique neural
patterns associated with pointing and grasping generalized across effec-
tor (left or right hand) and reach direction (left or right; for a schematic
overview, see Fig. 2). We trained a classifier to discriminate between the
two types of movements using the spatiospectral-temporal MEG signal
(for details, see next paragraph) related to movements performed with
one of the two effectors and toward one of the two directions. We then
tested on the opposite combination of effector and direction. For exam-
ple, we trained a classifier to distinguish between observed grasping and
pointing actions performed with the left hand toward the left, and tested
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the classifier to distinguish between observed grasping and pointing per-
formed with the right hand toward the right. In this way, above-chance
classification could only be due to information related to the type of
movement, and not to low-level perceptual features.

Analyses were performed using CoOSMoMVPA, an MVPA toolbox in
Matlab [N.N. Oosterhof, A.C. Connolly, and J.V. Haxby, in preparation
(“CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuro-
imaging Data in Matlab/GNU Octave”; toolbox available from http://
cosmomvpa.org)]. The toolbox provides an adapted version of the
multivariate searchlight approach (Kriegeskorte et al, 2006), an
information-based algorithm that employs a multivariate approach at
each location in the brain to enable analysis of the neural contents. In this
analysis, we used local “neighborhoods” of features in channel-time—
frequency space. We used a sensor radius of 1, a time radius of 100 ms,
and a frequency radius of 8 Hz. For a given “center” feature a sensor—
time—frequency triple, its neighbors consisted of features for which its
sensor, time, and frequency where all within the corresponding radii.

The main steps used in the multivariate analysis (for a schematic illus-
tration, see Fig. 2) were as follows: (1) compute the time—frequency
representation separately for each sensor and each trial (Fig. 24); (2)
select the “central” feature and its neighbors in time—frequency—sensor
space (Fig. 2A, insets, dashed rectangles; for an enlarged view, see Fig.
2B); (3) create a feature vector for each trial by selecting all features in its
neighborhood (Fig. 2C) and normalize (z transform) the data; (4) create
independent partitions for training and testing the classifier (Table 1);
(5) train the classifier; and (6) test the classifier. We repeated steps 25 for
each sensor and for each time and frequency bin, and the classification
result for each center feature was assigned to its corresponding location
in time—frequency—sensor space. For classification, we used a support
vector machine algorithm, a type of classifier that looks for linear com-
binations of features to create a decision boundary to discriminate be-
tween two classes or stimuli (Mur et al., 2009; Pereira et al., 2009).

To create subsets of trials to feed the classifier with the aim of differ-
entiating between neural responses related to the observation of grasping
and pointing actions regardless of effector and reach direction, we di-
vided for each subject the dataset in two independent halves, each con-
taining only movements with a complementary combination of effector
and reach direction. The first half contained left-hand movements to the
right and right-hand movements to the left, and the second half con-
tained left-hand movements to the left and right-hand movements to the
right. We further divided the data in independent “chunks,” each of
which contained =136 trials (depending on the number of trials remain-
ing after artifact rejection) of a specific condition of interest. Then, for
each half, we adopted a leave-one-chunk-out cross-validation method.
We used three chunks associated to a specific condition for training, and
a corresponding chunk with the complementary effector and direction
for testing (cross-condition classification). This procedure was repeated
for all chunks. Note that within a chunk the only dimension that differed
across trials was the type of movement: grasping versus pointing. Thus,
we assumed that the classifier learned to discriminate between these two
classes of stimuli. For example, if the training dataset contained the con-
ditions grasping to the right with the right hand and pointing to the right
with the right hand, the testing dataset contained the conditions grasping
to the left with the lefthand and pointing to the left with the left hand. For
this type of classification, the classifier had to rely on differences between
the two types of movements. If the model was able to discriminate be-
tween the two movements in the independent subset, this indicates that it
had learned the difference between the two types of movements using the
previous training subset, generalizing across effector and reach direction.
We adopted this approach for each possible factorial combination (for a
complete list, see Table 1).

The testing phase provided accuracy maps for each participant, reflect-
ing the classifiers’ performance in discriminating between the two ob-
served movements regardless of effector and reach directions [in a
similar way as traditional fMRI searchlights (Kriegeskorte et al., 2006),
except that the features consist of sensor—time—frequency triples rather
than voxels]. We thus had information regarding where, when, and in
which frequency band it was possible to distinguish between the abstract
neural representations of the two movements.
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Figure 2.  Feature selection. Schematic representation of the method we adopted for selecting the features used for the multivariate analysis. Here we show one specific step of the
algorithm with the selected central sensor (black dotted circle) with one neighboring sensor only (gray dotted circle) for illustrative purpose. A, Time—frequency representations (colors
indicate power intensity) in the posterior sensors of the MEG helmet in two conditions of interest (conditions A and B). The arrows starting from the circles indicate the corresponding
magnified sensors. B, Enlarged views of the two example sensors for conditions A and B. The dotted rectangles illustrate an example time—frequency bin (2 neighboring bins per side for
the time dimension; 4 neighboring bins per side for the frequency dimension; see Materials and Methods). For feature selection, for each time—frequency bin, we scanned each individual
sensor with its 10 neighboring sensors. B shows a matrix representation of the specific sensor/frequency/time bins. ¢, We then rearranged the dimensions of the matrix from 3D to 1D
to obtain the corresponding feature vectors for conditions A and B. The feature vectors were used as input for the decoding analysis over sensors, frequency, and time. Specifically, the
feature vectors were partitioned in independent chunks and used for training and testing the classifier. In the depicted example, each feature within the matrices was assigned with a
number to show the same feature within the feature vectors for visualization purposes.

To assess the reliability of the performance of the classifier, we used a
nonparametric method (permutation test, similar to the procedure de-

Table 1. Cross-comparisons used for training and testing scribed above for the univariate analysis; Maris and Oostenveld, 2007). In
Training: pointing versus grasping Testing: pointing versus grasping  this case, we used the difference between the obtained classification ac-
curacy and chance-level accuracy (the accuracy expected under the null
1. Left hand, rightwards Right hand, leftwards Hracy an il uracy ( uracy expe e o
) ' hypothesis of no difference between the two conditions, meaning 50%)
2. Right hand, rightwards Left hand, leftwards to compute the test statisti din th mutation steps (see Univariat
3. Left hand, leftwards Right hand, rightwards oc? .pulf e test statistic used in the permutation steps (see Univariate
4. Right hand, leftwards Left hand, rightwards analysis, above).

Any effect observed at sensor level has to be generated by neural
Classifiers were trained and tested in the following cross-comparisons: (1) training: distinguish between . . : .
sources. To visualize the sources underlying the cross-decoding effects

observed grasping and pointing actions performed with the left hand towards the left; testing: distinguish . .
between observed grasping and pointing actions performed with the right hand towards the right; (2) for the frequency bands and time windows observed at the sensor level,

training: distinguish between observed grasping and pointing actions performed with the right hand towards we conducted a multivariate analysis at the source level, using the same
the right; testing: distinguish between observed grasping and pointing actions performed with the left hand searchlight approach as before (Kriegeskorte etal., 2006). Note that mul-

towards the left; (3) training: distinguish between observed grasping and pointing actions performed with L . . . . . .
the right hand towards the left; testing: distinguish between observed grasping and pointing actions per- tivariate analysis was necessary here to identify which regions of the brain

formed with the left hand towards the right; (4) training: distinguish between observed grasping and point- represented actions at an abstract level (i.e., generalizing across effector
ing actions performed with the left hand towards the right; testing: distinguish between observed grasping and reach direction). We reconstructed the source activity for the fre-

and pointing actions performed with the right hand towards the left. In this way, the classifiers could use . . ..
information related to the type of movement only. The four accuracies determined with (1), (2), (3), and (4) quency bands and time windows that were significant at sensor level and

were then averaged. expected to identify in which regions of the brain it is possible to distin-
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Figure 3.  Behavioral results. Behavioral performance (percentage correct) for categorizing

the two observed movements (grasping, pointing) as a function of video duration, collapsed
across effector and reach direction. As expected, participants responded more accurately with
increasing video duration. Statistical analysis confirmed that participants reached above-
chance performance in classifying the two movements from 233 ms onwards (see Material and
Methods, Statistical analysis, Behavioral experiment). Each dot represents data from a single
participant. The continuous line indicates the linear model that best fits the data.

guish between grasping and pointing across effector and reach direction.
We obtained estimates of frequency power at each grid point using a
beamformer algorithm (see previous section) on a single-trial basis. A
searchlight was defined taking the power values at each grid point with its
neighbors in a circle of 2 cm radius. For each participant, we found the
accuracy maps indicating the performance of the classifier in discrimi-
nating between the two observed movements (regardless of effector and
reach direction). For descriptive purposes, we are reporting the clusters
showing the greatest classification accuracy.

Results

Behavioral experiment

We computed a x” test to evaluate at which time point participants’
performance was significantly higher than chance level (50%; Fig. 3).
We found that performance of the participants was not different
from chance level at 167 ms (x> = 11.7307; df = 13; p = 0.5498) and
at 200 ms (x> = 21.4835; df = 13; p = 0.0639). Performance was
significantly higher than chance level from 233 ms onwards (x> =
58.0318; df = 13; p = 1.178e-07). This means that participants were
unable to distinguish the two actions if videos were shorter than 233
ms. Since mean movement onset in the videos (defined as the time
point at which the rest position was released and hand preshaping
was initiated; see Stimuli) was 191 ms (SD: 90 ms; median: 183 ms),
this indicates that the two actions were perceptually indistinguish-
able before movement onset.

MEQG experiment

Univariate analysis

We first analyzed the MEG signal using classical univariate meth-
ods to assess whether the stimuli induced a modulatory activity in
the ongoing oscillations relative to rest. Low frequency bands,
such as alpha and beta bands, are typically characterized by a de-
crease in power, presumably due to neuronal activity synchroniza-
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Figure 4. Theta, alpha, and beta band activity during action observation and univariate
contrast. A, Time—frequency representation of the difference (expressed in t scores) between
grasping and pointing (collapsed across effector and reach direction) for the sensor highlighted
in the head model. The four dotted lines indicate the following events, from left to right: (1)
video onset, (2) median movement onset, (3) approximate time at which the hand touches the
object (~550 ms), and (4) video offset (833 ms). B, Same as 4, but those time—frequency bins
that did not survive the permutation test with Monte Carlo and cluster-based method for
multiple-comparisons correction were set to zero. C, D, Topography representation of the two
frequency bands observed in B. E, Power change during action observation relative to baseline
(fixation cross) over a representative sensor. The power change was calculated as (activation —
baseline)/baseline, such that 1 indicates 100% increase relative to baseline and — 1 indicates
100% decrease relative to baseline. The classical power decrease in alpha and beta bands
following observed movement onset (at t = 0's) is evident.

tion in specific brain regions (Pfurtscheller and Lopes da Silva,
1999), indicating neural processing of the stimulus. Univariate anal-
yses comparing the activation period (after video onset) with the
baseline (before video onset) demonstrated that passive observation
of pointing and grasping modulates alpha-band (8-12 Hz) and
beta-band (15-25 Hz) power, as well as the theta band (4-7 Hz)
power, over posterior, parietal, and frontal sensors. Figure 4A shows
one central sensor for illustrative purposes. In the depicted sensor,
the alpha and beta rebounds related to post-observation processes
are evident. Dotted lines approximately indicate the different
stages of the movement (see figure legends for details).

The decrease in power that we observed in the alpha and beta
bands is in line with previous studies (Pineda, 2005; Hari, 2006)
and has been suggested to reflect sensorimotor system activity.
Further, the increase in power in the theta and low alpha (4-8
Hz) band has been observed during memory tasks (Jensen and
Tesche, 2002). In addition, these low frequencies have been re-
ported to be modulated during action observation both in hu-
mans (Frenkel-Toledo et al., 2013; Pavlidou et al., 2014a,b) and
monkeys (Kilner et al., 2014; Caggiano et al., 2015).
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A direct comparison of grasping and pointing movements (col-
lapsing over effector and reach direction; see Materials and Methods,
Univariate analysis) showed a significant differential modulatory ac-
tivity in beta-band (central frequency: 24 Hz) and alpha-band (cen-
tral frequency: 16 Hz) power over sensorimotor sensors at a late
latency only (from ~750 to 1100 ms, and from ~500 to 750 ms,
respectively). Figure 4B illustrates this effect for the same represen-
tative significant sensor as in Figure 4A over central regions. Bluish
colors indicate that the power decrease is greater for grasping than
for pointing; reddish colors indicate the opposite. Figure 4, Cand D,
shows the topography representations of the significant sensors in
two selected subsets of frequency bands and time windows that were
all located over central and right-central sensors. These results show
that (1) the brain processes the two actions as being different, and
that (2) sensorimotor areas might be involved. The fact that grasping
induces a greater decrease than pointing could be due to the higher
complexity of this movement, which in turn is likely to recruit more
neural sources. However, this differential activity occurs quite late
(at ~600 ms), long after the two movements were perceptually dis-
tinguishable. Thus, there must be another, earlier, process, which the
univariate analysis did not reveal, that enables the brain to discrim-
inate between the two movements.

Multivariate analysis

Figure 5A—C shows the results of the multivariate analysis at sensor
level. Two types of representations are provided: (1) a time—fre-
quency representation, to show the dynamics of all the considered
frequencies at each time point in a specific subset of sensors (A); and
(2) a topographical representation, to show the spatial information
at specific time points and frequency bands (B and C). The inset in
Figure 5A shows the two time—frequency clusters that survived the
multiple-comparisons correction. The lateral plots show the aver-
aged t values over the sensors highlighted on the two topoplots in the
middle. We observed that the classifier was able to significantly (p <
0.05; corrected for multiple comparisons using a cluster-based
method; maximum accuracy: 53.46%) discriminate between the
two observed movements, generalizing across effector (left and right
hand) and reach direction (left and right) over posterior sensors as
early as 150 ms and lasting until 550 ms in the low alpha/theta range
(Fig. 5A, left;). By contrast, significant discrimination over more
anterior sensors was possible only within a window of 550—1200 ms
(i.e., at a late stage of the video, when the hand interacts with the
object; Fig. 5A, right). Figure 5, B and C, shows the topographies at
different times and frequencies, selected according to the following
criteria: (1) as time of interest, we selected the central point of the
time windows selected based on the significant clusters that survived
the significance test [i.e., 400 ms (200—600 ms) for the cluster ob-
tained in the earlier time window, and 900 ms (600— 1200 ms) for
the cluster obtained in the later time window]; and (2) frequency
bands were chosen based on previous studies showing a modulation
of the low alpha (8 —10 Hz) and high theta (6 —8 Hz) bands (Frenkel-
Toledo et al., 2013) and the high alpha (8—14 Hz) and beta (15-25
Hz) bands during action observation (Pineda, 2005). For each time
of interest (400 and 900 ms), we selected the peak frequency within
each considered frequency band (i.e., 6, 8, 10, and 18 Hz).

To examine the cortical sources of the effects shown in Figure
5A-C, we performed another multivariate analysis at source level,
using the same cross-comparisons as we did for the sensor anal-
ysis (for details, see Materials and Methods). To find the sources
at 400 ms for the frequencies 6 and 8 Hz, we used temporal
smoothing of 4 Hz and time windows of 150—650 ms and 212—
587 ms, respectively. Figure 5, D and E, shows the decoding ac-
curacies of all the sources projected on surface template MNI
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brains, thresholded to retain only those voxels with 10% of the
highest accuracies (for the corresponding mean and individual
decoding accuracies, see Fig. 6; for a direct comparison with
univariate analysis, see Fig. 7). For the 6 Hz signal, the highest
decoding accuracies were found bilaterally in the LOTC, extending
into the inferior temporal gyrus and the superior temporal gyrus in
the right hemisphere, and in the left superior parietal cortex, extend-
ing into the inferior parietal cortex (Fig. 5D, left; for MNI coordi-
nates of the peak voxel in each cluster, see Table 2). The highest
decoding accuracies for the 8 Hz signal were located in the left LOTC
(Fig. 5D, right), slightly anterior to the source identified at 6 Hz.

Regarding the sources related to the decoding obtained in
the late time window, we chose 900 ms as time of interest for
the frequencies 10 and 18 Hz (time windows: 600—1200 and
6781222 ms, respectively; smoothing: 3 Hz). For the 10 Hz
signal, we obtained the highest decoding accuracies in the
right precentral gyrus (Fig. 5E, left). For the 18 Hz signal, we
obtained highest decoding accuracies in the right inferior
frontal gyrus (IFG; Fig. 5E, right).

To show a complete overview of the temporal dynamics of the
neural decoding at sensor space, we plotted the decoding accu-
racy (expressed in ¢ values) for separate time bins (50—150, 150—
250, 250-350, 350—450, 450550, and 550—650 ms for the early
observed decoding; Fig. 84; 350—450, 450-550, 550—650, 650 —
750, 750—850, 850—950, and 950—1050 ms for the late observed
decoding; Fig. 8B), averaged across frequency bands (theta: 2—6
Hz; low alpha: 7-9 Hz; alpha: 9-11 Hz; beta: 17-19 Hz). Figure 8
shows how the effect over posterior sensors evolves over time,
and that anterior sensors do not show up before ~700 ms.

To further evaluate the reliability of the classifier, we also used
a simulation approach. Specifically, we ran a Monte Carlo simu-
lation to estimate the probability of finding an accuracy of
53.46% under the null hypothesis of chance accuracy. The cross-
validation partitioning scheme divided the data into two inde-
pendent halves (Table 1; see Materials and Methods), with the
first half containing left-hand rightwards and right-hand left-
wards trials, and the second half containing right-hand right-
wards and left-hand leftwards trials. In each independent half,
there were two folds, with a minimum of 136 trials (across par-
ticipants and halves) after rejecting trials with artifacts and bal-
ancing the partitions so that each of the two actions occurred
equally often. For each participant separately, we found that the
correlation of classification accuracies for the test sets in two folds
to be r = 0.3289 (median across participants and the two inde-
pendent halves). Thus, in our simulation we used the same value
as follows. For each permutation, uniformly distributed [on the
interval (0, 1)] random data were generated for two independent
halves, two folds, 136 samples, and 17 participants. To assess the
effect of dependency we used three sets of independently and
normally distributed data, i, i, and 7.y, mon. 10 match the cor-
relation between accuracies, for each independent half of the
data, data were made dependent through d, =i, * y + i, o0 *
(1—y)andd, =i, * Y+ i mmon * (1 — v), with y = 0.415 found
through binary search to match the correlation (r = 0.3289)
across dependent folds, as observed in the original data. For each
iteration, classification accuracy was simulated by dividing the
number of samples that exceeded 0.5 in d, and d, by the number
of samples. To obtain classification accuracies relative to chance,
0.5 was subtracted.

To assess the effect of independence, we also ran the same
analysis setting -y = 0 (corresponding to r = 0, i.e., full indepen-
dence between folds) and y = 1 (corresponding to r = 1, i.e., full
dependence between folds).
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Figure 5.  Results of the neural spatiotemporal decoding. To identify abstract action representations of the observed actions (e.g., observing “grasping” regardless of whether it was performed
with the left or the right hand), we trained the MVPA classifier to discriminate between pointing and grasping using one effector (e.g., the left hand) and one reach direction (e.g., toward the left),
and tested the performance of the classifier using an independent dataset, using pointing and grasping movements performed with the other hand toward the opposite reach direction. We decoded
the observed movements over time hins, frequency bins, and sensors using a time—frequency— channel searchlight analysis. A, The lateral plots show the time—frequency representation of the
decoding in sensors depicted in the inset topoplots. Reddish colors indicate higher classification. Sensors were selected on the basis of the highest decoding accuracy at the frequency of interest. The
central inset shows the two clusters that survived the correction for multiple comparisons (cluster obtained at early time point: 200 — 600 ms; cluster obtained at late time point: 600 —1200 ms). B,
Topography of the decoding at 400 ms and low frequencies (6 and 8 Hz; smoothing: 4 Hz). €, Topography of the decoding at 900 ms and higher frequencies (10 and 18 Hz; smoothing: 3 Hz). D, E,
Sources accounting for the decoding effect found at sensor level, thresholded to retain only those voxels with the 10% highest decoding accuracies. For sensor-level analysis only, significant
differences were computed using permutation analysis and Monte Carlo methods and results are cluster corrected for multiple comparisons. Maps were projected on the population-average,
landmark-based, and surface-based atlas (Van Essen, 2005), using Caret software (Van Essen et al., 2001).

We used 100,000 iterations and found that the maximum  than that observed in the data (Fig. 9). We obtained similar
classification accuracies found in the data (using r = 0.3289  results for the additionally simulated cases of fully indepen-
for fold correlation) was significant (pyicsensor, r = 03280 <  dent folds (r = 05 Peensor. r = 0.00 < 0.00001), and dependent
0.00001); for the latter, no iteration showed a higher mean  folds (r = 1; peneor, » = 1.00 < 0.00001).



16042 - ). Neurosci., December 9, 2015 - 35(49):16034 —16045

Discussion

Using MVPA of MEG data, we found that
the LOTC has the earliest access to ab-
stract action representations. By contrast, .
precentral regions, though recruited rela- !

(o)}
a

tively early, have access to abstract action
representations substantially later than
the LOTC. Behavioral data indicated that
participants were not able to distinguish
between the two actions before 233 ms,
and this latency is comparable to the one
observed in the LOTC.
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Early abstract action representations in
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occipitotemporal and parietal regions
Although MEG has a lower spatial resolu-
tion than fMRI, we can confidently say,
based on the topographical results and
source analysis, that the source that ac-
counted for the decoding effect we found
at the early stage was located within the
left and right LOTC. The LOTC hosts re-
gions sensitive to body parts, kinematics,
body postures, manipulable objects, and
observed movements (Valyear and Cul-
ham, 2010; Downing and Peelen, 2011;
Buxbaum et al., 2014; Pavlidou et al.,
2014a,b; Lingnau and Downing, 2015).
The LOTC has been shown to be modu-
lated when participants are required to
process the meaning, compared with the
effector, involved in an action (Lingnau
and Petris, 2013). Moreover, the LOTC is
recruited during the semantic processing
of verbs (Papeo etal., 2015), and lesions to
this region are associated with impair-
ments in action recognition (Kalénine et
al., 2010; Urgesi et al., 2014). In line with
this view, a recent lesion study demon-
strated that lesions to primary motor, so-
matosensory, and inferior parietal lobule
were accompanied by impaired action
performance. By contrast, lesions to the
posterior LOTC were associated with im-
paired action recognition, whereas lesions
to the anterior LOTC were accompanied
by impairments in both tasks (Tarhan et
al., 2015). Together, these studies suggest
that the LOTC is well suited to integrate various sources of infor-
mation crucial for action understanding.

Neuroimaging studies using MPVA of fMRI data have re-
cently shown that the LOTC also contains abstract representa-
tions of observed actions, e.g., action representations that
generalize from action execution to action observation and vice
versa (Oosterhof et al., 2010), that generalize across viewpoint
(first person, third person; Oosterhof et al., 2012a), that general-
ize across kinematics (Wurm and Lingnau, 2015), and that gen-
eralize across the object involved in the action (Wurm and
Lingnau, 2015; Wurm et al., 2015). Importantly, our study shows
that such abstract representations are available before observing
this kind of representation in precentral regions, around the time
when there is enough information in the stimuli to distinguish

Figure 6.

20,24, 28; Table 2).

Figure 7.
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Maximum accuracy within each region. Within each identified source, the voxel with the maximum mean accuracy
was selected and plotted with individual accuracies (black dots). Left MTG, Middle temporal gyrus (MNI: —50, — 64, 12); Left SPL,
superior parietal lobule (MNI: —20, —56,48); Right PCG, precentral gyrus (MNI: 28, —6, 28); Right IFG, inferior frontal gyrus (MNI:
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Comparison between univariate and multivariate analyses. Comparison between univariate (top row) and multivar-
iate (bottom row) analyses in two time windows (200600 and 600 —1200 ms). The upper topoplots show the sensors that
survived the permutation test when comparing grasping versus pointing (collapsing across effector and reach direction). The lower
topoplots show the sensors that survived the permutation test when comparing the observed accuracy of the classifier to distin-
guish between pointing and grasping (generalizing across effector and reach direction) against chance level (50%). Multivariate
analysis was more sensitive in detecting the subtle differences between the neural signals induced by observation of the two
movement types in the earlier time window. All shown clusters are corrected for multiple comparisons (p << 0.05).

Table 2. MNI coordinates of the sources

Area Frequency (Hz) Time (ms) X Y z

Left pITG 6 200 =52 —56 —12
Left SPL 6 400 —20 —56 48
Left pMTG 8 400 —50 —64 12
Right PCG 10 900 28 —6 28
Right IFG 18 900 20 24 28

MNI coordinates of the sources (clusters) found in the two different frequency bands, with the respective labels taken
from the Anatomical Automatic Labeling datahase (Tzourio-Mazoyer et al., 2002). pITG, Posterior portion of the
inferior temporal gyrus; pMTG, posterior portion of the middle temporal gyrus; SPL, superior parietal lobule; IFG,
inferior frontal gyrus (triangular part); PCG, precentral gyrus.

between the two types of actions. Our findings are compatible
with cognitive theories of action understanding that predict the
earliest encoding of the meaning of an action outside the motor
system. By contrast, our results are not compatible with motor
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Neural decoding over time. The topoplots show the dynamics of above-chance accuracy (expressed as t scores) of the classifier in discriminating observed grasping and pointing

(generalizing across effector and reach direction) for specific frequency bands (theta: 5-7 Hz; low alpha: 7-9 Hz; alpha: 9 —11 Hz; beta: 17-19 Hz). A, The earliest significant decoding occurred in the
posterior part of the helmet configuration in the lower-frequency bands. B, Decoding in the higher frequency bands was significant at a later latency.
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Figure9.  Simulation analysis. lllustration how “low” classification accuracy (53.46% for sensor data; 50% is chance level) can
be highly significant, using normal distribution probability plots of Monte Carlo-simulated classification accuracy distribution
(relative to chance, 50%). The simulation uses the same parameters as those used in the study (17 participants; minimum
after-trial rejection: 544 trials per participant; same cross-validation scheme as used in original data). Dependency across cross-
validation folds was set to r = 0.3289 (green crosses) to match the value observed in the original data; for comparison, results are
also shown for the cases of no dependence (r = 0.00; blue) and full dependence (r = 1.00; orange). The maximum classification
accuracy above chance as observed in the original data is indicated by a black line.

theories of action understanding that
would predict the earliest access to ab-
stract action representations in precentral
regions.

The fact that we observed abstract ac-
tion representations in the LOTC earlier
than in precentral regions is compatible
with a framework suggested by Kilner
(2011). According to this view, the middle
temporal gyrus in the LOTC and the an-
terior portion of the IFG encode the most
likely goal or intention of an action (e.g.,
grasping an object), which is communi-
cated to the posterior portion of the IFG,
where the most likely action is selected. In
this framework, the role of the posterior
IFG would be to generate a concrete in-
stance of the action (e.g., grasping an ob-
ject on the left using the right hand)
through motor simulation. In contrast to
motor theories of action understanding,
the role of this motor simulation would
not be to provide access to the meaning of
the action, but rather to contribute to the
generation of the predicted sensory con-
sequences of the most likely action.

We observed abstract action represen-
tations at ~400 ms in the left superior pa-
rietal lobule as well, extending into the
inferior parietal lobule. This result is in
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line with previous monkey (Fogassi et al., 2005; Rizzolatti et al.,
2014) and human fMRI studies (Grafton and Hamilton, 2007;
Oosterhof et al., 2010, 2012b; Leshinskaya and Caramazza, 2015;
Wurm and Lingnau, 2015; Wurm et al., 2015), suggesting that,
similar to the LOTC, this region contains abstract action repre-
sentations. The observation that the superior parietal and the
inferior parietal lobule have access to abstract action representa-
tions earlier than precentral regions raises the possibility that
these regions might play an intermediate role between the LOTC
and precentral regions (Wurm et al., 2015). In line with this view,
Pavlidou et al. (2014b) demonstrated that the difference between
plausible and implausible actions is first obtained over left tem-
poral sensors, followed by parieto-occipital and sensorimotor
Sensors.

Late abstract action representations in precentral regions

The contrast between observation and baseline showed a modu-
lation of the high alpha and beta frequency bands over central
sensors during passive action observation (Fig. 4E), an effect that
has been suggested to be related to sensorimotor processing in
motor and premotor regions (Pineda, 2005). Although we ob-
served an early modulation of high-alpha and beta frequencies in
precentral regions for observation versus baseline, these regions
had access to abstract representations of the observed actions
substantially later than the time at which the actions were distin-
guishable. This finding makes a determinant role of precentral
regions in action understanding implausible. In line with this
view, damage to precentral regions does not necessarily impair
the ability to understand actions (Negri et al., 2007; Kalénine et
al., 2010; but see Pazzaglia et al., 2008). If precentral regions do
not play a determinant role in action understanding, what could
be the alternative role of the late abstract action representations
we obtained in these regions? Since the LOTC and precentral
regions are functionally interconnected (Kilner, 2011; Nelissen et
al., 2011; Turken and Dronkers, 2011; Engel et al., 2013; Papeo et
al., 2015), higher-level representations in precentral regions have
been suggested to be a result of information spreading through-
out the network (Mahon and Caramazza, 2008). Instead of pro-
viding access to the meaning of an action, precentral regions thus
might be recruited to plan an appropriate movement in response
to the observed action as a consequence or in parallel to the
process of action understanding.

Potential caveats

One potential limitation regarding the interpretation of our results is
related to the fact that one of the main distinctions between pointing
and grasping, next to the preshaping of the hand, is the number of
fingers involved. It is therefore difficult to disentangle whether our
classification is based on the number of fingers involved in the move-
ment, the preshaping of the hand while approaching the target, or a
combination of the two. Note that pointing and grasping move-
ments are defined both by the number of fingers involved and by the
hand configuration; in other words, understanding actions could be
based on the number of fingers observed as well as on the shape of
the hand.

Another possible criticism could be that we were able to dis-
tinguish between the two movements based on the MEG signal as
early as 150 ms, which seems counterintuitive given that the
mean movement onset in the videos was ~191 ms. There are
several not mutually exclusive explanations for this observation.
First, movements started before 150 ms in 43.8% of the videos
(see Material and Methods). By contrast, the peak of decoding
from the MEG signal was obtained at ~300 ms. Second, we had to
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apply a certain amount of temporal smoothing during time-
frequency computation and during the searchlight analysis (see
Materials and Methods). Consequently, when the algorithm an-
alyzes the time bin at 150 ms, it also considers information pres-
ent at 200 and 250 ms, which contained more information about
movement type. This means that the absolute latency at which the
two actions can be distinguished based on the MEG signal has to
be interpreted with a grain of salt. Importantly, we do not aim to
draw strong conclusions regarding the absolute onset at which
movements can be decoded in the different regions, but rather
about the relative difference between putative regions involved in
action understanding. Thus, our conclusion still holds: the LOTC
encodes abstract representations of actions earlier than precen-
tral regions.

One might argue that although we observed the strongest
source in the early time window within the LOTC, the source
analysis also revealed a small left frontal region. This frontal
source is very likely generated by a single temporal source, in line
with the observation that no frontal sensor showed significant
decoding in this early time window (Fig. 8). Note that the absence
of a frontal source in the early time window does not prove that
such a source does not exist. What we can state with a certain
confidence, though, is that the same analysis that revealed a
strong and reliable source in the LOTC did not reveal any frontal
source in the early time window.

Conclusion

Our results demonstrate that the LOTC has access to abstract
action representations substantially earlier than precentral re-
gions, in line with the idea that action understanding occurs out-
side the motor system, with subsequent activation of precentral
regions due to information provided from the LOTC. Our results
therefore provide important constraints for biologically plausible
models of action understanding.
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